

Data-Centric Systems and Applications

Series Editors

M.J. Carey
S. Ceri

Editorial Board

P. Bernstein
U. Dayal

C. Faloutsos
J.C. Freytag
G. Gardarin

W. Jonker
V. Krishnamurthy

M.-A. Neimat
P. Valduriez
G. Weikum

K.-Y. Whang
J. Widom

Bing Liu

Web Data Mining
Exploring Hyperlinks,
Contents, and Usage Data

With 177 Figures

123

Bing Liu

Department of Computer Science
University of Illinois at Chicago
851 S. Morgan Street
Chicago, IL 60607-7053
USA
liub@cs.uic.edu

Library of Congress Control Number: 2006937132

ACM Computing Classification (1998): H.2, H.3, I.2, I.5, E.5

Corrected 2nd printing 2008

ISBN-10 3-540-37881-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37881-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Heidelberg
Typesetting: by the Author
Production: le-tex publishing services oHG, Leipzig

Printed on acid-free paper 45/3180/YL 5 4 3 2 1 0

To my parents, my wife Yue and children Shelley and Kate

Preface

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. Web mining aims to discover use-
ful information or knowledge from Web hyperlinks, page contents, and us-
age logs. Based on the primary kinds of data used in the mining process,
Web mining tasks can be categorized into three main types: Web structure
mining, Web content mining and Web usage mining. Web structure min-
ing discovers knowledge from hyperlinks, which represent the structure of
the Web. Web content mining extracts useful information/knowledge from
Web page contents. Web usage mining mines user access patterns from
usage logs, which record clicks made by every user.

The goal of this book is to present these tasks, and their core mining al-
gorithms. The book is intended to be a text with a comprehensive cover-
age, and yet, for each topic, sufficient details are given so that readers can
gain a reasonably complete knowledge of its algorithms or techniques
without referring to any external materials. Four of the chapters, structured
data extraction, information integration, opinion mining, and Web usage
mining, make this book unique. These topics are not covered by existing
books, but yet they are essential to Web data mining. Traditional Web
mining topics such as search, crawling and resource discovery, and link
analysis are also covered in detail in this book.

Although the book is entitled Web Data Mining, it also includes the
main topics of data mining and information retrieval since Web mining
uses their algorithms and techniques extensively. The data mining part
mainly consists of chapters on association rules and sequential patterns,
supervised learning (or classification), and unsupervised learning (or clus-
tering), which are the three most important data mining tasks. The ad-
vanced topic of partially (semi-) supervised learning is included as well.
For information retrieval, its core topics that are crucial to Web mining are
described. This book is thus naturally divided into two parts. The first part,
which consists of Chaps. 2–5, covers data mining foundations. The second
part, which contains Chaps. 6–12, covers Web specific mining.

Two main principles have guided the writing of this book. First, the ba-
sic content of the book should be accessible to undergraduate students, and
yet there are sufficient in-depth materials for graduate students who plan to

pursue Ph.D. degrees in Web data mining or related areas. Few assump-
tions are made in the book regarding the prerequisite knowledge of read-
ers. One with a basic understanding of algorithms and probability concepts
should have no problem with this book. Second, the book should examine
the Web mining technology from a practical point of view. This is impor-
tant because most Web mining tasks have immediate real-world applica-
tions. In the past few years, I was fortunate to have worked directly or in-
directly with many researchers and engineers in several search engine and
e-commerce companies, and also traditional companies that are interested
in exploiting the information on the Web in their businesses. During the
process, I gained practical experiences and first-hand knowledge of real-
world problems. I try to pass those non-confidential pieces of information
and knowledge along in the book. The book, thus, should have a good bal-
ance of theory and practice. I hope that it will not only be a learning text
for students, but also a valuable source of information/knowledge and even
ideas for Web mining researchers and practitioners.

Acknowledgements

Many researchers have assisted me technically in writing this book. With-
out their help, this book might never have become reality. My deepest
thanks goes to Filippo Menczer and Bamshad Mobasher, who were so kind
to have helped write two essential chapters of the book. They are both ex-
perts in their respective fields. Filippo wrote the chapter on Web crawling
and Bamshad wrote the chapter on Web usage mining. I am also very
grateful to Wee Sun Lee, who helped a great deal in the writing of Chap. 5
on partially supervised learning.

Jian Pei helped with the writing of the PrefixSpan algorithm in Chap. 2,
and checked the MS-PS algorithm. Eduard Dragut assisted with the writing
of the last section of Chap. 10 and also read the chapter many times.
Yuanlin Zhang gave many great suggestions on Chap. 9. I am indebted to
all of them.

Many other researchers also assisted in various ways. Yang Dai and
Rudy Setiono helped with Support Vector Machines (SVM). Chris Ding
helped with link analysis. Clement Yu and ChengXiang Zhai read Chap. 6,
and Amy Langville read Chap. 7. Kevin C.-C. Chang, Ji-Rong Wen and
Clement Yu helped with many aspects of Chap 10. Justin Zobel helped
clarify some issues related to index compression, and Ion Muslea helped
clarify some issues on wrapper induction. Divy Agrawal, Yunbo Cao,
Edward Fox, Hang Li, Xiaoli Li, Zhaohui Tan, Dell Zhang and Zijian
Zheng helped check various chapters or sections. I am very grateful.

VIII Preface

Preface I

Discussions with many researchers helped shape the book as well: Amir
Ashkenazi, Imran Aziz, Roberto Bayardo, Wendell Baker, Ling Bao,
Jeffrey Benkler, AnHai Doan, Byron Dom, Michael Gamon, Robert
Grossman, Jiawei Han, Wynne Hsu, Ronny Kohavi, David D. Lewis, Ian
McAllister, Wei-Ying Ma, Marco Maggini, Llew Mason, Kamel Nigan,
Julian Qian, Yan Qu, Thomas M. Tirpak, Andrew Tomkins, Alexander
Tuzhilin, Weimin Xiao, Gu Xu, Philip S. Yu, and Mohammed Zaki.

My former and current students, Gao Cong, Minqing Hu, Nitin Jindal,
Xin Li, Yiming Ma, Yanhong Zhai and Kaidi Zhao checked many algo-
rithms and made numerous corrections. Some chapters of the book have
been used in my graduate classes at the University of Illinois at Chicago. I
thank the students in these classes for implementing several algorithms.
Their questions helped me improve and, in some cases, correct the algo-
rithms. It is not possible to list all their names. Here, I would particularly
like to thank John Castano, Xiaowen Ding, Murthy Ganapathibhotla, Cyn-
thia Kersey, Hari Prasad Divyakotti, Ravikanth Turlapati, Srikanth Tadik-
onda, Makio Tamura, Haisheng Wang, and Chad Williams for pointing out
errors in texts, examples or algorithms. Michael Bombyk from DePaul
University also found several typing errors.

It was a pleasure working with the helpful staff at Springer. I thank my
editor Ralf Gerstner who asked me in early 2005 whether I was interested
in writing a book on Web mining. It has been a wonderful experience
working with him since. I also thank my copyeditor Mike Nugent for
helping me improve the presentation, and my production editor Michael
Reinfarth for guiding me through the final production process. Two
anonymous reviewers also gave me many insightful comments.

The Department of Computer Science at the University of Illinois at
Chicago provided computing resources and a supportive environment for
this project.

Finally, I thank my parents, brother and sister for their constant supports
and encouragements. My greatest gratitude goes to my own family: Yue,
Shelley and Kate. They have helped me in so many ways. Despite their
young ages, Shelley and Kate actually read many parts of the book and
caught numerous typing errors. My wife has taken care of almost every-
thing at home and put up with me and the long hours that I have spent on
this book. I dedicate this book to them.

 Bing Liu

X

Table of Contents

1. Introduction ··· 1
1.1. What is the World Wide Web? ······································ 1
1.2. A Brief History of the Web and the Internet ·················· 2
1.3. Web Data Mining ··· 4

1.3.1. What is Data Mining? ··· 6
1.3.2. What is Web Mining? ··· 6

1.4. Summary of Chapters ··· 8
1.5. How to Read this Book ·· 11
 Bibliographic Notes ·· 12

Part I: Data Mining Foundations

2. Association Rules and Sequential Patterns ············ 13
2.1. Basic Concepts of Association Rules ··························· 13
2.2. Apriori Algorithm ··· 16

2.2.1. Frequent Itemset Generation ··································· 16
2.2.2 Association Rule Generation ··································· 20

 2.3. Data Formats for Association Rule Mining ··················· 22
2.4. Mining with Multiple Minimum Supports ······················· 22

2.4.1 Extended Model ··· 24
2.4.2. Mining Algorithm ·· 26
2.4.3. Rule Generation ··· 31

2.5. Mining Class Association Rules ··································· 32
2.5.1. Problem Definition ·· 32
2.5.2. Mining Algorithm ·· 34
2.5.3. Mining with Multiple Minimum Supports ·················· 37

2.6. Basic Concepts of Sequential Patterns ························ 37
2.7. Mining Sequential Patterns Based on GSP··················· 39

2.7.1. GSP Algorithm ··· 39
2.7.2. Mining with Multiple Minimum Supports ·················· 41

2.8. Mining Sequential Patterns Based on PrefixSpan ········ 45
2.8.1. PrefixSpan Algorithm ··· 46
2.8.2. Mining with Multiple Minimum Supports ·················· 48

2.9. Generating Rules from Sequential Patterns·················· 49
2.9.1. Sequential Rules ·· 50
2.9.2. Label Sequential Rules ·· 50
2.9.3. Class Sequential Rules ·· 51

 Bibliographic Notes ·· 52

3. Supervised Learning ·· 55
3.1. Basic Concepts ··· 55
3.2. Decision Tree Induction ·· 59

3.2.1. Learning Algorithm ··· 62
3.2.2. Impurity Function ··· 63
3.2.3. Handling of Continuous Attributes ··························· 67
3.2.4. Some Other Issues ·· 68

3.3. Classifier Evaluation ·· 71
3.3.1. Evaluation Methods ··· 71
3.3.2. Precision, Recall, F-score and Breakeven Point ····· 73

3.4. Rule Induction ··· 75
3.4.1. Sequential Covering ··· 75
3.4.2. Rule Learning: Learn-One-Rule Function················· 78
3.4.3. Discussion ·· 81

3.5. Classification Based on Associations ····························· 81
3.5.1. Classification Using Class Association Rules ·········· 82
3.5.2. Class Association Rules as Features ······················ 86
3.5.3. Classification Using Normal Association Rules ······· 86

3.6. Naïve Bayesian Classification ·· 87
3.7. Naïve Bayesian Text Classification ································· 91

3.7.1. Probabilistic Framework ··· 92
3.7.2. Naïve Bayesian Model ··· 93
3.7.3. Discussion ·· 96

3.8. Support Vector Machines ·· 97
3.8.1. Linear SVM: Separable Case ·································· 99

XII Table of Contents

Table of Contents XIII

3.8.2. Linear SVM: Non-Separable Case ························· 105
3.8.3. Nonlinear SVM: Kernel Functions ·························· 108

3.9. K-Nearest Neighbor Learning ··· 112
3.10. Ensemble of Classifiers ··· 113

3.10.1. Bagging ·· 114
3.10.2. Boosting ··· 114

 Bibliographic Notes ·· 115

4. Unsupervised Learning ·· 117
4.1. Basic Concepts ··· 117
4.2. K-means Clustering ·· 120

4.2.1. K-means Algorithm ·· 120
4.2.2. Disk Version of the K-means Algorithm ················· 123
4.2.3. Strengths and Weaknesses ··································· 124

4.3. Representation of Clusters ··· 128
4.3.1. Common Ways of Representing Clusters ·············· 129
4.3.2 Clusters of Arbitrary Shapes ·································· 130

4.4. Hierarchical Clustering ·· 131
4.4.1. Single-Link Method ·· 133
4.4.2. Complete-Link Method ··· 133
4.4.3. Average-Link Method ··· 134
4.4.4. Strengths and Weaknesses ··································· 134

4.5. Distance Functions ·· 135
4.5.1. Numeric Attributes ··· 135
4.5.2. Binary and Nominal Attributes ······························· 136
4.5.3. Text Documents ··· 138

4.6. Data Standardization ··· 139
4.7. Handling of Mixed Attributes ·· 141
4.8. Which Clustering Algorithm to Use? ····························· 143
4.9. Cluster Evaluation ·· 143
4.10. Discovering Holes and Data Regions ··························· 146
 Bibliographic Notes ·· 149

5. Partially Supervised Learning ································· 151
5.1. Learning from Labeled and Unlabeled Examples ······ 151

5.1.1. EM Algorithm with Naïve Bayesian Classification · 153

.

V Table of Contents

5.1.2. Co-Training ·· 156
5.1.3. Self-Training ··· 158
5.1.4. Transductive Support Vector Machines ················· 159
5.1.5. Graph-Based Methods ··· 160
5.1.6. Discussion ·· 164

5.2. Learning from Positive and Unlabeled Examples ······· 165
5.2.1. Applications of PU Learning ··································· 165
5.2.2. Theoretical Foundation ·· 168
5.2.3. Building Classifiers: Two-Step Approach ··············· 169
5.2.4. Building Classifiers: Direct Approach ····················· 175
5.2.5. Discussion ·· 178

 Appendix: Derivation of EM for Naïve Bayesian Classification ·· 179
 Bibliographic Notes ·· 181

Part II: Web Mining

6. Information Retrieval and Web Search ··················· 183
6.1. Basic Concepts of Information Retrieval ······················ 184

6.2. Information Retrieval Models ······································· 187
6.2.1. Boolean Model ··· 188
6.2.2. Vector Space Model ··· 188
6.2.3. Statistical Language Model ···································· 191

6.3. Relevance Feedback ··· 192
6.4. Evaluation Measures ··· 195
6.5. Text and Web Page Pre-Processing ····························· 199

6.5.1. Stopword Removal ··· 199
6.5.2. Stemming ··· 200
6.5.3. Other Pre-Processing Tasks for Text ···················· 200
6.5.4. Web Page Pre-Processing ····································· 201
6.5.5. Duplicate Detection ·· 203

6.6. Inverted Index and Its Compression ····························· 204
6.6.1. Inverted Index ·· 204
6.6.2. Search Using an Inverted Index ···························· 206
6.6.3. Index Construction ··· 207
6.6.4. Index Compression ·· 209

XI

Table of Contents XV

6.7. Latent Semantic Indexing ··· 215
6.7.1. Singular Value Decomposition ······························· 215
6.7.2. Query and Retrieval ··· 218
6.7.3. An Example ·· 219
6.7.4. Discussion ·· 221

6.8. Web Search ·· 222
6.9. Meta-Search: Combining Multiple Rankings ·············· 225

6.9.1. Combination Using Similarity Scores ····················· 226
6.9.2. Combination Using Rank Positions ························ 227

6.10. Web Spamming ·· 229
6.10.1. Content Spamming ·· 230
6.10.2. Link Spamming ·· 231
6.10.3. Hiding Techniques ··· 233
6.10.4. Combating Spam ··· 234

 Bibliographic Notes ··· 235

7. Link Analysis ·· 237
7.1. Social Network Analysis ·· 238

7.1.1 Centrality ·· 238
7.1.2 Prestige ·· 241

7.2. Co-Citation and Bibliographic Coupling ························ 243
7.2.1. Co-Citation ··· 244
7.2.2. Bibliographic Coupling ··· 245

7.3. PageRank ·· 245
7.3.1. PageRank Algorithm ·· 246
7.3.2. Strengths and Weaknesses of PageRank ·············· 253
7.3.3. Timed PageRank ·· 254

7.4. HITS ··· 255
7.4.1. HITS Algorithm ··· 256
7.4.2. Finding Other Eigenvectors ··································· 259

 7.4.3. Relationships with Co-Citation and Bibliographic
 Coupling ··· 259

7.4.4. Strengths and Weaknesses of HITS ······················ 260
7.5. Community Discovery ··· 261

7.5.1. Problem Definition ·· 262
7.5.2. Bipartite Core Communities ··································· 264
7.5.3. Maximum Flow Communities ································· 265
7.5.4. Email Communities Based on Betweenness ········· 268
7.5.5. Overlapping Communities of Named Entities ········ 270

XVI Table of Contents

Bibliographic Notes ·· 271

8. Web Crawling ·· 273
 8.1. A Basic Crawler Algorithm ·· 274

8.1.1. Breadth-First Crawlers ··· 275
8.1.2. Preferential Crawlers ··· 276

8.2. Implementation Issues ·· 277
8.2.1. Fetching ··· 277
8.2.2. Parsing ··· 278
8.2.3. Stopword Removal and Stemming ························ 280
8.2.4. Link Extraction and Canonicalization ····················· 280
8.2.5. Spider Traps ··· 282
8.2.6. Page Repository ·· 283
8.2.7. Concurrency ··· 284

8.3. Universal Crawlers ··· 285
8.3.1. Scalability ··· 286
8.3.2. Coverage vs Freshness vs Importance ················· 288

8.4. Focused Crawlers ·· 289
8.5. Topical Crawlers ··· 292

8.5.1. Topical Locality and Cues ······································ 294
8.5.2. Best-First Variations ··· 300
8.5.3. Adaptation ·· 303

8.6. Evaluation ·· 310
8.7. Crawler Ethics and Conflicts ·· 315
8.8. Some New Developments ·· 318
Bibliographic Notes ·· 320

9. Structured Data Extraction: Wrapper Generation · 323
 9.1 Preliminaries ··· 324

9.1.1. Two Types of Data Rich Pages ····························· 324
9.1.2. Data Model ··· 326
9.1.3. HTML Mark-Up Encoding of Data Instances ········· 328

9.2. Wrapper Induction ·· 330
9.2.1. Extraction from a Page ·· 330
9.2.2. Learning Extraction Rules ······································ 333
9.2.3. Identifying Informative Examples ··························· 337
9.2.4. Wrapper Maintenance ·· 338

Table of Contents XVII

9.3. Instance-Based Wrapper Learning ································ 338
9.4. Automatic Wrapper Generation: Problems ·················· 341

9.4.1. Two Extraction Problems ······································· 342
9.4.2. Patterns as Regular Expressions ··························· 343

9.5. String Matching and Tree Matching ······························ 344
9.5.1. String Edit Distance ··· 344
9.5.2. Tree Matching ·· 346

9.6. Multiple Alignment ·· 350
9.6.1. Center Star Method ·· 350
9.6.2. Partial Tree Alignment ··· 351

9.7. Building DOM Trees ·· 356
9.8. Extraction Based on a Single List Page:
 Flat Data Records ·· 357

9.8.1. Two Observations about Data Records ················· 358
9.8.2. Mining Data Regions ·· 359
9.8.3. Identifying Data Records in Data Regions ············· 364
9.8.4. Data Item Alignment and Extraction ······················ 365
9.8.5. Making Use of Visual Information ·························· 366
9.8.6. Some Other Techniques ·· 366

9.9. Extraction Based on a Single List Page:
 Nested Data Records ·· 367
9.10. Extraction Based on Multiple Pages ····························· 373

9.10.1. Using Techniques in Previous Sections ················ 373
9.10.2. RoadRunner Algorithm ·· 374

9.11. Some Other Issues ·· 375
9.11.1. Extraction from Other Pages ·································· 375
9.11.2. Disjunction or Optional ··· 376
9.11.3. A Set Type or a Tuple Type ··································· 377
9.11.4. Labeling and Integration ·· 378
9.11.5. Domain Specific Extraction ···································· 378

9.12. Discussion ··· 379
Bibliographic Notes ·· 379

10. Information Integration ·· 381
10.1. Introduction to Schema Matching ································ 382
10.2. Pre-Processing for Schema Matching ························· 384
10.3. Schema-Level Match ··· 385

X II Table of Contents

10.3.1. Linguistic Approaches ·· 385
10.3.2. Constraint Based Approaches ····························· 386

10.4. Domain and Instance-Level Matching ························· 387
10.5. Combining Similarities ··· 390
10.6. 1:m Match ·· 391
10.7. Some Other Issues ··· 392

10.7.1. Reuse of Previous Match Results ························· 392
10.7.2. Matching a Large Number of Schemas ················ 393

 10.7.3 Schema Match Results ·· 393
 10.7.4 User Interactions ·· 394
10.8. Integration of Web Query Interfaces ···························· 394

10.8.1. A Clustering Based Approach ······························ 397
10.8.2. A Correlation Based Approach······························ 400
10.8.3. An Instance Based Approach································ 403

10.9. Constructing a Unified Global Query Interface ·········· 406
10.9.1. Structural Appropriateness and the
 Merge Algorithm ·· 406
10.9.2. Lexical Appropriateness·· 408
10.9.3. Instance Appropriateness······································ 409

Bibliographic Notes ·· 410

11. Opinion Mining ·· 411
11.1. Sentiment Classification ·· 412

11.1.1. Classification Based on Sentiment Phrases ········ 413
11.1.2. Classification Using Text Classification Methods · 415
11.1.3. Classification Using a Score Function ·················· 416

11.2. Feature-Based Opinion Mining and Summarization ·· 417
11.2.1. Problem Definition ·· 418
11.2.2. Object Feature Extraction······································ 424
11.2.3. Feature Extraction from Pros and Cons
 of Format 1 ·· 425
11.2.4. Feature Extraction from Reviews of
 of Formats 2 and 3 ·· 429
11.2.5. Opinion Orientation Classification ························ 430

11.3. Comparative Sentence and Relation Mining ·············· 432
11.3.1. Problem Definition ·· 433
11.3.2. Identification of Gradable Comparative

Sentences ·· 435

VI

Table of Contents XIX

11.3.3. Extraction of Comparative Relations····················· 437
11.4. Opinion Search ·· 439
11.5. Opinion Spam ·· 441

11.5.1. Objectives and Actions of Opinion Spamming ····· 441
11.5.2. Types of Spam and Spammers ···························· 442
11.5.3. Hiding Techniques··· 443
11.5.4. Spam Detection ·· 444

Bibliographic Notes ·· 446

12. Web Usage Mining ··· 449
12.1. Data Collection and Pre-Processing ···························· 450

12.1.1 Sources and Types of Data ·································· 452
12.1.2 Key Elements of Web Usage Data

Pre-Processing ··· 455
12.2 Data Modeling for Web Usage Mining ························ 462
12.3 Discovery and Analysis of Web Usage Patterns ······· 466

12.3.1. Session and Visitor Analysis ································ 466
12.3.2. Cluster Analysis and Visitor Segmentation ·········· 467
12.3.3 Association and Correlation Analysis ··················· 471
12.3.4 Analysis of Sequential and Navigational Patterns 475

 12.3.5. Classification and Prediction Based on Web User
Transactions ··· 479

12.4. Discussion and Outlook ··· 482
Bibliographic Notes ·· 482

References ··· 485

Index ·· 517

1 Introduction

When you read this book, you, without doubt, already know what the
World Wide Web is and have used it extensively. The World Wide Web
(or the Web for short) has impacted on almost every aspect of our lives. It
is the biggest and most widely known information source that is easily ac-
cessible and searchable. It consists of billions of interconnected documents
(called Web pages) which are authored by millions of people. Since its in-
ception, the Web has dramatically changed our information seeking behav-
ior. Before the Web, finding information means asking a friend or an ex-
pert, or buying/borrowing a book to read. However, with the Web,
everything is only a few clicks away from the comfort of our homes or of-
fices. Not only can we find needed information on the Web, but we can
also easily share our information and knowledge with others.

The Web has also become an important channel for conducting busi-
nesses. We can buy almost anything from online stores without needing to
go to a physical shop. The Web also provides convenient means for us to
communicate with each other, to express our views and opinions on any-
thing, and to discuss with people from anywhere in the world. The Web is
truly a virtual society. In this first chapter, we introduce the Web, its his-
tory, and the topics that we will study in the book.

1.1 What is the World Wide Web?

The World Wide Web is officially defined as a “wide-area hypermedia in-
formation retrieval initiative aiming to give universal access to a large uni-
verse of documents.” In simpler terms, the Web is an Internet-based
computer network that allows users of one computer to access information
stored on another through the world-wide network called the Internet.

The Web's implementation follows a standard client-server model. In
this model, a user relies on a program (called the client) to connect to a
remote machine (called the server) where the data is stored. Navigating
through the Web is done by means of a client program called the browser,
e.g., Netscape, Internet Explorer, Firefox, etc. Web browsers work by
sending requests to remote servers for information and then interpreting

2 1 Introduction

the returned documents written in HTML and laying out the text and
graphics on the user’s computer screen on the client side.

The operation of the Web relies on the structure of its hypertext
documents. Hypertext allows Web page authors to link their documents to
other related documents residing on computers anywhere in the world. To
view these documents, one simply follows the links (called hyperlinks).

The idea of hypertext was invented by Ted Nelson in 1965 [403], who
also created the well known hypertext system Xanadu (http://xanadu.
com/). Hypertext that also allows other media (e.g., image, audio and video
files) is called hypermedia.

1.2 A Brief History of the Web and the Internet

Creation of the Web: The Web was invented in 1989 by Tim Berners-
Lee, who, at that time, worked at CERN (Centre European pour la Recher-
che Nucleaire, or European Laboratory for Particle Physics) in Switzer-
land. He coined the term “World Wide Web,” wrote the first World Wide
Web server, httpd, and the first client program (a browser and editor),
“WorldWideWeb”.

It began in March 1989 when Tim Berners-Lee submitted a proposal ti-
tled “Information Management: A Proposal” to his superiors at CERN. In
the proposal, he discussed the disadvantages of hierarchical information
organization and outlined the advantages of a hypertext-based system. The
proposal called for a simple protocol that could request information stored
in remote systems through networks, and for a scheme by which informa-
tion could be exchanged in a common format and documents of individu-
als could be linked by hyperlinks to other documents. It also proposed
methods for reading text and graphics using the display technology at
CERN at that time. The proposal essentially outlined a distributed hyper-
text system, which is the basic architecture of the Web.

Initially, the proposal did not receive the needed support. However, in
1990, Berners-Lee re-circulated the proposal and received the support to
begin the work. With this project, Berners-Lee and his team at CERN laid
the foundation for the future development of the Web as a distributed hy-
pertext system. They introduced their server and browser, the protocol
used for communication between clients and the server, the HyperText
Transfer Protocol (HTTP), the HyperText Markup Language (HTML)
used for authoring Web documents, and the Universal Resource Locator
(URL). And so it began.

1.2 A Brief History of the Web and the Internet 3

Mosaic and Netscape Browsers: The next significant event in the de-
velopment of the Web was the arrival of Mosaic. In February of 1993,
Marc Andreesen from the University of Illinois’ NCSA (National Center
for Supercomputing Applications) and his team released the first "Mosaic
for X" graphical Web browser for UNIX. A few months later, different
versions of Mosaic were released for Macintosh and Windows operating
systems. This was an important event. For the first time, a Web client, with
a consistent and simple point-and-click graphical user interface, was im-
plemented for the three most popular operating systems available at the
time. It soon made big splashes outside the academic circle where it had
begun. In mid-1994, Silicon Graphics founder Jim Clark collaborated with
Marc Andreessen, and they founded the company Mosaic Communica-
tions (later renamed as Netscape Communications). Within a few
months, the Netscape browser was released to the public, which started the
explosive growth of the Web. The Internet Explorer from Microsoft en-
tered the market in August, 1995 and began to challenge Netscape.

The creation of the World Wide Web by Tim Berners-Lee followed by
the release of the Mosaic browser are often regarded as the two most sig-
nificant contributing factors to the success and popularity of the Web.

Internet: The Web would not be possible without the Internet, which
provides the communication network for the Web to function. The Inter-
net started with the computer network ARPANET in the Cold War era. It
was produced as the result of a project in the United States aiming at main-
taining control over its missiles and bombers after a nuclear attack. It was
supported by Advanced Research Projects Agency (ARPA), which was
part of the Department of Defense in the United States. The first
ARPANET connections were made in 1969, and in 1972, it was demon-
strated at the First International Conference on Computers and Communi-
cation, held in Washington D.C. At the conference, ARPA scientists linked
computers together from 40 different locations.

In 1973, Vinton Cerf and Bob Kahn started to develop the protocol later
to be called TCP/IP (Transmission Control Protocol/Internet Proto-
col). In the next year, they published the paper “Transmission Control Pro-
tocol”, which marked the beginning of TCP/IP. This new protocol allowed
diverse computer networks to interconnect and communicate with each
other. In subsequent years, many networks were built, and many compet-
ing techniques and protocols were proposed and developed. However,
ARPANET was still the backbone to the entire system. During the period,
the network scene was chaotic. In 1982, the TCP/IP was finally adopted,
and the Internet, which is a connected set of networks using the TCP/IP
protocol, was born.

4 1 Introduction

Search Engines: With information being shared worldwide, there was a
need for individuals to find information in an orderly and efficient manner.
Thus began the development of search engines. The search system Excite
was introduced in 1993 by six Stanford University students. EINet Galaxy
was established in 1994 as part of the MCC Research Consortium at the
University of Texas. Jerry Yang and David Filo created Yahoo! in 1994,
which started out as a listing of their favorite Web sites, and offered direc-
tory search. In subsequent years, many search systems emerged, e.g., Ly-
cos, Inforseek, AltaVista, Inktomi, Ask Jeeves, Northernlight, etc.

Google was launched in 1998 by Sergey Brin and Larry Page based on
their research project at Stanford University. Microsoft started to commit
to search in 2003, and launched the MSN search engine in spring 2005. It
used search engines from others before. Yahoo! provided a general search
capability in 2004 after it purchased Inktomi in 2003.

W3C (The World Wide Web Consortium): W3C was formed in the
December of 1994 by MIT and CERN as an international organization to
lead the development of the Web. W3C's main objective was “to promote
standards for the evolution of the Web and interoperability between
WWW products by producing specifications and reference software.” The
first International Conference on World Wide Web (WWW) was also
held in 1994, which has been a yearly event ever since.

From 1995 to 2001, the growth of the Web boomed. Investors saw
commercial opportunities and became involved. Numerous businesses
started on the Web, which led to irrational developments. Finally, the
bubble burst in 2001. However, the development of the Web was not
stopped, but has only become more rational since.

1.3 Web Data Mining

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. The Web has many unique char-
acteristics, which make mining useful information and knowledge a fasci-
nating and challenging task. Let us review some of these characteristics.

1. The amount of data/information on the Web is huge and still growing.
The coverage of the information is also very wide and diverse. One can
find information on almost anything on the Web.

2. Data of all types exist on the Web, e.g., structured tables, semi-
structured Web pages, unstructured texts, and multimedia files (images,
audios, and videos).

1.3 Web Data Mining 5

3. Information on the Web is heterogeneous. Due to the diverse author-
ship of Web pages, multiple pages may present the same or similar in-
formation using completely different words and/or formats. This makes
integration of information from multiple pages a challenging problem.

4. A significant amount of information on the Web is linked. Hyperlinks
exist among Web pages within a site and across different sites. Within a
site, hyperlinks serve as information organization mechanisms. Across
different sites, hyperlinks represent implicit conveyance of authority to
the target pages. That is, those pages that are linked (or pointed) to by
many other pages are usually high quality pages or authoritative pages
simply because many people trust them.

5. The information on the Web is noisy. The noise comes from two main
sources. First, a typical Web page contains many pieces of information,
e.g., the main content of the page, navigation links, advertisements,
copyright notices, privacy policies, etc. For a particular application, only
part of the information is useful. The rest is considered noise. To per-
form fine-grain Web information analysis and data mining, the noise
should be removed. Second, due to the fact that the Web does not have
quality control of information, i.e., one can write almost anything that
one likes, a large amount of information on the Web is of low quality,
erroneous, or even misleading.

6. The Web is also about services. Most commercial Web sites allow
people to perform useful operations at their sites, e.g., to purchase
products, to pay bills, and to fill in forms.

7. The Web is dynamic. Information on the Web changes constantly.
Keeping up with the change and monitoring the change are important is-
sues for many applications.

8. The Web is a virtual society. The Web is not only about data, informa-
tion and services, but also about interactions among people, organiza-
tions and automated systems. One can communicate with people any-
where in the world easily and instantly, and also express one’s views on
anything in Internet forums, blogs and review sites.

All these characteristics present both challenges and opportunities for min-
ing and discovery of information and knowledge from the Web. In this
book, we only focus on mining textual data. For mining of images, videos
and audios, please refer to [143, 441].

To explore information mining on the Web, it is necessary to know data
mining, which has been applied in many Web mining tasks. However,
Web mining is not entirely an application of data mining. Due to the rich-
ness and diversity of information and other Web specific characteristics
discussed above, Web mining has developed many of its own algorithms.

6 1 Introduction

1.3.1 What is Data Mining?

Data mining is also called knowledge discovery in databases (KDD). It
is commonly defined as the process of discovering useful patterns or
knowledge from data sources, e.g., databases, texts, images, the Web, etc.
The patterns must be valid, potentially useful, and understandable. Data
mining is a multi-disciplinary field involving machine learning, statistics,
databases, artificial intelligence, information retrieval, and visualization.

There are many data mining tasks. Some of the common ones are
supervised learning (or classification), unsupervised learning (or
clustering), association rule mining, and sequential pattern mining. We
will study all of them in this book.

A data mining application usually starts with an understanding of the
application domain by data analysts (data miners), who then identify
suitable data sources and the target data. With the data, data mining can be
performed, which is usually carried out in three main steps:

• Pre-processing: The raw data is usually not suitable for mining due to
various reasons. It may need to be cleaned in order to remove noises or
abnormalities. The data may also be too large and/or involve many
irrelevant attributes, which call for data reduction through sampling and
attribute selection. Details about data pre-processing can be found in
any standard data mining textbook.

• Data mining: The processed data is then fed to a data mining algorithm
which will produce patterns or knowledge.

• Post-processing: In many applications, not all discovered patterns are
useful. This step identifies those useful ones for applications. Various
evaluation and visualization techniques are used to make the decision.

The whole process (also called the data mining process) is almost always
iterative. It usually takes many rounds to achieve final satisfactory results,
which are then incorporated into real-world operational tasks.

Traditional data mining uses structured data stored in relational tables,
spread sheets, or flat files in the tabular form. With the growth of the Web
and text documents, Web mining and text mining are becoming
increasingly important and popular. Web mining is the focus of this book.

1.3.2 What is Web Mining?

Web mining aims to discover useful information or knowledge from the
Web hyperlink structure, page content, and usage data. Although Web
mining uses many data mining techniques, as mentioned above it is not

1.3 Web Data Mining 7

purely an application of traditional data mining due to the heterogeneity
and semi-structured or unstructured nature of the Web data. Many new
mining tasks and algorithms were invented in the past decade. Based on
the primary kinds of data used in the mining process, Web mining tasks
can be categorized into three types: Web structure mining, Web content
mining and Web usage mining.

• Web structure mining: Web structure mining discovers useful knowl-
edge from hyperlinks (or links for short), which represent the structure
of the Web. For example, from the links, we can discover important
Web pages, which, incidentally, is a key technology used in search en-
gines. We can also discover communities of users who share common
interests. Traditional data mining does not perform such tasks because
there is usually no link structure in a relational table.

• Web content mining: Web content mining extracts or mines useful in-
formation or knowledge from Web page contents. For example, we can
automatically classify and cluster Web pages according to their topics.
These tasks are similar to those in traditional data mining. However, we
can also discover patterns in Web pages to extract useful data such as
descriptions of products, postings of forums, etc, for many purposes.
Furthermore, we can mine customer reviews and forum postings to dis-
cover consumer sentiments. These are not traditional data mining tasks.

• Web usage mining: Web usage mining refers to the discovery of user
access patterns from Web usage logs, which record every click made by
each user. Web usage mining applies many data mining algorithms. One
of the key issues in Web usage mining is the pre-processing of click-
stream data in usage logs in order to produce the right data for mining.

In this book, we will study all these three types of mining. However, due
to the richness and diversity of information on the Web, there are a large
number of Web mining tasks. We will not be able to cover them all. We
will only focus on some important tasks and their algorithms.

The Web mining process is similar to the data mining process. The dif-
ference is usually in the data collection. In traditional data mining, the data
is often already collected and stored in a data warehouse. For Web mining,
data collection can be a substantial task, especially for Web structure and
content mining, which involves crawling a large number of target Web
pages. We will devote a whole chapter on crawling.

Once the data is collected, we go through the same three-step process:
data pre-processing, Web data mining and post-processing. However, the
techniques used for each step can be quite different from those used in tra-
ditional data mining.

8 1 Introduction

1.4 Summary of Chapters

This book consists of two main parts. The first part, which includes Chaps.
2–5, covers the major topics of data mining. The second part, which com-
prises the rest of the chapters, covers Web mining (including a chapter on
Web search). In the Web mining part, Chaps. 7 and 8 are on Web structure
mining, which are closely related to Web search (Chap. 6). Since it is dif-
ficult to draw a boundary between Web search and Web mining, Web
search and mining are put together. Chaps 9–11 are on Web content min-
ing, and Chap. 12 is on Web usage mining. Below we give a brief intro-
duction to each chapter.

Chapter 2 – Association Rules and Sequential Patterns: This chapter
studies two important data mining models that have been used in many
Web mining tasks, especially in Web usage and content mining. Associa-
tion rule mining finds sets of data items that occur together frequently. Se-
quential pattern mining finds sets of data items that occur together fre-
quently in some sequences. Clearly, they can be used to find regularities in
the Web data. For example, in Web usage mining, association rule mining
can be used to find users’ visit and purchase patterns, and sequential pat-
tern mining can be used to find users’ navigation patterns.

Chapter 3 – Supervised Learning: Supervised learning is perhaps the
most frequently used mining/learning technique in both practical data min-
ing and Web mining. It is also called classification, which aims to learn a
classification function (called a classifier) from data that are labeled with
pre-defined classes or categories. The resulting classifier is then applied to
classify future data instances into these classes. Due to the fact that the
data instances used for learning (called the training data) are labeled with
pre-defined classes, the method is called supervised learning.

Chapter 4 – Unsupervised Learning: In unsupervised learning, the data
used for learning has no pre-defined classes. The learning algorithm has to
find the hidden structures or regularities in the data. One of the key unsu-
pervised learning techniques is clustering, which organizes data instances
into groups or clusters according to their similarities (or differences).
Clustering is widely used in Web mining. For example, we can cluster
Web pages into groups, where each group may represent a particular topic.
We can also cluster documents into a hierarchy of clusters, which may rep-
resent a topic hierarchy.

Chapter 5 – Partially Supervised Learning: Supervised learning re-
quires a large number of labeled data instances to learn an accurate classi-
fier. Labeling, which is often done manually, is labor intensive and time

1.4 Summary of Chapters 9

consuming. To reduce the manual labeling effort, learning from labeled
and unlabeled examples (or LU learning) was proposed to use a small
set of labeled examples (data instances) and a large set of unlabeled exam-
ples for learning. This model is also called semi-supervised learning.

Another learning model that we will study is called learning from posi-
tive and unlabeled examples (or PU learning), which is for two-class
classification. However, there are no labeled negative examples for learn-
ing. This model is useful in many situations. For example, we have a set of
Web mining papers and we want to identify other Web mining papers in a
research paper repository which contains all kinds of papers. The set of
Web mining papers can be treated as the positive data, and the papers in
the research repository can be treated as the unlabeled data.

Chapter 6 – Information Retrieval and Web Search: Search is probably
the largest application on the Web. It has its root in information retrieval
(or IR for short), which is a field of study that helps the user find needed
information from a large collection of text documents. Given a query (e.g.,
a set of keywords), which expresses the user’s information need, an IR
system finds a set of documents that is relevant to the query from its un-
derlying collection. This is also how a Web search engine works.

Web search brings IR to a new height. It applies some IR techniques,
but also presents a host of interesting problems due to special characteris-
tics of the Web data. First of all, Web pages are not the same as plain text
documents because they are semi-structured and contain hyperlinks. Thus,
new methods have been designed to produce better Web IR (or search)
systems. Another major issue is efficiency. Document collections used in
traditional IR systems are not large, but the number of pages on the Web is
huge. For example, Google claimed that it indexed more than 8 billion
pages when this book was written. Web users demand very fast responses.
No matter how effective a retrieval algorithm is, if the retrieval cannot be
done extremely efficiently, few people will use it. In the chapter, several
other search related issues will also be discussed.

Chapter 7 – Link Analysis: Hyperlinks are a special feature of the Web,
which have been exploited for many purposes, especially for Web search.
Google’s success is largely attributed to its hyperlink-based ranking algo-
rithm called PageRank, which is originated from social network analysis.
In this chapter, we will first introduce some main concepts of social net-
work analysis and then describe two most well known Web link analysis
algorithms, PageRank and HITS. In addition, we will also study several
community finding algorithms. When Web pages link to one another, they
form Web communities, which are groups of content creators that share

10 1 Introduction

some common interests. Communities not only manifest in hyperlinks, but
also in other contexts such as emails and Web page contents.

Chapter 8 – Web Crawling: A Web crawler is a program that automati-
cally traverses the Web’s hyperlink structure and downloads each linked
page to a local storage. Crawling is often the first step of Web mining or in
building a Web search engine. Although conceptually easy, building a
practical crawler is by no means simple. Due to efficiency and many other
concerns, it involves a great deal of engineering. There are two types of
crawlers: universal crawlers and topic crawlers. A universal crawler
downloads all pages irrespective of their contents, while a topic crawler
downloads only pages of certain topics. The difficulty in topic crawling is
how to recognize such pages. We will study several techniques for this
purpose.

Chapter 9 – Structured Data Extraction: Wrapper Generation: A
large number of pages on the Web contain structured data, which are usu-
ally data records retrieved from underlying databases and displayed in
Web pages following some fixed templates. Structured data often represent
their host pages’ essential information, e.g., lists of products and services.
Extracting such data allows one to provide value added services, e.g.,
comparative shopping, and meta-search. There are two main approaches to
extraction. One is the supervised approach, which uses supervised learning
to learn data extraction rules. The other is the unsupervised pattern discov-
ery approach, which finds repeated patterns (hidden templates) in Web
pages for data extraction.

Chapter 10 – Information Integration: Due to diverse authorships of the
Web, different Web sites typically use different words or terms to express
the same or similar information. In order to make use of the data or infor-
mation extracted from multiple sites to provide value added services, we
need to semantically integrate the data/information from these sites in or-
der to produce consistent and coherent databases. Intuitively, integration
means to match columns in different data tables that contain the same type
of information (e.g., product names) and to match data values that are se-
mantically the same but expressed differently in different sites.

Chapter 11 – Opinion Mining: Apart from structured data, the Web also
contains a huge amount of unstructured text. Analyzing such text is also of
great importance. It is perhaps even more important than extracting struc-
tured data because of the sheer volume of valuable information of almost
any imaginable types contained in it. This chapter will only focus on min-
ing people’s opinions or sentiments expressed in product reviews, fo-
rum discussions and blogs. The task is not only technically challenging,

1.5 How to Read this Book 11

but also very useful in practice because businesses and organizations al-
ways want to know consumer opinions on their products and services.

Chapter 12 – Web Usage Mining: Web usage mining aims to study user
clicks and their applications to e-commerce and business intelligence. The
objective is to capture and model behavioral patterns and profiles of us-
ers who interact with a Web site. Such patterns can be used to better un-
derstand the behaviors of different user segments, to improve the organiza-
tion and structure of the site, and to create personalized experiences for
users by providing dynamic recommendations of products and services.

1.5 How to Read this Book

This book is a textbook although two chapters are contributed by two other
researchers. The contents of the two chapters have been carefully edited
and integrated into the common framework of the whole book. The book is
suitable for both graduate students and senior undergraduate students in
the fields of computer science, information science, engineering, statistics,
and social science. It can also be used as a reference by researchers and
practitioners who are interested in or are working in the field of Web min-
ing, data mining or text mining.

As mentioned earlier, the book is divided into two parts. Part I (Chaps.
2–5) covers the major topics of data mining. Text classification and clus-
tering are included in this part as well. Part II, which includes the rest of
the chapters, covers Web mining (and search). In general, all chapters in
Part II require some techniques in Part I. Within each part, the dependency
is minimal except Chap. 5, which needs several techniques from Chap. 4.

To Instructors: This book can be used as a class text for a one-semester
course on Web data mining. In this case, there are two possibilities. If the
students already have data mining or machine learning background, the
chapters in Part I can be skipped. If the students do not have any data min-
ing background, I recommend covering some selected sections from each
chapter of Part I before going to Part II. The chapters in Part II can be cov-
ered in any sequence. You can also select a subset of the chapters accord-
ing to your needs.

The book may also be used as a class text for an introductory data min-
ing course where Web mining concepts and techniques are introduced. In
this case, I recommend first covering all the chapters in Part I and then se-
lectively covering some chapters or sections from each chapter in Part II
depending on needs. It is usually a good idea to cover some sections of

12 1 Introduction

Chaps. 6 and 7 as search engines fascinate most students. I also recom-
mend including one or two lectures on data pre-processing for data mining
since the topic is important for practical data mining applications but is not
covered in this book. You can find teaching materials on data pre-
processing from most introductory data mining books.

Supporting Materials: Updates to chapters and teaching materials, in-
cluding lecture slides, data sets, implemented algorithms, and other re-
sources, are available at http://www.springer.com/3-540-37881-2.

Bibliographic Notes

The W3C Web site (http://www.w3.org/) is the most authoritative resource
site for information on Web developments, standards and guidelines. The
history of the Web and hypertext, and Tim Berners-Lee’s original proposal
can all be found there. Many other sites also contain information about the
history of the Web, the Internet and search engines, e.g., http://www.elsop.
com/wrc/h_web.htm, http://www.zeltser.com/web-history/, http://www.isoc.
org/internet/history/, http://www.livinginternet.com, http://www.w3c.rl.ac.uk/
primers/history/origins.htm and http://searchenginewatch.com/.

There are some earlier introductory texts on Web mining, e.g., those by
Baldi et al. [33] and Chakrabarti [85]. There are also several application
oriented books, e.g., those by Linoff and Berry [338], and Thuraisingham
[515], and edited volumes by Djeraba et al. [143], Scime [480], and Zhong
et al. [617].

On data mining, there are many textbooks, e.g., those by Duda et al.
[155], Dunham [156], Han and Kamber [218], Hand et al. [221], Larose
[305], Langley [302], Mitchell [385], Roiger and Geatz [467], Tan et al.
[512], and Witten and Frank [549]. Application oriented books include
those by Berry and Linoff [49], Pyle [450], Parr Rud [468], and Tang and
MacLennan [514]. Several edited volumes exist as well, e.g., those by
Fayyad et al. [174], Grossman et al. [208], and Wang et al. [533].

Latest research results on Web mining can be found in a large number
of conferences and journals (too many to list) due to the interdisciplinary
nature of the field. All the journals and conferences related to the Web
technology, information retrieval, data mining, databases, artificial intelli-
gence, and machine learning may contain Web mining related papers.

2 Association Rules and Sequential Patterns

Association rules are an important class of regularities in data. Mining of
association rules is a fundamental data mining task. It is perhaps the most
important model invented and extensively studied by the database and data
mining community. Its objective is to find all co-occurrence relationships,
called associations, among data items. Since it was first introduced in
1993 by Agrawal et al. [9], it has attracted a great deal of attention. Many
efficient algorithms, extensions and applications have been reported.

The classic application of association rule mining is the market basket
data analysis, which aims to discover how items purchased by customers in
a supermarket (or a store) are associated. An example association rule is

 Cheese → Beer [support = 10%, confidence = 80%].

The rule says that 10% customers buy Cheese and Beer together, and
those who buy Cheese also buy Beer 80% of the time. Support and confi-
dence are two measures of rule strength, which we will define later.

This mining model is in fact very general and can be used in many ap-
plications. For example, in the context of the Web and text documents, it
can be used to find word co-occurrence relationships and Web usage pat-
terns as we will see in later chapters.

Association rule mining, however, does not consider the sequence in
which the items are purchased. Sequential pattern mining takes care of
that. An example of a sequential pattern is “5% of customers buy bed first,
then mattress and then pillows”. The items are not purchased at the same
time, but one after another. Such patterns are useful in Web usage mining
for analyzing clickstreams in server logs. They are also useful for finding
language or linguistic patterns from natural language texts.

2.1 Basic Concepts of Association Rules

The problem of mining association rules can be stated as follows: Let I =
{i1, i2, …, im} be a set of items. Let T = (t1, t2, …, tn) be a set of transac-
tions (the database), where each transaction ti is a set of items such that ti
⊆ I. An association rule is an implication of the form,

14 2 Association Rules and Sequential Patterns

 X → Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅.

X (or Y) is a set of items, called an itemset.

Example 1: We want to analyze how the items sold in a supermarket are
related to one another. I is the set of all items sold in the supermarket. A
transaction is simply a set of items purchased in a basket by a customer.
For example, a transaction may be:

{Beef, Chicken, Cheese},

which means that a customer purchased three items in a basket, Beef,
Chicken, and Cheese. An association rule may be:

 Beef, Chicken → Cheese,

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets
“{” and “}” are usually omitted in transactions and rules. ▀

A transaction ti ∈ T is said to contain an itemset X if X is a subset of ti
(we also say that the itemset X covers ti). The support count of X in T
(denoted by X.count) is the number of transactions in T that contain X. The
strength of a rule is measured by its support and confidence.
Support: The support of a rule, X → Y, is the percentage of transactions in

T that contains X ∪ Y, and can be seen as an estimate of the probability,
Pr(X∪Y). The rule support thus determines how frequent the rule is ap-
plicable in the transaction set T. Let n be the number of transactions in T.
The support of the rule X → Y is computed as follows:

.). (
n

countYXsupport ∪
= (1)

Support is a useful measure because if it is too low, the rule may just oc-
cur due to chance. Furthermore, in a business environment, a rule cover-
ing too few cases (or transactions) may not be useful because it does not
make business sense to act on such a rule (not profitable).

Confidence: The confidence of a rule, X → Y, is the percentage of transac-
tions in T that contain X also contain Y. It can be seen as an estimate of
the conditional probability, Pr(Y | X). It is computed as follows:

.
.

). (
countX

countYXconfidence ∪
= (2)

Confidence thus determines the predictability of the rule. If the confi-
dence of a rule is too low, one cannot reliably infer or predict Y from X.
A rule with low predictability is of limited use.

2.1 Basic Concepts of Association Rules 15

Objective: Given a transaction set T, the problem of mining association
rules is to discover all association rules in T that have support and confi-
dence greater than or equal to the user-specified minimum support (de-
noted by minsup) and minimum confidence (denoted by minconf).

The keyword here is “all”, i.e., association rule mining is complete. Previ-
ous methods for rule mining typically generate only a subset of rules based
on various heuristics (see Chap. 3).

Example 2: Figure 2.1 shows a set of seven transactions. Each transaction
ti is a set of items purchased in a basket in a store by a customer. The set I
is the set of all items sold in the store.

t1: Beef, Chicken, Milk
t2: Beef, Cheese
t3: Cheese, Boots
t4: Beef, Chicken, Cheese
t5: Beef, Chicken, Clothes, Cheese, Milk
t6: Chicken, Clothes, Milk
t7: Chicken, Milk, Clothes

Fig. 2.1. An example of a transaction set

Given the user-specified minsup = 30% and minconf = 80%, the following
association rule (sup is the support, and conf is the confidence)

Chicken, Clothes → Milk [sup = 3/7, conf = 3/3]

is valid as its support is 42.86% (> 30%) and its confidence is 100% (>
80%). The rule below is also valid, whose consequent has two items:

 Clothes → Milk, Chicken [sup = 3/7, conf = 3/3].

Clearly, more association rules can be discovered, as we will see later. ▀

We note that the data representation in the transaction form of Fig. 2.1 is
a simplistic view of shopping baskets. For example, the quantity and price
of each item are not considered in the model.

We also note that a text document or even a sentence in a single docu-
ment can be treated as a transaction without considering word sequence
and the number of occurrences of each word. Hence, given a set of docu-
ments or a set of sentences, we can find word co-occurrence relations.

A large number of association rule mining algorithms have been re-
ported in the literature, which have different mining efficiencies. Their re-
sulting sets of rules are, however, all the same based on the definition of
association rules. That is, given a transaction data set T, a minimum sup-
port and a minimum confidence, the set of association rules existing in T is

16 2 Association Rules and Sequential Patterns

uniquely determined. Any algorithm should find the same set of rules al-
though their computational efficiencies and memory requirements may be
different. The best known mining algorithm is the Apriori algorithm pro-
posed in [11], which we study next.

2.2 Apriori Algorithm

The Apriori algorithm works in two steps:

1. Generate all frequent itemsets: A frequent itemset is an itemset that
has transaction support above minsup.

2. Generate all confident association rules from the frequent itemsets:
A confident association rule is a rule with confidence above minconf.

We call the number of items in an itemset its size, and an itemset of size k
a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-
quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we
can generate the following three association rules (minconf = 80%):

Rule 1: Chicken, Clothes → Milk [sup = 3/7, conf = 3/3]
Rule 2: Clothes, Milk → Chicken [sup = 3/7, conf = 3/3]
Rule 3: Clothes → Milk, Chicken [sup = 3/7, conf = 3/3].

Below, we discuss the two steps in turn.

2.2.1 Frequent Itemset Generation

The Apriori algorithm relies on the apriori or downward closure property
to efficiently generate all frequent itemsets.

Downward Closure Property: If an itemset has minimum support, then
every non-empty subset of this itemset also has minimum support.

The idea is simple because if a transaction contains a set of items X, then
it must contain any non-empty subset of X. This property and the minsup
threshold prune a large number of itemsets that cannot be frequent.

To ensure efficient itemset generation, the algorithm assumes that the
items in I are sorted in lexicographic order (a total order). The order is
used throughout the algorithm in each itemset. We use the notation {w[1],
w[2], …, w[k]} to represent a k-itemset w consisting of items w[1], w[2],
…, w[k], where w[1] < w[2] < … < w[k] according to the total order.

The Apriori algorithm for frequent itemset generation, which is given in
Fig. 2.2, is based on level-wise search. It generates all frequent itemsets by

2.2 Apriori Algorithm 17

making multiple passes over the data. In the first pass, it counts the sup-
ports of individual items (line 1) and determines whether each of them is
frequent (line 2). F1 is the set of frequent 1-itemsets. In each subsequent
pass k, there are three steps:

1. It starts with the seed set of itemsets Fk−1 found to be frequent in the
(k−1)-th pass. It uses this seed set to generate candidate itemsets Ck
(line 4), which are possible frequent itemsets. This is done using the
candidate-gen() function.

2. The transaction database is then scanned and the actual support of each
candidate itemset c in Ck is counted (lines 5–10). Note that we do not
need to load the whole data into memory before processing. Instead, at

Algorithm Apriori(T)
1 C1 ← init-pass(T); // the first pass over T
2 F1 ← {f | f ∈ C1, f.count/n ≥ minsup}; // n is the no. of transactions in T
3 for (k = 2; Fk−1 ≠ ∅; k++) do // subsequent passes over T
4 Ck ← candidate-gen(Fk−1);
5 for each transaction t ∈ T do // scan the data once
6 for each candidate c ∈ Ck do
7 if c is contained in t then
8 c.count++;
9 endfor
10 endfor
11 Fk ← {c ∈ Ck | c.count/n ≥ minsup}
12 endfor
13 return F ← Uk Fk;

Fig. 2.2. The Apriori algorithm for generating frequent itemsets

Function candidate-gen(Fk−1)
1 Ck ← ∅; // initialize the set of candidates
2 forall f1, f2 ∈ Fk−1 // find all pairs of frequent itemsets
3 with f1 = {i1, … , ik−2, ik−1} // that differ only in the last item
4 and f2 = {i1, … , ik−2, i’k−1}
5 and ik−1 < i’k−1 do // according to the lexicographic order
6 c ← {i1, …, ik−1, i’k−1}; // join the two itemsets f1 and f2
7 Ck ← Ck ∪ {c}; // add the new itemset c to the candidates
8 for each (k−1)-subset s of c do
9 if (s ∉ Fk−1) then
10 delete c from Ck; // delete c from the candidates
11 endfor
12 endfor
13 return Ck; // return the generated candidates

Fig. 2.3. The candidate-gen function

18 2 Association Rules and Sequential Patterns

any time, only one transaction resides in memory. This is a very impor-
tant feature of the algorithm. It makes the algorithm scalable to huge
data sets, which cannot be loaded into memory.

3. At the end of the pass or scan, it determines which of the candidate
itemsets are actually frequent (line 11).

The final output of the algorithm is the set F of all frequent itemsets (line
13). The candidate-gen() function is discussed below.

Candidate-gen function: The candidate generation function is given in
Fig. 2.3. It consists of two steps, the join step and the pruning step.

Join step (lines 2–6 in Fig. 2.3): This step joins two frequent (k−1)-
itemsets to produce a possible candidate c (line 6). The two frequent
itemsets f1 and f2 have exactly the same items except the last one (lines
3–5). c is added to the set of candidates Ck (line 7).

Pruning step (lines 8–11 in Fig. 2.3): A candidate c from the join step may
not be a final candidate. This step determines whether all the k−1 sub-
sets (there are k of them) of c are in Fk−1. If anyone of them is not in
Fk−1, c cannot be frequent according to the downward closure property,
and is thus deleted from Ck.

The correctness of the candidate-gen() function is easy to show (see [11]).
Here, we use an example to illustrate the working of the function.

Example 3: Let the set of frequent itemsets at level 3 be
F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}.

For simplicity, we use numbers to represent items. The join step (which
generates candidates for level 4) will produce two candidate itemsets, {1, 2,
3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the
second itemsets in F3 as their first and second items are the same respec-
tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.

After the pruning step, we have only:
C4 = {{1, 2, 3, 4}}

because {1, 4, 5} is not in F3 and thus {1, 3, 4, 5} cannot be frequent.

Example 4: Let us see a complete running example of the Apriori algo-
rithm based on the transactions in Fig. 2.1. We use minsup = 30%.

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}

 Note: the number after each frequent itemset is the support count of the
itemset, i.e., the number of transactions containing the itemset. A mini-
mum support count of 3 is sufficient because the support of 3/7 is greater
than 30%, where 7 is the total number of transactions.

2.2 Apriori Algorithm 19

C2: {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},
 {Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},
 {Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}}

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,
 {Chicken, Milk}:4, {Clothes, Milk}:3}

C3: {{Chicken, Clothes, Milk}}

 Note: {Beef, Cheese, Chicken} is also produced in line 6 of Fig. 2.3.
However, {Cheese, Chicken} is not in F2, and thus the itemset {Beef,
Cheese, Chicken} is not included in C3.

F3: {{Chicken, Clothes, Milk}:3}. ▀

Finally, some remarks about the Apriori algorithm are in order:

• Theoretically, this is an exponential algorithm. Let the number of items
in I be m. The space of all itemsets is O(2m) because each item may or
may not be in an itemset. However, the mining algorithm exploits the
sparseness of the data and the high minimum support value to make the
mining possible and efficient. The sparseness of the data in the context
of market basket analysis means that the store sells a lot of items, but
each shopper only purchases a few of them.

• The algorithm can scale up to large data sets as it does not load the en-
tire data into the memory. It only scans the data K times, where K is the
size of the largest itemset. In practice, K is often small (e.g., < 10). This
scale-up property is very important in practice because many real-world
data sets are so large that they cannot be loaded into the main memory.

• The algorithm is based on level-wise search. It has the flexibility to stop
at any level. This is useful in practice because in many applications,
long frequent itemsets or rules are not needed as they are hard to use.

• As mentioned earlier, once a transaction set T, a minsup and a minconf
are given, the set of frequent itemsets that can be found in T is uniquely
determined. Any algorithm should find the same set of frequent item-
sets. This property about association rule mining does not hold for many
other data mining tasks, e.g., classification or clustering, for which dif-
ferent algorithms may produce very different results.

• The main problem with association rule mining is that it often produces
a huge number of itemsets (and rules), tens of thousands, or more,
which makes it hard for the user to analyze them to find those useful
ones. This is called the interestingness problem. Researchers have pro-
posed several methods to tackle this problem (see Bibliographic Notes).

An efficient implementation of the Apriori algorithm involves sophisti-
cated data structures and programming techniques, which are beyond the

20 2 Association Rules and Sequential Patterns

scope of this book. Apart from the Apriori algorithm, there is a large num-
ber of other algorithms, e.g., FP-growth [220] and many others.

2.2.2 Association Rule Generation

In many applications, frequent itemsets are already useful and sufficient.
Then, we do not need to generate association rules. In applications where
rules are desired, we use frequent itemsets to generate all association rules.

Compared with frequent itemset generation, rule generation is relatively
simple. To generate rules for every frequent itemset f, we use all non-
empty subsets of f. For each such subset α, we output a rule of the form

(f − α) → α, if

,
).(

. minconf
countf

countfconfidence ≥
−

=
α

 (3)

where f.count (or (f−α).count) is the support count of f (or (f − α)). The
support of the rule is f.count/n, where n is the number of transactions in the
transaction set T. All the support counts needed for confidence computa-
tion are available because if f is frequent, then any of its non-empty subsets
is also frequent and its support count has been recorded in the mining
process. Thus, no data scan is needed in rule generation.

This exhaustive rule generation strategy is, however, inefficient. To de-
sign an efficient algorithm, we observe that the support count of f in the
above confidence computation does not change as α changes. It follows
that for a rule (f − α) → α to hold, all rules of the form (f − αsub) → αsub
must also hold, where αsub is a non-empty subset of α, because the support
count of (f − αsub) must be less than or equal to the support count of (f − α).
For example, given an itemset {A, B, C, D}, if the rule (A, B → C, D) holds,
then the rules (A, B, C → D) and (A, B, D → C) must also hold.

Thus, for a given frequent itemset f, if a rule with consequent α holds,
then so do rules with consequents that are subsets of α. This is similar to
the downward closure property that, if an itemset is frequent, then so are
all its subsets. Therefore, from the frequent itemset f, we first generate all
rules with one item in the consequent. We then use the consequents of
these rules and the function candidate-gen() (Fig. 2.3) to generate all pos-
sible consequents with two items that can appear in a rule, and so on. An
algorithm using this idea is given in Fig. 2.4. Note that all 1-item conse-
quent rules (rules with one item in the consequent) are first generated in
line 2 of the function genRules(). The confidence is computed using (3).

2.2 Apriori Algorithm 21

Example 5: We again use transactions in Fig. 2.1, minsup = 30% and min-
conf = 80%. The frequent itemsets are as follows (see Example 4):

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}
F2: {{Beef, Cheese}:3, {Beef, Chicken}:3, {Chicken, Clothes}:3,
 {Chicken, Milk}:4, {Clothes, Milk}:3}
F3: {{Chicken, Clothes, Milk}:3}.

We use only the itemset in F3 to generate rules (generating rules from each
itemset in F2 can be done in the same way). The itemset in F3 generates the
following possible 1-item consequent rules:

Rule 1: Chicken, Clothes → Milk [sup = 3/7, conf = 3/3]
Rule 2: Chicken, Milk → Clothes [sup = 3/7, conf = 3/4]
Rule 3: Clothes, Milk → Chicken [sup = 3/7, conf = 3/3].

Due to the minconf requirement, only Rule 1 and Rule 3 are output in line
2 of the algorithm genRules(). Thus, H1 = {{Chicken}, {Milk}}. The function
ap-genRules() is then called. Line 2 of ap-genRules() produces H2 =
{{Chicken, Milk}}. The following rule is then generated:

Rule 4: Clothes → Milk, Chicken [sup = 3/7, conf = 3/3].

Algorithm genRules(F) // F is the set of all frequent itemsets
1 for each frequent k-itemset fk in F, k ≥ 2 do
2 output every 1-item consequent rule of fk with confidence ≥ minconf and

support ← fk.count / n // n is the total number of transactions in T
3 H1 ←{consequents of all 1-item consequent rules derived from fk above};
4 ap-genRules(fk, H1);
5 endfor

Procedure ap-genRules(fk, Hm) // Hm is the set of m-item consequents
1 if (k > m + 1) AND (Hm ≠ ∅) then
2 Hm+1 ← candidate-gen(Hm);
3 for each hm+1 in Hm+1 do
4 conf ← fk.count / (fk − hm+1).count;
5 if (conf ≥ minconf) then
6 output the rule (fk − hm+1) → hm+1 with confidence = conf and

support = fk.count / n; // n is the total number of transactions in T
7 else
8 delete hm+1 from Hm+1;
9 endfor
10 ap-genRules(fk, Hm+1);
11 endif

Fig. 2.4. The association rule generation algorithm

22 2 Association Rules and Sequential Patterns

Thus, three association rules are generated from the frequent itemset
{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4. ▀

2.3 Data Formats for Association Rule Mining

So far, we have used only transaction data for mining association rules.
Market basket data sets are naturally of this format. Text documents can be
seen as transaction data as well. Each document is a transaction, and each
distinctive word is an item. Duplicate words are removed.

However, mining can also be performed on relational tables. We just
need to convert a table data set to a transaction data set, which is fairly
straightforward if each attribute in the table takes categorical values. We
simply change each value to an attribute–value pair.
Example 6: The table data in Fig. 2.5(A) can be converted to the transac-
tion data in Fig. 2.5(B). Each attribute–value pair is considered an item.
Using only values is not sufficient in the transaction form because different
attributes may have the same values. For example, without including at-
tribute names, value a’s for Attribute1 and Attribute2 are not distinguish-
able. After the conversion, Fig. 2.5(B) can be used in mining. ▀

If an attribute takes numerical values, it becomes complex. We need to
first discretize its value range into intervals, and treat each interval as a
categorical value. For example, an attribute’s value range is from 1–100.
We may want to divide it into 5 equal-sized intervals, 1–20, 21–40, 41–60,
61–80, and 81–100. Each interval is then treated as a categorical value.
Discretization can be done manually based on expert knowledge or auto-
matically. There are several existing algorithms [151, 501].

A point to note is that for a table data set, the join step of the candidate
generation function (Fig. 2.3) needs to be slightly modified in order to en-
sure that it does not join two itemsets to produce a candidate itemset con-
taining two items from the same attribute.

 Clearly, we can also convert a transaction data set to a table data set us-
ing a binary representation and treating each item in I as an attribute. If a
transaction contains an item, its attribute value is 1, and 0 otherwise.

2.4 Mining with Multiple Minimum Supports

The key element that makes association rule mining practical is the minsup
threshold. It is used to prune the search space and to limit the number of
frequent itemsets and rules generated. However, using only a single min-

2.4 Mining with Multiple Minimum Supports 23

sup implicitly assumes that all items in the data are of the same nature
and/or have similar frequencies in the database. This is often not the case
in real-life applications. In many applications, some items appear very fre-
quently in the data, while some other items rarely appear. If the frequen-
cies of items vary a great deal, we will encounter two problems [344]:

1. If the minsup is set too high, we will not find rules that involve infre-
quent items or rare items in the data.

2. In order to find rules that involve both frequent and rare items, we have
to set the minsup very low. However, this may cause combinatorial ex-
plosion and make mining impossible because those frequent items will
be associated with one another in all possible ways.

Let us use an example to illustrate the above problem with a very low min-
sup, which will actually introduce another problem.

Example 7: In a supermarket transaction data set, in order to find rules in-
volving those infrequently purchased items such as FoodProcessor and
CookingPan (they generate more profits per item), we need to set the min-
sup very low. Let us use only frequent itemsets in this example as they are
generated first and rules are produced from them. They are also the source
of all the problems. Now assume we set a very low minsup of 0.005%. We
find the following meaningful frequent itemset:
 {FoodProcessor, CookingPan} [sup = 0.006%].

However, this low minsup may also cause the following two meaningless
itemsets being discovered:

f1: {Bread, Cheese, Egg, Bagel, Milk, Sugar, Butter} [sup = 0.007%],

f2: {Bread, Egg, Milk, CookingPan} [sup = 0.006%].

Knowing that 0.007% of the customers buy the seven items in f1 together is
useless because all these items are so frequently purchased in a supermar-

Attribute1 Attribute2 Atribute3
a a x
b n y

(A) Table data

t1: (Attribute1, a), (Attribute2, a), (Attribute3, x)
t2: (Attribute1, b), (Attribute2, n), (Attribute3, y)

(B) Transaction data

Fig. 2.5. From a table data set to a transaction data set

24 2 Association Rules and Sequential Patterns

ket. Worst still, they will almost certainly cause combinatorial explosion!
For itemsets involving such items to be useful, their supports have to be
much higher. Similarly, knowing that 0.006% of the customers buy the
four items in f2 together is also meaningless because Bread, Egg and Milk
are purchased on almost every grocery shopping trip. ▀

This dilemma is called the rare item problem. Using a single minsup
for the whole data set is inadequate because it cannot capture the inherent
natures and/or frequency differences of items in the database. By the na-
tures of items we mean that some items, by nature, appear more frequently
than others. For example, in a supermarket, people buy FoodProcessor and
CookingPan much less frequently than Bread and Milk. The situation is the
same for online stores. In general, those durable and/or expensive goods
are bought less often, but each of them generates more profit. It is thus im-
portant to capture rules involving less frequent items. However, we must
do so without allowing frequent items to produce too many meaningless
rules with very low supports and cause combinatorial explosion [344].

One common solution to this problem is to partition the data into several
smaller blocks (subsets), each of which contains only items of similar fre-
quencies. Mining is then done separately for each block using a different
minsup. This approach is, however, not satisfactory because itemsets or
rules that involve items across different blocks will not be found.

A better solution is to allow the user to specify multiple minimum sup-
ports, i.e., to specify a different minimum item support (MIS) to each
item. Thus, different itemsets need to satisfy different minimum supports
depending on what items are in the itemsets. This model thus enables us to
achieve our objective of finding itemsets involving rare items without
causing frequent items to generate too many meaningless itemsets. This
method helps solve the problem of f1. To deal with the problem of f2, we
prevent itemsets that contain both very frequent items and very rare items
from being generated. A constraint will be introduced to realize this.

An interesting by-product of this extended model is that it enables the
user to easily instruct the algorithm to generate only itemsets that contain
certain items but not itemsets that contain only the other items. This can be
done by setting the MIS values to more than 100% (e.g., 101%) for these
other items. This capability is very useful in practice because in many ap-
plications the user is only interested in certain types of itemsets or rules.

2.4.1 Extended Model

To allow multiple minimum supports, the original model in Sect. 2.1 needs
to be extended. In the extended model, the minimum support of a rule is

2.4 Mining with Multiple Minimum Supports 25

expressed in terms of minimum item supports (MIS) of the items that
appear in the rule. That is, each item in the data can have a MIS value
specified by the user. By providing different MIS values for different
items, the user effectively expresses different support requirements for dif-
ferent rules. It seems that specifying a MIS value for each item is a diffi-
cult task. This is not so as we will see at the end of Sect. 2.4.2.

Let MIS(i) be the MIS value of item i. The minimum support of a rule
R is the lowest MIS value among the items in the rule. That is, a rule R,

 i1, i2, …, ik → ik+1, …, ir,

satisfies its minimum support if the rule’s actual support in the data is
greater than or equal to:

 min(MIS(i1), MIS(i2), …, MIS(ir)).

Minimum item supports thus enable us to achieve the goal of having
higher minimum supports for rules that involve only frequent items, and
having lower minimum supports for rules that involve less frequent items.

Example 8: Consider the set of items in a data set, {Bread, Shoes,
Clothes}. The user-specified MIS values are as follows:

MIS(Bread) = 2% MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%.

The following rule doesn’t satisfy its minimum support:

 Clothes → Bread [sup = 0.15%, conf = 70%].

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following
rule satisfies its minimum support:

 Clothes → Shoes [sup = 0.15%, conf = 70%].

because min(MIS(Clothes), MIS(Shoes)) = 0.1%. ▀

As we explained earlier, the downward closure property holds the key
to pruning in the Apriori algorithm. However, in the new model, if we use
the Apriori algorithm to find all frequent itemsets, the downward closure
property no longer holds.

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their
minimum item supports are:

 MIS(1) = 10% MIS(2) = 20% MIS(3) = 5% MIS(4) = 6%.

If we find that itemset {1, 2} has a support of 9% at level 2, then it does not
satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset
is discarded since it is not frequent. Then, the potentially frequent itemsets
{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1,

26 2 Association Rules and Sequential Patterns

2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4)
is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1,
2}, the downward closure property is lost. ▀

Below, we present an algorithm to solve this problem. The essential idea
is to sort the items according to their MIS values in ascending order to
avoid the problem.

Note that MIS values prevent low support itemsets involving only fre-
quent items from being generated because their individual MIS values are
all high. To prevent very frequent items and very rare items from appear-
ing in the same itemset, we introduce the support difference constraint.

Let sup(i) be the actual support of item i in the data. For each itemset s,
the support difference constraint is as follows:

 maxi∈s{sup(i)} − mini∈s{sup(i)} ≤ ϕ,

where 0 ≤ ϕ ≤ 1 is the user-specified maximum support difference, and it
is the same for all itemsets. The constraint basically limits the difference
between the largest and the smallest actual supports of items in itemset s to
ϕ. This constraint can reduce the number of itemsets generated dramati-
cally, and it does not affect the downward closure property.

2.4.2 Mining Algorithm

The new algorithm generalizes the Apriori algorithm for finding frequent
itemsets. We call the algorithm, MS-Apriori. When there is only one MIS
value (for all items), it reduces to the Apriori algorithm.

Like Apriori, MS-Apriori is also based on level-wise search. It generates
all frequent itemsets by making multiple passes over the data. However,
there is an exception in the second pass as we will see later.

The key operation in the new algorithm is the sorting of the items in I in
ascending order of their MIS values. This order is fixed and used in all
subsequent operations of the algorithm. The items in each itemset follow
this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and
their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-
der helps solve the problem identified above.

Let Fk denote the set of frequent k-itemsets. Each itemset w is of the fol-
lowing form, {w[1], w[2], …, w[k]}, which consists of items, w[1], w[2],
…, w[k], where MIS(w[1]) ≤ MIS(w[2]) ≤ … ≤ MIS(w[k]). The algorithm
MS-Apriori is given in Fig. 2.6. Line 1 performs the sorting on I according
to the MIS value of each item (stored in MS). Line 2 makes the first pass
over the data using the function init-pass(), which takes two arguments, the

2.4 Mining with Multiple Minimum Supports 27

data set T and the sorted items M, to produce the seeds L for generating
candidate itemsets of length 2, i.e., C2. init-pass() has two steps:

1. It first scans the data once to record the support count of each item.
2. It then follows the sorted order to find the first item i in M that meets

MIS(i). i is inserted into L. For each subsequent item j in M after i, if
j.count/n ≥ MIS(i), then j is also inserted into L, where j.count is the
support count of j, and n is the total number of transactions in T.

Frequent 1-itemsets (F1) are obtained from L (line 3). It is easy to show
that all frequent 1-itemsets are in F1.

Example 10: Let us follow Example 9 and the given MIS values for the
four items. Assume our data set has 100 transactions (not limited to the
four items). The first pass over the data gives us the following support
counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,

L = {3, 1, 2}, and F1 = {{3}, {2}}.

Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F1
because 1.count / n < MIS(1) (= 10%). ▀

For each subsequent pass (or data scan), say pass k, the algorithm per-
forms three operations.

Algorithm MS-Apriori(T, MS, ϕ) // MS stores all MIS values
1 M ← sort(I, MS); // according to MIS(i)’s stored in MS
2 L ← init-pass(M, T); // make the first pass over T
3 F1 ← {{l} | l ∈ L, l.count/n ≥ MIS(l)}; // n is the size of T
4 for (k = 2; Fk−1 ≠ ∅; k++) do
5 if k = 2 then
6 Ck ← level2-candidate-gen(L, ϕ) // k = 2
7 else Ck ← MScandidate-gen(Fk−1, ϕ)
8 endif;
9 for each transaction t ∈ T do
10 for each candidate c ∈ Ck do
11 if c is contained in t then // c is a subset of t
12 c.count++
13 if c – {c[1]} is contained in t then // c without the first item
14 (c – {c[1]}).count++
15 endfor
16 endfor
17 Fk ← {c ∈ Ck | c.count/n ≥ MIS(c[1])}
18 endfor
19 return F ← Uk Fk;

Fig. 2.6. The MS-Apriori algorithm

28 2 Association Rules and Sequential Patterns

1. The frequent itemsets in Fk−1 found in the (k–1)th pass are used to gener-
ate the candidates Ck using the MScandidate-gen() function (line 7).
However, there is a special case, i.e., when k = 2 (line 6), for which the
candidate generation function is different, i.e., level2-candidate-gen().

2. It then scans the data and updates various support counts of the candi-
dates in Ck (line 9–16). For each candidate c, we need to update its sup-
port count (lines 11–12) and also the support count of c without the first
item (lines 13–14), i.e., c – {c[1]}, which is used in rule generation and
will be discussed in Sect. 2.4.3. If rule generation is not required, lines
13 and 14 can be deleted.

3. The frequent itemsets (Fk) for the pass are identified in line 17.
We present candidate generation functions level2-candidate-gen() and

MScandidate-gen() below.

Level2-candidate-gen function: It takes an argument L, and returns a su-
perset of the set of all frequent 2-itemsets. The algorithm is given in Fig.
2.7. Note that in line 5, we use |sup(h) − sup(l)| ≤ ϕ because sup(l) may not
be lower than sup(h), although MIS(l) ≤ MIS(h).

Example 11: Let us continue with Example 10. We set ϕ = 10%. Recall
the MIS values of the four items are (in Example 9):

 MIS(1) = 10% MIS(2) = 20%
 MIS(3) = 5% MIS(4) = 6%.

The level2-candidate-gen() function in Fig. 2.7 produces

 C2 = {{3, 1}}.

{1, 2} is not a candidate because the support count of item 1 is only 9 (or
9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. {3, 2} is
not a candidate because sup(3) = 6% and sup(2) = 25% and their difference
is greater than ϕ = 10% ▀

Note that we must use L rather than F1 because F1 does not contain those
items that may satisfy the MIS of an earlier item (in the sorted order) but
not the MIS of itself, e.g., item 1 in the above example. Using L, the prob-
lem discussed in Sect. 2.4.1 is solved for C2.

MScandidate-gen function: The algorithm is given in Fig. 2.8, which is
similar to the candidate-gen function in the Apriori algorithm. It also has
two steps, the join step and the pruning step. The join step (lines 2–6) is
the same as that in the candidate-gen() function. The pruning step (lines 8–
12) is, however, different.

For each (k-1)-subset s of c, if s is not in Fk−1, c can be deleted from Ck.
However, there is an exception, which is when s does not include c[1]

2.4 Mining with Multiple Minimum Supports 29

(there is only one such s). That is, the first item of c, which has the lowest
MIS value, is not in s. Even if s is not in Fk−1, we cannot delete c because
we cannot be sure that s does not satisfy MIS(c[1]), although we know that
it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9).

Example 12: Let F3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4,
6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step
produces (we ignore the support difference constraint here)

 {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 4, 5, 6}.

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are
then left with C4 = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-
though {3, 4, 5} is not in F3 because the minimum support of {3, 4, 5} is
MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-
isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if
MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted. ▀

Function level2-candidate-gen(L, ϕ)
1 C2 ← ∅; // initialize the set of candidates
2 for each item l in L in the same order do
3 if l.count/n ≥ MIS(l) then
4 for each item h in L that is after l do
5 if h.count/n ≥ MIS(l) and |sup(h) − sup(l)| ≤ ϕ then
6 C2 ← C2 ∪ {{l, h}}; // insert the candidate {l, h} into C2

Fig. 2.7. The level2-candidate-gen function

Function MScandidate-gen(Fk−1, ϕ)
1 Ck ← ∅; // initialize the set of candidates
2 forall f1, f2 ∈ Fk // find all pairs of frequent itemsets
3 with f1 = {i1, … , ik−2, ik−1} // that differ only in the last item
4 and f2 = {i1, … , ik−2, i’k−1}
5 and ik-1 < i’k−1 and |sup(ik-1) − sup(i’k−1)| ≤ ϕ do
6 c ← {i1, …, ik−1, i’k−1}; // join the two itemsets f1 and f2
7 Ck ← Ck ∪ {c}; // insert the candidate itemset c into Ck
8 for each (k−1)-subset s of c do
9 if (c[1] ∈ s) or (MIS(c[2]) = MIS(c[1])) then
10 if (s ∉ Fk−1) then
11 delete c from Ck; // delete c from the set of candidates
12 endfor
13 endfor
14 return Ck; // return the generated candidates

Fig. 2.8. The MScandidate-gen function

30 2 Association Rules and Sequential Patterns

The problem discussed in Sect. 2.4.1 is solved for Ck (k > 2) because,
due to the sorting, we do not need to extend a frequent (k−1)-itemset with
any item that has a lower MIS value. Let us see a complete example.

Example 13: Given the following seven transactions,
 Beef, Bread

 Bread, Clothes
Bread, Clothes, Milk
Cheese, Boots
Beef, Bread, Cheese, Shoes
Beef, Bread, Cheese, Milk
Bread, Milk, Clothes

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items.
Again, the support difference constraint is not used. The following fre-
quent itemsets are produced:

F1 = {{Beef}, {Cheese}, {Clothes}, {Bread}}
F2 = {{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}
 {Clothes, Bread}, {Clothes, Milk}}
F3 = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}}. ▀

To conclude this sub-section, let us further discuss two important issues:

1. Specify MIS values for items: This is usually done in two ways:
• Assign a MIS value to each item according to its actual sup-

port/frequency in the data set T. For example, if the actual support of
item i in T is sup(i), then the MIS value for i may be computed with
λ×sup(i), where λ is a parameter (0 ≤ λ ≤ 1) and is the same for all
items in T.

• Group items into clusters (or blocks). Items in each cluster have simi-
lar frequencies. All items in the same cluster are given the same MIS
value. We should note that in the extended model frequent itemsets
involving items from different clusters will be found.

2. Generate itemsets that must contain certain items: As mentioned earlier,
the extended model enables the user to instruct the algorithm to generate
itemsets that must contain certain items, or not to generate any itemsets
consisting of only the other items. Let us see an example.

Example 14: Given the data set in Example 13, if we want to generate
frequent itemsets that must contain at least one item in {Boots, Bread,
Cheese, Milk, Shoes}, or not to generate itemsets involving only Beef
and/or Clothes, we can simply set

 MIS(Beef) = 101%, and MIS(Clothes) = 101%

2.4 Mining with Multiple Minimum Supports 31

Then the algorithm will not generate the itemsets, {Beef}, {Clothes}
and {Beef, Clothes}. However, it will still generate such frequent item-
sets as {Cheese, Beef} and {Cheese, Bread, Beef}. ▀

In many applications, this feature comes quite handy because the user
is often only interested in certain types of itemsets or rules.

2.4.3 Rule Generation

Association rules are generated using frequent itemsets. In the case of a
single minsup, if f is a frequent itemset and fsub is a subset of f, then fsub
must also be a frequent itemset. All their support counts are computed and
recorded by the Apriori algorithm. Then, the confidence of each possible
rule can be easily calculated without seeing the data again.

However, in the case of MS-Apriori, if we only record the support count
of each frequent itemset, it is not sufficient. Let us see why.

Example 15: Recall in Example 8, we have
MIS(Bread) = 2% MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%.

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the
itemset {Shoes, Clothes, Bread} is 0.12%, according to MS-Apriori,
{Clothes, Bread} is not a frequent itemset since its support is less than
MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as
its actual support is greater than
 min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)).

We now have a problem in computing the confidence of the rule,

Clothes, Bread → Shoes

because the itemset {Clothes, Bread} is not a frequent itemset and thus its
support count is not recorded. In fact, we may not be able to compute the
confidences of the following rules either:

Clothes → Shoes, Bread
Bread → Shoes, Clothes

because {Clothes} and {Bread} may not be frequent. ▀

Lemma: The above problem may occur only when the item that has the
lowest MIS value in the itemset is in the consequent of the rule (which
may have multiple items). We call this problem the head-item problem.

Proof by contradiction: Let f be a frequent itemset, and a ∈ f be the item
with the lowest MIS value in f (a is called the head item). Thus, f uses

32 2 Association Rules and Sequential Patterns

MIS(a) as its minsup. We want to form a rule, X → Y, where X, Y ⊂ f, X ∪
Y = f and X ∩ Y = ∅. Our examples above already show that the head-item
problem may occur when a ∈ Y. Now assume that the problem can also
occur when a ∈ X. Since a ∈ X and X ⊂ f, a must have the lowest MIS
value in X and X must be a frequent itemset, which is ensured by the MS-
Apriori algorithm. Hence, the support count of X is recorded. Since f is a
frequent itemset and its support count is also recorded, then we can com-
pute the confidence of X → Y. This contradicts our assumption. ▀

The lemma indicates that we need to record the support count of f – {a}.
This is achieved by lines 13–14 in MS-Apriori (Fig. 2.6). All problems in
Example 15 are solved. A similar rule generation function as genRules() in
Apriori can be designed to generate rules with multiple minimum supports.

2.5 Mining Class Association Rules

The mining models studied so far do not use any targets. That is, any item
can appear as a consequent or condition of a rule. However, in some appli-
cations, the user is interested in only rules with some fixed target items on
the right-hand side. For example, the user has a collection of text docu-
ments from some topics (target items), and he/she wants to know what
words are correlated with each topic. In [352], a data mining system based
entirely on such rules (called class association rules) is reported, which is
in production use in Motorola for many different applications. In the Web
environment, class association rules are also useful because many types of
Web data are in the form of transactions, e.g., search queries issued by us-
ers, and pages clicked by visitors. There are often target items as well, e.g.,
advertisements. Web sites want to know how user activities are associated
with advertisements that they may like to view. This touches the issue of
classification or prediction, which we will study in the next chapter.

2.5.1 Problem Definition

Let T be a transaction data set consisting of n transactions. Each transac-
tion is labeled with a class y. Let I be the set of all items in T, Y be the set
of all class labels (or target items) and I ∩ Y = ∅. A class association
rule (CAR) is an implication of the form

 X → y, where X ⊆ I, and y ∈ Y.

The definitions of support and confidence are the same as those for nor-

2.5 Mining Class Association Rules 33

mal association rules. In general, a class association rule is different from a
normal association rule in two ways:
1. The consequent of a CAR has only a single item, while the consequent

of a normal association rule can have any number of items.
2. The consequent y of a CAR can only be from the class label set Y, i.e., y
∈ Y. No item from I can appear as the consequent, and no class label can
appear as a rule condition. In contrast, a normal association rule can
have any item as a condition or a consequent.

Objective: The problem of mining CARs is to generate the complete set of
CARs that satisfies the user-specified minimum support (minsup) and
minimum confidence (minconf) constraints.

Example 16: Figure 2.9 shows a data set which has seven text documents.
Each document is a transaction and consists of a set of keywords. Each
transaction is also labeled with a topic class (education or sport).

I = {Student, Teach, School, City, Game, Baseball, Basketball, Team,
Coach, Player, Spectator}

Y = {Education, Sport}.

 Transactions Class
doc 1: Student, Teach, School : Education
doc 2: Student, School : Education
doc 3: Teach, School, City, Game : Education
doc 4: Baseball, Basketball : Sport
doc 5: Basketball, Player, Spectator : Sport
doc 6: Baseball, Coach, Game, Team : Sport
doc 7: Basketball, Team, City, Game : Sport

Fig. 2.9. An example of a data set for mining class association rules

Let minsup = 20% and minconf = 60%. The following are two examples of
class association rules:

Student, School → Education [sup= 2/7, conf = 2/2]
Game → Sport [sup= 2/7, conf = 2/3]. ▀

A question that one may ask is: can we mine the data by simply using the
Apriori algorithm and then perform a post-processing of the resulting rules
to select only those class association rules? In principle, the answer is yes
because CARs are a special type of association rules. However, in practice
this is often difficult or even impossible because of combinatorial explo-
sion, i.e., the number of rules generated in this way can be huge.

34 2 Association Rules and Sequential Patterns

2.5.2 Mining Algorithm

Unlike normal association rules, CARs can be mined directly in a single
step. The key operation is to find all ruleitems that have support above
minsup. A ruleitem is of the form:

(condset, y),

where condset ⊆ I is a set of items, and y ∈ Y is a class label. The support
count of a condset (called condsupCount) is the number of transactions in
T that contain the condset. The support count of a ruleitem (called rule-
supCount) is the number of transactions in T that contain the condset and
are labeled with class y. Each ruleitem basically represents a rule:

 condset → y,

whose support is (rulesupCount / n), where n is the total number of trans-
actions in T, and whose confidence is (rulesupCount / condsupCount).

Ruleitems that satisfy the minsup are called frequent ruleitems, while
the rest are called infrequent ruleitems. For example, ({Student, School},
Education) is a ruleitem in T of Fig. 2.9. The support count of the condset
{Student, School} is 2, and the support count of the ruleitem is also 2. Then
the support of the ruleitem is 2/7 (= 28.6%), and the confidence of the rule-
item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup
threshold. We say that it is frequent. If minconf = 80%, then the ruleitem
satisfies the minconf threshold. We say that the ruleitem is confident. We
thus have the class association rule:

Student, School → Education [sup= 2/7, conf = 2/2].

The rule generation algorithm, called CAR-Apriori, is given in Fig.
2.10, which is based on the Apriori algorithm. Like the Apriori algorithm,
CAR-Apriori generates all the frequent ruleitems by making multiple
passes over the data. In the first pass, it computes the support count of each
1-ruleitem (containing only one item in its condset) (line 1). The set of all
1-candidate ruleitems considered is:

C1 = {({i}, y) | i ∈ I, and y ∈ Y},

which basically associates each item in I (or in the transaction data set T)
with every class label. Line 2 determines whether the candidate 1-
ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition
CARs (rules with only one condition) (line 3). In a subsequent pass, say k,
it starts with the seed set of (k−1)-ruleitems found to be frequent in the
(k−1)-th pass, and uses this seed set to generate new possibly frequent k-
ruleitems, called candidate k-ruleitems (Ck in line 5). The actual support

2.5 Mining Class Association Rules 35

counts, both condsupCount and rulesupCount, are updated during the scan
of the data (lines 6–13) for each candidate k-ruleitem. At the end of the
data scan, it determines which of the candidate k-ruleitems in Ck are actu-
ally frequent (line 14). From the frequent k-ruleitems, line 15 generates k-
condition CARs (class association rules with k conditions).

One interesting note about ruleitem generation is that if a ruleitem/rule
has a confidence of 100%, then extending the ruleitem with more condi-
tions (adding items to its condset) will also result in rules with 100% con-
fidence although their supports may drop with additional items. In some
applications, we may consider these subsequent rules redundant because
additional conditions do not provide any more information. Then, we
should not extend such ruleitems in candidate generation for the next level,
which can reduce the number of generated rules substantially. If desired,
redundancy handling can be added in the CAR-Apriori algorithm easily.

The CARcandidate-gen() function is very similar to the candidate-gen()
function in the Apriori algorithm, and it is thus omitted. The only differ-
ence is that in CARcandidate-gen() ruleitems with the same class are
joined by joining their condsets.

Example 17: Let us work on a complete example using our data in Fig.
2.9. We set minsup = 15%, and minconf = 70%

F1: { ({School}, Education):(3, 3), ({Student}, Education):(2, 2),
 ({Teach}, Education):(2, 2), ({Baseball}, Sport):(2, 2),

Algorithm CAR-Apriori(T)
1 C1 ← init-pass(T); // the first pass over T
2 F1 ← {f | f ∈ C1, f. rulesupCount / n ≥ minsup};
3 CAR1 ← {f | f ∈ F1, f.rulesupCount / f.condsupCount ≥ minconf};
4 for (k = 2; Fk−1 ≠ ∅; k++) do
5 Ck ← CARcandidate-gen(Fk−1);
6 for each transaction t ∈ T do
7 for each candidate c ∈ Ck do
8 if c.condset is contained in t then // c is a subset of t
9 c.condsupCount++;
10 if t.class = c.class then
11 c.rulesupCount++
12 endfor
13 end-for
14 Fk ← {c ∈ Ck | c.rulesupCount / n ≥ minsup};
15 CARk ← {f | f ∈ Fk, f.rulesupCount / f.condsupCount ≥ minconf};
16 endfor
17 return CAR ← Uk CARk;

Fig. 2.10. The CAR-Apriori algorithm

36 2 Association Rules and Sequential Patterns

 ({Basketball}, Sport):(3, 3), ({Game}, Sport):(3, 2),
 ({Team}, Sport):(2, 2)}

Note: The two numbers within the parentheses after each ruleitem are its
condSupCount and ruleSupCount respectively.

CAR1: School → Education [sup = 3/7, conf = 3/3]
 Student → Education [sup = 2/7, conf = 2/2]
 Teach → Education [sup = 2/7, conf = 2/2]
 Baseball → Sport [sup = 2/7, conf = 2/2]
 Basketball → Sport [sup = 3/7, conf = 3/3]
 Game → Sport [sup = 2/7, conf = 2/3]
 Team → Sport [sup = 2/7, conf = 2/2]

Note: We do not deal with rule redundancy in this example.

C2: { ({School, Student}, Education), ({School, Teach}, Education),
 ({Student, Teach}, Education), ({Baseball, Basketball}, Sport),
 ({Baseball, Game}, Sport), ({Baseball, Team}, Sport),

 ({Basketball, Game}, Sport), ({Basketball, Team}, Sport),
 ({Game, Team}, Sport)}

F2: { ({School, Student}, Education):(2, 2),
 ({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)}

CAR2: School, Student → Education [sup = 2/7, conf = 2/2]
 School, Teach → Education [sup = 2/7, conf = 2/2]
 Game, Team → Sport [sup = 2/7, conf = 2/2] ▀

We note that for many applications involving target items, the data sets
used are relational tables. They need to be converted to transaction forms
before mining. We can use the method in Sect. 2.3 for the purpose.

Example 18: In Fig. 2.11(A), the data set has three data attributes and a
class attribute with two possible values, positive and negative. It is con-
verted to the transaction data in Fig. 2.11(B). Notice that for each class, we
only use its original value. There is no need to attach the attribute “Class”

Attribute1 Attribute2 Atribute3 Class
a a x positive
b n y negative

(A) Table data

t1: (Attribute1, a), (Attribute2, a), (Attribute3, x) : Positive
t2: (Attribute1, b), (Attribute2, n), (Attribute3, y) : negative

(B) Transaction data

Fig. 2.11. Converting a table data set (A) to a transaction data set (B)

2.6 Basic Concepts of Sequential Patterns 37

because there is no ambiguity. As discussed in Sect. 2.3, for each numeric
attribute, its value range needs to be discretized into intervals either manu-
ally or automatically before conversion and rule mining. There are many
discretization algorithms. Interested readers are referred to [151]. ▀

2.5.3 Mining with Multiple Minimum Supports

The concept of mining with multiple minimum supports discussed in Sect.
2.4 can be incorporated in class association rule mining in two ways:

1. Multiple minimum class supports: The user can specify different
minimum supports for different classes. For example, the user has a data
set with two classes, Yes and No. Based on the application requirement,
he/she may want all rules of class Yes to have the minimum support of
5% and all rules of class No to have the minimum support of 20%.

2. Multiple minimum item supports: The user can specify a minimum
item support for every item (either a class item/label or a non-class
item). This is more general and is similar to normal association rule
mining discussed in Sect. 2.4.

For both approaches, similar mining algorithms to that given in Sect. 2.4
can be devised. The support difference constraint in Sect. 2.4.1 can be in-
corporated as well. Like normal association rule mining with multiple
minimum supports, by setting minimum class and/or item supports to more
than 100% for some items, the user effectively instructs the algorithm not
to generate rules involving only these items.

Finally, although we have discussed only multiple minimum supports so
far, we can easily use different minimum confidences for different classes
as well, which provides an additional flexibility in applications.

2.6 Basic Concepts of Sequential Patterns

Association rule mining does not consider the order of transactions. How-
ever, in many applications such orderings are significant. For example, in
market basket analysis, it is interesting to know whether people buy some
items in sequence, e.g., buying bed first and then buying bed sheets some
time later. In Web usage mining, it is useful to find navigational patterns
in a Web site from sequences of page visits of users (see Chap. 12). In text
mining, considering the ordering of words in a sentence is vital for finding
linguistic or language patterns (see Chap. 11). For these applications, asso-
ciation rules will not be appropriate. Sequential patterns are needed. Be-

38 2 Association Rules and Sequential Patterns

low, we define the problem of mining sequential patterns and introduce the
main concepts involved.

Let I = {i1, i2, …, im} be a set of items. A sequence is an ordered list of
itemsets. Recall an itemset X is a non-empty set of items X ⊆ I. We denote
a sequence s by 〈a1a2…ar〉, where ai is an itemset, which is also called an
element of s. We denote an element (or an itemset) of a sequence by {x1,
x2, …, xk}, where xj ∈ I is an item. We assume without loss of generality
that items in an element of a sequence are in lexicographic order. An item
can occur only once in an element of a sequence, but can occur multiple
times in different elements. The size of a sequence is the number of ele-
ments (or itemsets) in the sequence. The length of a sequence is the num-
ber of items in the sequence. A sequence of length k is called a k-sequence.
If an item occurs multiple times in different elements of a sequence, each
occurrence contributes to the value of k. A sequence s1 = 〈a1a2…ar〉 is a
subsequence of another sequence s2 = 〈b1b2…bv〉, or s2 is a supersequence
of s1, if there exist integers 1 ≤ j1 < j2 < … < jr−1 < jr ≤ v such that a1 ⊆ bj1,
a2 ⊆ bj2, …, ar ⊆ bjr. We also say that s2 contains s1.

Example 19: Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The sequence 〈{3}{4, 5}{8}〉 is
contained in (or is a subsequence of) 〈{6} {3, 7}{9}{4, 5, 8}{3, 8}〉 because {3}
⊆ {3, 7}, {4, 5} ⊆ {4, 5, 8}, and {8} ⊆ {3, 8}. However, 〈{3}{8}〉 is not con-
tained in 〈{3, 8}〉 or vice versa. The size of the sequence 〈{3}{4, 5}{8}〉 is 3,
and the length of the sequence is 4. ▀

Objective: Given a set S of input data sequences (or sequence database),
the problem of mining sequential patterns is to find all sequences that
have a user-specified minimum support. Each such sequence is called a
frequent sequence, or a sequential pattern. The support for a se-
quence is the fraction of total data sequences in S that contains this se-
quence.

Example 20: We use the market basket analysis as an example. Each se-
quence in this context represents an ordered list of transactions of a par-
ticular customer. A transaction is a set of items that the customer pur-
chased at a time (called the transaction time). Then transactions in the
sequence are ordered by increasing transaction time. Table 2.1 shows a
transaction database which is already sorted according to customer ID (the
major key) and transaction time (the minor key). Table 2.2 gives the data
sequences (also called customer sequences). Table 2.3 gives the output
sequential patterns with the minimum support of 25%, i.e., two customers.
 ▀

2.7 Mining Sequential Patterns Based on GSP 39

Table 2.1. A set of transactions sorted by customer ID and transaction time

Customer ID Transaction Time Transaction (items bought)
1 July 20, 2005 30
1 July 25, 2005 90
2 July 9, 2005 10, 20
2 July 14, 2005 30
2 July 20, 2005 10, 40, 60, 70
3 July 25, 2005 30, 50, 70, 80
4 July 25, 2005 30
4 July 29, 2005 30, 40, 70, 80
4 August 2, 2005 90
5 July 12, 2005 90

Table 2.2. The sequence database produced from the transactions in Table 2.1.

Customer ID Data Sequence
1 〈{30} {90}〉
2 〈{10, 20} {30} {10, 40, 60, 70}〉
3 〈{30, 50, 70, 80}〉
4 〈{30} {30, 40, 70, 80} {90}〉
5 〈{90}〉

Table 2.3. The final output sequential patterns

 Sequential Patterns with Support ≥ 25%
1-sequences 〈{30}〉, 〈{40}〉, 〈{70}〉, 〈{80}〉, 〈{90}〉
2-sequences 〈{30} {40}〉, 〈{30} {70}〉, 〈{30}, {90}〉, 〈{30, 70}〉,

〈{30, 80}〉, 〈{40, 70}〉, 〈{70, 80}〉
3-sequences 〈{30} {40, 70}〉, 〈{30, 70, 80}〉

2.7 Mining Sequential Patterns Based on GSP

This section describes two algorithms for mining sequential patterns based
on the GSP algorithm in [500]: the original GSP, which uses a single mini-
mum support, and MS-GSP, which uses multiple minimum supports.

2.7.1 GSP Algorithm

GSP works in almost the same way as the Apriori algorithm. We still use
Fk to store the set of all frequent k-sequences, and Ck to store the set of all

40 2 Association Rules and Sequential Patterns

candidate k-sequences. The algorithm is given in Fig. 2.12. The main dif-
ference is in the candidate generation, candidate-gen-SPM(), which is
given in Fig. 2.13. We use an example to illustrate the function.

Example 21: Table 2.4 shows F3, and C4 after the join and prune steps. In
the join step, the sequence 〈{1, 2}{4}〉 joins with 〈{2}{4, 5}〉 to produce 〈{1,
2}{4, 5}〉, and joins with 〈{2}{4}{6}〉 to produce 〈{1, 2}{4} {6}〉. The other se-
quences cannot be joined. For instance, 〈{1}{4, 5}〉 does not join with any
sequence since there is no sequence of the form 〈{4, 5}{x}〉 or 〈{4, 5, x}〉. In
the prune step, 〈{1, 2}{4} {6}〉 is removed since 〈{1}{4} {6}〉 is not in F3. ▀

Algorithm GSP(S)
1 C1 ← init-pass(S); // the first pass over S
2 F1 ← {〈{f}〉| f ∈ C1, f.count/n ≥ minsup}; // n is the number of sequences in S
3 for (k = 2; Fk−1 ≠ ∅; k++) do // subsequent passes over S
4 Ck ← candidate-gen-SPM(Fk−1);
5 for each data sequence s ∈ S do // scan the data once
6 for each candidate c ∈ Ck do
7 if c is contained in s then
8 c.count++; // increment the support count
9 endfor
10 endfor
11 Fk ← {c ∈ Ck | c.count/n ≥ minsup}
12 endfor
13 return Uk Fk;

Fig. 2.12. The GSP Algorithm for generating sequential patterns

Function candidate-gen-SPM(Fk−1) // SPM: Sequential Pattern Mining
1. Join step. Candidate sequences are generated by joining Fk−1 with Fk−1. A se-

quence s1 joins with s2 if the subsequence obtained by dropping the first item
of s1 is the same as the subsequence obtained by dropping the last item of s2.
The candidate sequence generated by joining s1 with s2 is the sequence s1 ex-
tended with the last item in s2. There are two cases:
• the added item forms a separate element if it was a separate element in s2,

and is appended at the end of s1 in the merged sequence, and
• the added item is part of the last element of s1 in the merged sequence oth-

erwise.
When joining F1 with F1, we need to add the item in s2 both as part of an
itemset and as a separate element. That is, joining 〈{x}〉 with 〈{y}〉 gives us
both 〈{x, y}〉 and 〈{x}{y}〉. Note that x and y in {x, y} are ordered.

2. Prune step. A candidate sequence is pruned if any one of its (k−1)-
subsequences is infrequent (without minimum support).

Fig. 2.13. The candidate-gen-SPM function

2.7 Mining Sequential Patterns Based on GSP 41

Table 2.4. Candidate generation: an example

Candidate 4-sequences Frequent
3-sequences after joining after pruning
〈{1, 2} {4}〉 〈{1, 2} {4, 5}〉 〈{1, 2} {4, 5}〉
〈{1, 2} {5}〉 〈{1, 2} {4} {6}〉
〈{1} {4, 5}〉
〈{1, 4} {6}〉
〈{2} {4, 5}〉
〈{2} {4} {6}〉

2.7.2 Mining with Multiple Minimum Supports

As in association rule mining, using a single minimum support in sequen-
tial pattern mining is also a limitation for many applications because some
items appear very frequently in the data, while some others appear rarely.

Example 22: One of the Web mining tasks is the mining of comparative
sentences such as “the picture quality of camera X is better than that of
camera Y.” from product reviews, forum postings and blogs (see Chap.
11). Such a sentence usually contains a comparative indicator word such as
better in the example. We want to discover linguistic patterns involving a
set of given comparative indicators, e.g., better, more, less, ahead, win,
superior, etc. Some of these indicators (e.g., more and better) appear very
frequently in natural language sentences, while some others (e.g., win and
ahead) appear rarely. In order to find patterns that contain such rare indi-
cators, we have to use a very low minsup. However, this causes patterns
involving frequent indicators to generate a huge number of spurious pat-
terns. Moreover, we need a way to tell the algorithm that we only want pat-
terns that contain at least one comparative indicator. Using GSP with a
single minsup is no longer appropriate. The multiple minimum supports
model solves both problems nicely. ▀

We again use the concept of minimum item supports (MIS). The user
is allowed to assign each item a MIS value. By providing different MIS
values for different items, the user essentially expresses different support
requirements for different sequential patterns. To ease the task of specify-
ing many MIS values by the user, the same strategies as those for mining
association rules can also be applied here (see Sect. 2.4.2).

Let MIS(i) be the MIS value of item i. The minimum support of a se-
quential pattern P is the lowest MIS value among the items in the pattern.
Let the set of items in P be: i1, i2, …, ir. The minimum support for P is:

42 2 Association Rules and Sequential Patterns

 minsup(P) = min(MIS(i1), MIS(i2), …, MIS(ir)).

The new algorithm, called MS-GSP, is given in Fig. 2.14. It generalizes
the GSP algorithm in Fig. 2.12. Like GSP, MS-GSP is also based on level-
wise search. Line 1 sorts the items in ascending order according to their
MIS values stored in MS. Line 2 makes the first pass over the sequence
data using the function init-pass(), which performs the same function as
that in MS-Apriori to produce the seeds set L for generating the set of can-
didate sequences of length 2, i.e., C2. Frequent 1-sequences (F1) are ob-
tained from L (line 3).

For each subsequent pass, the algorithm works similarly to MS-Apriori.
The function level2-candidate-gen-SPM() can be designed based on
level2-candidate-gen in MS-Apriori and the join step in Fig. 2.13. MScan-
didate-gen-SPM() is, however, complex, which we will discuss shortly.

In line 13, c.minMISItem gives the item that has the lowest MIS value in
the candidate sequence c. Unlike that in MS-Apriori, where the first item
in each itemset has the lowest MIS value, in sequential pattern mining the
item with the lowest MIS value may appear anywhere in a sequence. Simi-
lar to those in MS-Apriori, lines 13 and 14 are used to ensure that all se-
quential rules can be generated after MS-GSP without scanning the origi-
nal data. Note that in traditional sequential pattern mining, sequential rules
are not defined. We will define several types in Sect. 2.9.

Algorithm MS-GSP(S, MS) // MS stores all MIS values
1 M ← sort(I, MS); // according to MIS(i)’s stored in MS
2 L ← init-pass(M, S); // make the first pass over S
3 F1 ← {〈{l}〉 | l ∈ L, l.count/n ≥ MIS(l)}; // n is the size of S
4 for (k = 2; Fk−1 ≠ ∅; k++) do
5 if k = 2 then
6 Ck ← level2-candidate-gen-SPM(L)
7 else Ck ← MScandidate-gen-SPM(Fk−1)
8 endif
9 for each data sequence s ∈ S do
10 for each candidate c ∈ Ck do
11 if c is contained in s then
12 c.count++
13 if c’ is contained in s, where c’ is c after an occurrence of

c.minMISItem is removed from c then
14 c.rest.count++ // c.rest: c without c.minMISItem
15 endfor
16 endfor
17 Fk ← {c ∈ Ck | c.count/n ≥ MIS(c.minMISItem)}
18 endfor
19 return F ← Uk Fk;

Fig. 2.14. The MS-GSP algorithm

2.7 Mining Sequential Patterns Based on GSP 43

Let us now discuss MScandidate-gen-SPM(). In MS-Apriori, the order-
ing of items is not important and thus we put the item with the lowest MIS
value in each itemset as the first item of the itemset, which simplifies the
join step. However, for sequential pattern mining, we cannot artificially
put the item with the lowest MIS value as the first item in a sequence be-
cause the ordering of items is significant. This causes problems for joining.

Example 23: Assume we have a sequence s1 = 〈{1, 2}{4}〉 in F3, from
which we want to generate candidate sequences for the next level. Suppose
that item 1 has the lowest MIS value in s1. We use the candidate generation
function in Fig. 2.13. Assume also that the sequence s2 = 〈{2}{4, 5}〉 is not
in F3 because its minimum support is not satisfied. Then we will not gen-
erate the candidate 〈{1, 2}{4, 5}〉. However, 〈{1, 2}{4, 5}〉 can be frequent be-
cause items 2, 4, and 5 may have higher MIS values than item 1. ▀

To deal with this problem, let us make an observation. The problem
only occurs when the first item in the sequence s1 or the last item in the se-
quence s2 is the only item with the lowest MIS value, i.e., no other item in
s1 (or s2) has the same lowest MIS value. If the item (say x) with the lowest
MIS value is not the first item in s1, then s2 must contain x, and the candi-
date generation function in Fig. 2.13 will still be applicable. The same rea-
soning goes for the last item of s2. Thus, we only need special treatment for
these two cases.

Let us see how to deal with the first case, i.e., the first item is the only
item with the lowest MIS value. We use an example to develop the idea.
Assume we have the frequent 3-sequence of s1 = 〈{1, 2}{4}〉. Based on the
algorithm in Fig. 2.13, s1 may be extended to generate two possible candi-
dates using 〈{2}{4}{x}〉 and 〈{2}{4, x}〉

c1 = 〈{1, 2}{4}{x}〉 and c2 = 〈{1, 2}{4, x}〉,

where x is an item. However, 〈{2}{4}{x}〉 and 〈{2}{4, x}〉 may not be frequent
because items 2, 4, and x may have higher MIS values than item 1, but we
still need to generate c1 and c2 because they can be frequent. A different
join strategy is thus needed.

We observe that for c1 to be frequent, the subsequence s2 = 〈{1}{4}{x}〉
must be frequent. Then, we can use s1 and s2 to generate c1. c2 can be gen-
erated in a similar manner with s2 = 〈{1}{4, x}〉. s2 is basically the subse-
quence of c1 (or c2) without the second item. Here we assume that the MIS
value of x is higher than item 1. Otherwise, it falls into the second case.

Let us see the same problem for the case where the last item has the
only lowest MIS value. Again, we use an example to illustrate. Assume we
have the frequent 3-sequence s2 = 〈{3, 5}{1}〉. It can be extended to produce
two possible candidates based on the algorithm in Fig. 2.13,

44 2 Association Rules and Sequential Patterns

c1 = 〈{x}{3, 5}{1}〉, and c2 = 〈{x, 3, 5}{1}〉.

For c1 to be frequent, the subsequence s1 = 〈{x}{3}{1}〉 has to be frequent
(we assume that the MIS value of x is higher than that of item 1). Thus, we
can use s1 and s2 to generate c1. c2 can be generated with s1 = 〈{x, 3}{1}〉. s1
is basically the subsequence of c1 (or c2) without the second last item.

The MScandidate-gen-SPM() function is given in Fig. 2.15, which is
self-explanatory. Some special treatments are needed for 2-sequences be-
cause the same s1 (or s2) may generate two candidate sequences. We use
two examples to show the working of the function.

Example 24: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,
MIS(1) = 0.03 MIS(2) = 0.05 MIS(3) = 0.03
MIS(4) = 0.07 MIS(5) = 0.08 MIS(6) = 0.09.

Function MScandidate-gen-SPM(Fk−1)
1 Join Step. Candidate sequences are generated by joining Fk−1 with Fk−1.
2 if the MIS value of the first item in a sequence (denoted by s1) is less than (<)

the MIS value of every other item in s1 then // s1 and s2 can be equal
 Sequence s1 joins with s2 if (1) the subsequences obtained by dropping the

second item of s1 and the last item of s2 are the same, and (2) the MIS
value of the last item of s2 is greater than that of the first item of s1. Candi-
date sequences are generated by extending s1 with the last item of s2:
• if the last item l in s2 is a separate element then
 {l} is appended at the end of s1 as a separate element to form a candi-

date sequence c1.
if (the length and the size of s1 are both 2) AND (the last item of s2 is

greater than the last item of s1) then // maintain lexicographic order
l is added at the end of the last element of s1 to form another candi-

date sequence c2.
• else if ((the length of s1 is 2 and the size of s1 is 1) AND (the last item

of s2 is greater than the last item of s1)) OR (the length of s1
is greater than 2) then

 the last item in s2 is added at the end of the last element of s1 to
form the candidate sequence c2.

3 elseif the MIS value of the last item in a sequence (denoted by s2) is less than
(<) the MIS value of every other item in s2 then

 A similar method to the one above can be used in the reverse order.
4 else use the Join Step in Fig. 2.13
5 Prune step: A candidate sequence is pruned if any one of its (k−1)-

subsequences is infrequent (without minimum support) except the subse-
quence that does not contain the item with strictly the lowest MIS value.

Fig. 2.15. The MScandidate-gen-SPM function

2.8 Mining Sequential Patterns Based on PrefixSpan 45

The data set has 100 sequences. The following frequent 3-sequences are in
F3 with their actual support counts attached after “:”:

(a). 〈{1}{4}{5}〉:4 (b). 〈{1}{4}{6}〉:5 (c). 〈{1}{5}{6}〉:6
(d). 〈{1}{5, 6}〉:5 (e). 〈{1}{6}{3}〉:4 (f). 〈{6}{3}{6}〉:9
(g). 〈{5, 6}{3}〉:5 (h). 〈{5}{4}{3}〉:4 (i). 〈{4}{5}{3}〉:7.

For sequence (a) (= s1), item 1 has the lowest MIS value. It cannot join
with sequence (b) because condition (1) in Fig. 2.15 is not satisfied. How-
ever, (a) can join with (c) to produce the candidate sequence, 〈{1}{4}{5}{6}〉.
(a) can also join with (d) to produce 〈{1}{4}{5, 6}〉. (b) can join with (e) to
produce 〈{1}{4}{6}{3}〉, which is pruned subsequently because 〈{1}{4}{3}〉 is
infrequent. (d) and (e) can be joined to give 〈{1}{5, 6}{3}〉, but it is pruned
because 〈{1}{5}{3}〉 does not exist. (e) can join with (f) to produce
〈{1}{6}{3}{6}〉 which is done in line 4 because both item 1 and item 3 in (e)
have the same MIS value. However, it is pruned because 〈{1}{3}{6}〉 is in-
frequent. We do not join (d) and (g), although they can be joined based on
the algorithm in Fig. 2.13, because the first item of (d) has the lowest MIS
value and we use a different join method for such sequences.

Now we look at 3-sequences whose last item has strictly the lowest MIS
value. (i) (= s1) can join with (h) (= s2) to produce 〈{4}{5}{4}{3}〉. However,
it is pruned because 〈{4}{4}{3}〉 is not in F3. ▀

Example 25: Now we consider generating candidates from frequent 2-
sequences, which is special as we noted earlier. We use the same items and
MIS values in Example 24. The following frequent 2-sequences are in F2
with their actual support counts attached after “:”:

(a). 〈{1}{5}〉:6 (b). 〈{1}{6}〉:7 (c) 〈{5}{4}〉:8
(d). 〈{1, 5}〉:6 (e). 〈{1, 6}〉:6.

(a) can join with (b) to produce both 〈{1}{5}{6}〉 and 〈{1}{5, 6}〉. (b) can join
with (d) to produce 〈{1, 5}{6}〉. (e) can join with (a) to produce 〈{1, 6}{5}〉.
Clearly, there are other joins. Again, (a) will not join with (c). ▀

Note that the support difference constraint in Sect. 2.4.1 can also be
included. We omitted it to simplify the algorithm as it is already complex.
Also, the user can instruct the algorithm to generate only certain sequential
patterns or not to generate others by setting the MIS values suitably.

2.8 Mining Sequential Patterns Based on PrefixSpan

We now introduce another sequential pattern mining algorithm, called Pre-
fixSpan [439], which does not generate candidates. Different from the GSP

46 2 Association Rules and Sequential Patterns

algorithm [500], which can be regarded as performing breadth-first search
to find all sequential patterns, PrefixSpan performs depth-first search.

2.8.1 PrefixSpan Algorithm

It is easy to introduce the original PrefixSpan algorithm using an example.

Example 26: Consider again mining sequential patterns from Table 2.2
with minsup = 25%. PrefixSpan first sorts all items in each element (or
itemset) as shown in the table. Then, by one scan of the sequence database,
it finds all frequent items, i.e., 30, 40, 70, 80 and 90. The corresponding
length one sequential patterns are 〈{30}〉, 〈{40}〉, 〈{70}〉, 〈{80}〉 and 〈{90}〉.

We notice that the complete set of sequential patterns can actually be
divided into five mutually exclusive subsets: the subset with prefix 〈{30}〉,
the subset with prefix 〈{40}〉, the subset with prefix 〈{70}〉, the subset with
prefix 〈{80}〉, and the subset with prefix 〈{90}〉. We only need to find the
five subsets one by one.

To find sequential patterns having prefix 〈{30}〉, the algorithm extends
the prefix by adding items to it one at a time. To add the next item x, there
are two possibilities, i.e., x joining the last itemset of the prefix (i.e., 〈{30,
x}〉) and x forming a separate itemset (i.e., 〈{30}{x}〉). PrefixSpan performs
the task by first forming the 〈{30}〉-projected database and then finding all
the cases of the two types in the projected database. The projected database
is produced as follows: If a sequence contains item 30, then the suffix fol-
lowing the first 30 is extracted as a sequence in the projected database.
Furthermore, since infrequent items cannot appear in a sequential pattern,
all infrequent items are removed from the projection. The first sequence in
our example, 〈{30}{90}〉, is projected to 〈{90}〉. The second sequence, 〈{10,
20}{30}{10, 40, 60, 70}〉, is projected to 〈{40, 70}〉, where the infrequent
items 10 and 60 are removed. The third sequence 〈{30, 50, 70, 80}〉 is pro-
jected to 〈{_, 70, 80}〉, where the infrequent item 50 is removed. Note that
the underline symbol “_” in this projection denotes that the items (only 30
in this case) in the last itemset of the prefix are in the same itemset as items
50, 70 and 80 in the sequence. The fourth sequence is projected to 〈{30, 40,
70, 80}{90}〉. The projection of the last sequence is empty since it does not
contain item 30. The final projected database for prefix 〈{30}〉 contains the
following sequences:

〈{90}〉, 〈{40, 70}〉, 〈{_, 70, 80}〉, and 〈{30, 40, 70, 80}{90}〉

By scanning the projected database once, PrefixSpan finds all possible
one item extensions to the prefix, i.e., all x’s for 〈{30, x}〉 and all x’s for
〈{30}{x}〉. Let us discuss the details.

2.8 Mining Sequential Patterns Based on PrefixSpan 47

Find All Frequent Patterns of the Form 〈{30, x}〉: Two templates {_, x}
and {30, x} are used to match each projected sequence to accumulate the
support count for each possible x (here x matches any item). If in the same
sequence multiple matches are found with the same x, they are only
counted once. Note that in general, the second template should use the last
itemset in the prefix rather than only its last item. In our example, they are
the same because there is only one item in the last itemset of the prefix.

Find All Frequent Patterns of the Form 〈{30}{x}〉: In this case, x’s are
frequent items in the projected database that are not in the same itemset as
the last item of the prefix.

Let us continue with our example. It is easy to check that both items 70
and 80 are in the same itemset as 30. That is, we have two frequent se-
quences 〈{30, 70}〉 and 〈{30, 80}〉. The support count of 〈{30, 70}〉 is 2 based
on the projected database; one from the projected sequence 〈{_, 70, 80}〉 (a
{_, x} match) and one from the projected sequence 〈{30, 40, 70, 80}{90}〉 (a
{30, x} match). In both cases, the x’s are the same, i.e., 70. Similarly, the
support count of 〈{30, 80}〉 is 2 as well and thus frequent.

It is also easy to check that items 40, 70, and 90 are also frequent but
not in the same itemset as 30. Thus, 〈{30}{40}〉, 〈{30}{70}〉, and 〈{30}{90}〉
are three sequential patterns. The set of sequential patterns having prefix
〈{30}〉 can be further divided into five mutually exclusive subsets: the ones
with prefixes 〈{30, 70}〉, 〈{30, 80}〉, 〈{30}{40}〉, 〈{30}{70}〉, and 〈{30}{90}〉.

We can recursively find the five subsets by forming their corresponding
projected databases. For example, to find sequential patterns having prefix
〈{30}{40}〉, we can form the 〈{30}{40}〉-projected database containing pro-
jections 〈{_, 70}〉 and 〈{_, 70, 80}{90}〉. Template 〈{_, x}〉 has two matches
and in both cases x is 70. Thus, 〈{30}{40, 70}〉 is output as a sequential pat-
tern. Since there is no other frequent item in this projected database, the
prefix cannot grow longer. The depth-first search returns from this branch.

After completing the mining of the 〈{30}〉-projected database, we find all
sequential patterns with prefix 〈{30}〉, i.e., 〈{30}〉, 〈{30}{40}〉, 〈{30}{40, 70}〉,
〈{30}{70}〉, 〈{30}{90}〉, 〈{30, 70}〉, 〈{30, 80}〉 and 〈{30, 70, 80}〉

By forming and mining the 〈{40}〉-, 〈{70}〉-, 〈{80}〉- and 〈{90}〉-projected
databases, the remaining sequential patterns can be found. ▀

The pseudo code of PrefixSpan can be found in [439]. Comparing to the
breadth-first search of GSP, the key advantage of PrefixSpan is that it does
not generate any candidates. It only counts the frequency of local items.
With a low minimum support, a huge number of candidates can be gener-
ated by GSP, which can cause memory and computational problems.

48 2 Association Rules and Sequential Patterns

2.8.2 Mining with Multiple Minimum Supports

The PrefixSpan algorithm can be adapted to mine with multiple minimum
supports. Again, let MIS(i) be the user-specified minimum item support
of item i. Let ϕ be the user-specified support difference threshold in the
support difference constraint (Sect. 2.4.1), i.e., |sup(i) – sup(j)| ≤ ϕ,
where i and j are items in the same sequential pattern, and sup(x) is the ac-
tual support of item x in the sequence database S. PrefixSpan can be modi-
fied as follows. We call the modified algorithm MS-PS.
1. Find every item i whose actual support in the sequence database S is at

least MIS(i). i is called a frequent item.
2. Sort all the discovered frequent items in ascending order according to

their MIS values. Let i1, …, iu be the frequent items in the sorted order.
3. For each item ik in the above sorted order,

(i) identify all the data sequences in S that contain ik and at the same
time remove every item j in each sequence that does not satisfy
|sup(j) – sup(ik)| ≤ ϕ. The resulting set of sequences is denoted by Sk.
Note that we are not using ik as the prefix to project the database S.

(ii) call the function r-PrefixSpan(ik, Sk, count(MIS(ik))) (restricted Pre-
fixSpan), which finds all sequential patterns that contain ik, i.e., no
pattern that does not contain ik should be generated. r-PrefixSpan()
uses count(MIS(ik)) (the minimum support count in terms of the
number of sequences) as the only minimum support for mining in Sk.
The sequence count is easier to use than the MIS value in percent-
age, but they are equivalent. Once the complete set of such patterns
is found from Sk, All occurrences of ik are removed from S.

r-PrefixSpan() is almost the same as PrefixSpan with one important differ-
ence. During each recursive call, either the prefix or every sequence in the
projected database must contain ik because, as we stated above, this func-
tion finds only those frequent sequences that contain ik. Another minor dif-
ference is that the support difference constraint needs to be checked during
each projection as sup(ik) may not be the lowest in the pattern.

Example 27: Consider mining sequential patterns from Table 2.5. Let
MIS(20) = 30% (3 sequences in minimum support count), MIS(30) = 20%
(2 sequences), MIS(40) = 30% (3 sequences), and the MIS values for the
rest of the items be 15% (2 sequences). We ignore the support difference
constraint as it is simple. In step 1, we find three frequent items, 20, 30
and 40. After sorting in step 2, we have (30, 20, 40). We then go to step 3.

In the first iteration of step 3, we work on i1 = 30. Step 3(i) gives us the
second, fourth and sixth sequences in Table 2.5, i.e.,

2.9 Generating Rules from Sequential Patterns 49

S1 = {〈{40}{30}{40, 60}〉, 〈{30}{20, 40}{40, 100}〉, 〈{40}{30}{110}〉}.

We then run r-PrefixSpan(30, S1, 2) in step 3(ii). The frequent items in
S1 are 30, and 40. They both have the support of 3 sequences. The length
one frequent sequence is only 〈{30}〉. 〈{40}〉 is not included because we re-
quire that every frequent sequence must contain 30. We next find frequent
sequences having prefix 〈{30}〉. The database S1 is projected to give 〈{40}〉
and 〈{40}{40}〉. 20, 60 and 100 have been removed because their supports in
S1 are less than the required support for item 30 (i.e., 2 sequences). For the
same reason, the projection of 〈{40}{30}{110}〉 is empty. Thus, we find a
length two frequent sequence 〈{30}{40}〉. In this case, there is no item in the
same itemset as 30 to form a frequent sequence of the form 〈{30, x}〉.

Next, we find frequent sequences with prefix 〈{40}〉. We again project
S1, which gives us only 〈{30}{40}〉 and 〈{30}〉. 〈{40, 100}〉 is not included be-
cause it does not contain 30. This projection gives us another length two
frequent sequence 〈{40}{30}〉. The first iteration of step 3 ends.

In the second iteration of step 3, we work on i2 = 20. Step 3(i) gives us
the first, fourth, fifth and seventh sequences in Table 2.5 with item 30 re-
moved, S2 = {〈{20, 50}〉, 〈{20, 40}{40, 100}〉, 〈{20, 40}{10}〉, 〈{20}{80}{70}〉}.
It is easy to see that only item 20 is frequent, and thus only a length one
frequent sequence is generated, 〈{20}〉.

In the third iteration of step 3, we work on i3 = 40. We can verify that
again only one frequent sequence, i.e., 〈{40}〉, is found.

The final set of sequential patterns generated from the sequence data-
base in Table 2.5 is {〈{30}〉, 〈{20}〉, 〈{40}〉, 〈{40}{30}〉, 〈{30}{40}〉}. ▀

2.9 Generating Rules from Sequential Patterns

In classic sequential pattern mining, no rules are generated. It is, however,
possible to define and generate many types of rules. This section intro-

Table 2.5. An example of a sequence database

Sequence ID Data Sequence
1 〈{20, 50}〉
2 〈{40}{30}{40, 60}〉
3 〈{40, 90, 120}〉
4 〈{30}{20, 40}{40, 100}〉
5 〈{20, 40}{10}〉
6 〈{40}{30}{110}〉
7 〈{20}{80}{70}〉

50 2 Association Rules and Sequential Patterns

duces only three types, sequential rules, label sequential rules and class
sequential rules, which have been used in Web usage mining and Web
content mining (see Chaps. 11 and 12).

2.9.1 Sequential Rules

A sequential rule (SR) is an implication of the form, X → Y, where Y is a
sequence and X is a proper subsequence of Y, i.e., X is a subsequence of Y
and the length Y is greater than the length of X. The support of a sequen-
tial rule, X → Y, in a sequence database S is the fraction of sequences in S
that contain Y. The confidence of a sequential rule, X → Y, in S is the pro-
portion of sequences in S that contain X also contain Y.

Given a minimum support and a minimum confidence, according to the
downward closure property, all the rules can be generated from frequent
sequences without going to the original sequence data. Let us see an ex-
ample of a sequential rule found from the data sequences in Table 2.6.

Table 2.6. An example of a sequence database for mining sequential rules

 Data Sequence
1 〈{1}{3}{5}{7, 8, 9}〉
2 〈{1}{3}{6}{7, 8}〉
3 〈{1, 6}{7}〉
4 〈{1}{3}{5, 6}〉
5 〈{1}{3}{4}〉

Example 28: Given the sequence database in Table 2.6, the minimum sup-
port of 30% and the minimum confidence of 60%, one of the sequential
rules found is the following,

〈{1}{7}〉 → 〈{1}{3}{7, 8}〉 [sup = 2/5, conf = 2/3]

Data sequences 1, 2 and 3 contain 〈{1}{7}〉, and data sequences 1 and 2 con-
tain 〈{1}{3}{7, 8}〉. ▀

If multiple minimum supports are used, we can employ the results of
multiple minimum support pattern mining to generate all the rules.

2.9.2 Label Sequential Rules

Sequential rules may not be restrictive enough in some applications. We
introduce a special kind of sequential rules called label sequential rules.
A label sequential rule (LSR) is of the form, X → Y, where Y is a sequence

2.9 Generating Rules from Sequential Patterns 51

and X is a sequence produced from Y by replacing some of its items with
wildcards. A wildcard is denoted by an “*” which matches any item. These
replaced items are usually very important and are called labels. The labels
are a small subset of all the items in the data.

Example 29: Given the sequence database in Table 2.6, the minimum sup-
port of 30% and the minimum confidence of 60%, one of the label sequen-
tial rules found is the following,

〈{1}{*}{7, *}〉 → 〈{1}{3}{7, 8}〉 [sup = 2/5, conf = 2/2].

Notice the confidence change compared to the rule in Example 28. The
supports of the two rules are the same. In this case, data sequences 1 and 2
contain 〈{1}{*}{7, *}〉, and they also contain 〈{1}{3}{7, 8}〉. Items 3 and 8 are
labels. ▀

LSRs are useful because in some applications we need to predict the la-
bels in an input sequence, e.g., items 3 and 8 above. The confidence of the
rule simply gives us the estimated probability that the two “*”s are 3 and 8
given that an input sequence contains 〈{1}{*}{7, *}〉. We will see an applica-
tion of LSRs in Chap. 11, where we want to predict whether a word in a
comparative sentence is an entity (e.g., a product name), which is a label.

Note that due to the use of wildcards, frequent sequences alone are not
sufficient for computing rule confidences. Scanning the data is needed.
Notice also that the same pattern may appear in a data sequence multiple
times. Rule confidences thus can be defined in different ways according to
application needs. The wildcards may also be restricted to match only cer-
tain types of items to make the label prediction meaningful and unambigu-
ous (see some examples in Chap. 11).

2.9.3 Class Sequential Rules

Class sequential rules (CSR) are analogous to class association rules
(CAR). Let S be a set of data sequences. Each sequence is also labeled
with a class y. Let I be the set of all items in S, and Y be the set of all class
labels, I ∩ Y = ∅. Thus, the input data D for mining is represented with
{(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence in S and yi ∈ Y is its
class. A class sequential rule (CSR) is of the form

 X → y, where X is a sequence, and y ∈ Y.

A data instance (si, yi) is said to cover a CSR, X → y, if X is a subsequence
of si. A data instance (si, yi) is said to satisfy a CSR if X is a subsequence
of si and yi = y.

52 2 Association Rules and Sequential Patterns

Example 30: Table 2.7 gives an example of a sequence database with five
data sequences and two classes, c1 and c2. Using the minimum support of
30% and the minimum confidence of 60%, one of the discovered CSRs is:

〈{1}{3}{7, 8}〉 → c1 [sup = 2/5, conf = 2/3].

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5
cover the rule. ▀

Table 2.7. An example of a sequence database for mining CSRs

 Data Sequence Class
1 〈{1}{3}{5}{7, 8, 9}〉 c1
2 〈{1}{3}{6}{7, 8}〉 c1
3 〈{1, 6}{9}〉 c2
4 〈{3}{5, 6}〉 c2
5 〈{1}{3}{4}{7, 8}〉 c2

As in class association rule mining, we can modify the GSP and Prefix-
Span algorithms to produce algorithms for mining all CSRs. Similarly, we
can also use multiple minimum class supports and/or multiple minimum
item supports as in class association rule mining.

Bibliographic Notes

Association rule mining was introduced in 1993 by Agrawal et al. [9].
Since then, numerous research papers have been published on the topic.
This short chapter only introduces some basics, and it, by no means, does
justice to the huge body of work in the area. The bibliographic notes here
should help you explore further.

Since given a data set, a minimum support and a minimum confidence,
the solution (the set of frequent itemsets or the set of rules) is unique, most
papers improve the mining efficiency. The most well-known algorithm is
the Apriori algorithm proposed by Agrawal and Srikant [11], which has
been studied in this chapter. Another important algorithm is the FP-
growth algorithm proposed by Han et al. [220]. The algorithm compresses
the data and stores it in memory using a frequent pattern tree. It then mines
all frequent itemsets without candidate generation. Other notable algo-
rithms include those by Agarwal et al. [2], Mannila et al. [361], Park et al.
[435], Zaki et al. [589], etc. An efficiency comparison of various algo-
rithms was reported by Zheng et al. [616].

Apart from performance improvements, several variations of the origi-
nal model were also proposed. Srikant and Agrawal [499], and Han and Fu

Bibliographic Notes 53

[217] proposed two algorithms for mining generalized association rules
or multi-level association rules. Liu et al. [344] extended the original
model to take multiple minimum supports, which was also studied by
Wang et al. [534], Seno and Karypis [482], Xiong et al. [562], etc. Srikant
et al. [502] proposed to mine association rules with item constraints. The
model restricts the rules that should be generated. Ng et al. [408] general-
ized the idea, which was followed by many subsequent papers on the topic
of constrained rule mining.

It is well known that association rule mining often generates a huge
number of frequent itemsets and rules. Bayardo [42], and Lin and Kedem
[334] introduced the problem of mining maximal frequent itemsets,
which are itemsets with no frequent supersets. Improved algorithms are re-
ported in many papers [e.g., 2, 73]. Since maximal pattern mining only
finds longest patterns, the support information of their subsets, which are
obviously also frequent, is not found. As a result, association rules cannot
be generated. The next significant development was the mining of closed
frequent itemsets studied by Pasquier et al. [436], Zaki and Hsiao [588],
and Wang et al. [529]. Closed itemsets are better than maximal frequent
itemsets because closed frequent itemsets provide a lossless concise repre-
sentation of all frequent itemsets.

Other developments on association rules include cyclic association
rules proposed by Ozden et al. [420], periodic patterns by Yang et al.
[571], negative association rules by Savasere [476] and Wu et al. [560],
weighted association rules by Wang et al. [539], association rules with
numerical variables by Webb [541], class association rules by Liu et al.
[343], high-performance rule mining by Buehrer et al. [72] and many
others. Recently, Cong et al. [112, 113] introduced association rule mining
from bioinformatics data, which typically have a very large number of at-
tributes (more than ten thousands) but only a very small number of records
or transactions (less than 100).

Another major research area on association rules is the interestingness
of discovered rules. Since an association rule miner often generates a huge
number of rules, it is very difficult, if not impossible, for human users to
inspect them in order to find those truly interesting rules. Researchers have
proposed many techniques to help users identify such rules easily [e.g., 43,
283, 342, 345, 346, 352, 421, 492, 511, 522, 535, 565]. A deployed data
mining system that uses some of the techniques is reported in [352].

Regarding sequential pattern mining, the first algorithm was proposed
by Agrawal and Srikant [12], which was a direct application of the Apriori
algorithm. Improvements were made subsequently by several researchers,
e.g., Ayres et al. [29], Pei et al. [439], Srikant and Agrawal [500], Zaki
[586], etc. The MS-GSP and MS-PS algorithms for mining sequential pat-

54 2 Association Rules and Sequential Patterns

terns with multiple minimum supports and the support difference con-
straint are introduced in this book. Label and class sequential rules have
been used in [255, 256] for mining comparative sentences from text docu-
ments.

There are several publicly available implementations of algorithms for
mining frequent itemsets, maximal frequent itemsets, closed frequent item-
sets, and sequential patterns from various research groups, most notably
from those of Jiawei Han, Johnanne Gehrke, and Mohammed Zaki. There
were also two workshops dedicated to frequent itemset mining organized
by Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, which re-
ported many efficient implementations. The workshop Web sites are
http://fimi.cs.helsinki.fi/fimi03/ and http://fimi.cs.helsinki.fi/fimi04/.

3 Supervised Learning

Supervised learning has been a great success in real-world applications. It
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from
past experiences to gain new knowledge in order to improve our ability to
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past
and represent past experiences in some real-world applications.

There are several types of supervised learning tasks. In this chapter, we
focus on one particular type, namely, learning a target function that can be
used to predict the values of a discrete class attribute. This type of learning
has been the focus of the machine learning research and is perhaps also the
most widely used learning paradigm in practice. This chapter introduces a
number of such supervised learning techniques. They are used in almost
every Web mining application. We will see their uses from Chaps. 6–12.

3.1 Basic Concepts

A data set used in the learning task consists of a set of data records, which
are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes
the number of attributes or the size of the set A. The data set also has a
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in A due to its
special status, i.e., we assume that C is not in A. The class attribute C has a
set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of
classes and |C| ≥ 2. A class value is also called a class label. A data set for
learning is simply a relational table. Each data record describes a piece of
“past experience”. In the machine learning and data mining literature, a
data record is also called an example, an instance, a case or a vector. A
data set basically consists of a set of examples or instances.

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in A and classes in
C. The function can be used to predict the class values/labels of the future

56 3 Supervised Learning

data. The function is also called a classification model, a predictive
model or simply a classifier. We will use these terms interchangeably in
this book. It should be noted that the function/model can be in any form,
e.g., a decision tree, a set of rules, a Bayesian model or a hyperplane.

Example 1: Table 3.1 shows a small loan application data set. It has four
attributes. The first attribute is Age, which has three possible values,
young, middle and old. The second attribute is Has_Job, which indicates
whether an applicant has a job. Its possible values are true (has a job) and
false (does not have a job). The third attribute is Own_house, which shows
whether an applicant owns a house. The fourth attribute is Credit_rating,
which has three possible values, fair, good and excellent. The last column
is the Class attribute, which shows whether each loan application was ap-
proved (denoted by Yes) or not (denoted by No) in the past.

Table 3.1. A loan application data set

ID Age Has_job Own_house Credit_rating Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes

10 middle false true excellent Yes
11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

We want to learn a classification model from this data set that can be
used to classify future loan applications. That is, when a new customer
comes into the bank to apply for a loan, after inputting his/her age, whether
he/she has a job, whether he/she owns a house, and his/her credit rating,
the classification model should predict whether his/her loan application
should be approved. ▀

Our learning task is called supervised learning because the class labels
(e.g., Yes and No values of the class attribute in Table 3.1) are provided in

3.1 Basic Concepts 57

the data. It is as if some teacher tells us the classes. This is in contrast to
the unsupervised learning, where the classes are not known and the learn-
ing algorithm needs to automatically generate classes. Unsupervised learn-
ing is the topic of the next chapter.

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a
learning algorithm, it is evaluated using a set of test data (or unseen
data) to assess the model accuracy.

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels.
That is why the test data can be used to assess the accuracy of the learned
model because we can check whether the class predicted for each test case
by the model is the same as the actual class of the test case. In order to
learn and also to test, the available data (which has classes) for learning is
usually split into two disjoint subsets, the training set (for learning) and the
test set (for testing). We will discuss this further in Sect. 3.3.

The accuracy of a classification model on a test set is defined as:

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
=Accuracy (1)

where a correct classification means that the learned model predicts the
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Sect. 3.3.

We pause here to raises two important questions:
1. What do we mean by learning by a computer system?
2. What is the relationship between the training and the test data?
We answer the first question first. Given a data set D representing past
“experiences”, a task T and a performance measure M, a computer system
is said to learn from the data to perform the task T if after learning the sys-
tem’s performance on the task T improves as measured by M. In other
words, the learned model or knowledge helps the system to perform the
task better as compared to no learning. Learning is the process of building
the model or extracting the knowledge.

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance
measure M is the accuracy in Equation (1). With the data set in Table 3.1,
if there is no learning, all we can do is to guess randomly or to simply take
the majority class (which is the Yes class). Suppose we use the majority
class and announce that every future instance or case belongs to the class
Yes. If the future data are drawn from the same distribution as the existing
training data in Table 3.1, the estimated classification/prediction accuracy

58 3 Supervised Learning

on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the
total of 15 examples in Table 3.1. The question is: can we do better with
learning? If the learned model can indeed improve the accuracy, then the
learning is said to be effective.

The second question in fact touches the fundamental assumption of
machine learning, especially the theoretical study of machine learning.
The assumption is that the distribution of training examples is identical to
the distribution of test examples (including future unseen examples). In
practical applications, this assumption is often violated to a certain degree.
Strong violations will clearly result in poor classification accuracy, which
is quite intuitive because if the test data behave very differently from the
training data then the learned model will not perform well on the test data.
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.

We now illustrate the steps of learning in Fig. 3.1 based on the preced-
ing discussions. In step 1, a learning algorithm uses the training data to
generate a classification model. This step is also called the training step or
training phase. In step 2, the learned model is tested using the test set to
obtain the classification accuracy. This step is called the testing step or
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new
cases (which do not have classes). If the accuracy is not satisfactory, we
need to go back and choose a different learning algorithm and/or do some
further processing of the data (this step is called data pre-processing, not
shown in the figure). A practical learning task typically involves many it-
erations of these steps before a satisfactory model is built. It is also possi-
ble that we are unable to build a satisfactory model due to a high degree of
randomness in the data or limitations of current learning algorithms.

Fig. 3.1. The basic learning process: training and testing

From the next section onward, we study several supervised learning al-
gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.

We note that throughout the chapter we assume that the training and test
data are available for learning. However, in many text and Web page re-
lated learning tasks, this is not true. Usually, we need to collect raw data,

Learning
algorithm model Accuracy Test

data
Training

data

 Step 1: Training Step 2: Testing

3.2 Decision Tree Induction 59

design attributes and compute attribute values from the raw data. The rea-
son is that the raw data in text and Web applications are often not suitable
for learning either because their formats are not right or because there are
no obvious attributes in the raw text documents or Web pages.

3.2 Decision Tree Induction

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning
methods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this
section are based on the C4.5 system from Quinlan [453].

Example 2: Figure 3.2 shows a possible decision tree learnt from the data
in Table 3.1. The tree has two types of nodes, decision nodes (which are
internal nodes) and leaf nodes. A decision node specifies some test (i.e.,
asks a question) on a single attribute. A leaf node indicates a class.

Fig. 3.2. A decision tree for the data in Table 3.1

The root node of the decision tree in Fig. 3.2 is Age, which basically
asks the question: what is the age of the applicant? It has three possible an-
swers or outcomes, which are the three possible values of Age. These three
values form three tree branches/edges. The other internal nodes have the
same meaning. Each leaf node gives a class value (Yes or No). (x/y) below
each class means that x out of y training examples that reach this leaf node
have the class of the leaf. For instance, the class of the left most leaf node
is Yes. Two training examples (examples 3 and 4 in Table 3.1) reach here
and both of them are of class Yes. ▀

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a
leaf node. The class of the leaf is the predicted class of the test instance.

Age?

Has_job? Own_house? Credit_rating?

Young middle old

 true false

Yes No
(2/2) (3/3)

 true false

Yes No
(3/3) (2/2)

fair good excellent

No Yes Yes
(1/1) (2/2) (2/2)

60 3 Supervised Learning

Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.

Age Has_job Own_house Credit-rating Class
young false false good ?

Going through the decision tree, we find that the predicted class is No as
we reach the second leaf node from the left. ▀

A decision tree is constructed by partitioning the training data so that the
resulting subsets are as pure as possible. A pure subset is one that contains
only training examples of a single class. If we apply all the training data in
Table 3.1 on the tree in Fig. 3.2, we will see that the training examples
reaching each leaf node form a subset of examples that have the same class
as the class of the leaf. In fact, we can see that from the x and y values in
(x/y). We will discuss the decision tree building algorithm in Sect. 3.2.1.

An interesting question is: Is the tree in Fig. 3.2 unique for the data in
Table 3.1? The answer is no. In fact, there are many possible trees that can
be learned from the data. For example, Fig. 3.3 gives another decision tree,
which is much smaller and is also able to partition the training data per-
fectly according to their classes.

Fig. 3.3. A smaller tree for the data set in Table 3.1

In practice, one wants to have a small and accurate tree for many rea-
sons. A smaller tree is more general and also tends to be more accurate (we
will discuss this later). It is also easier to understand by human users. In
many applications, the user understanding of the classifier is important.
For example, in some medical applications, doctors want to understand the
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding
why the decision is made the doctor may not trust the system and/or does
not gain useful knowledge.

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-
ples that reach each leaf node all have the same class (see the values of

Has_job?

Own_house?

 true false

Yes No
(3/3) (6/6)

 true false

Yes
(6/6)

3.2 Decision Tree Induction 61

(x/y) at each leaf node). However, for most real-life data sets, this is usu-
ally not the case. That is, the examples that reach a particular leaf node are
not of the same class, i.e., x ≤ y. The value of x/y is, in fact, the confidence
(conf) value used in association rule mining, and x is the support count.
This suggests that a decision tree can be converted to a set of if-then rules.

Yes, indeed. The conversion is done as follows: Each path from the root
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For
each rule, a support and confidence can be attached. Note that in most
classification systems, these two values are not provided. We add them
here to see the connection of association rules and decision trees.

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.

Own_house = true → Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true → Class = Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false → Class = No [sup=6/15, conf=6/6].

We can see that these rules are of the same format as association rules.
However, the rules above are only a small subset of the rules that can be
found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3
does not find the following rule:

Age = young, Has_job = false → Class = No [sup=3/15, conf=3/3].

Thus, we say that a decision tree only finds a subset of rules that exist in
data, which is sufficient for classification. The objective of association rule
mining is to find all rules subject to some minimum support and minimum
confidence constraints. Thus, the two methods have different objectives.
We will discuss these issues again in Sect. 3.5 when we show that associa-
tion rules can be used for classification as well, which is obvious.

An interesting and important property of a decision tree and its resulting
set of rules is that the tree paths or the rules are mutually exclusive and
exhaustive. This means that every data instance is covered by a single rule
(a tree path) and a single rule only. By covering a data instance, we mean
that the instance satisfies the conditions of the rule.

We also say that a decision tree generalizes the data as a tree is a
smaller (more compact) description of the data, i.e., it captures the key
regularities in the data. Then, the problem becomes building the best tree
that is small and accurate. It turns out that finding the best tree that models
the data is a NP-complete problem [248]. All existing algorithms use heu-
ristic methods for tree building. Below, we study one of the most success-
ful techniques.

62 3 Supervised Learning

3.2.1 Learning Algorithm

As indicated earlier, a decision tree T simply partitions the training data set
D into disjoint subsets so that each subset is as pure as possible (of the
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is
given in Fig. 3.4. For now, we assume that every attribute in D takes dis-
crete values. This assumption is not necessary as we will see later.

The stopping criteria of the recursion are in lines 1–4 in Fig. 3.4. The
algorithm stops when all the training examples in the current data are of
the same class, or when every attribute has been used along the current tree

. Algorithm decisionTree(D, A, T)
1 if D contains only training examples of the same class cj ∈ C then
2 make T a leaf node labeled with class cj;
3 elseif A = ∅ then
4 make T a leaf node labeled with cj, which is the most frequent class in D
5 else // D contains examples belonging to a mixture of classes. We select a single
6 // attribute to partition D into subsets so that each subset is purer
7 p0 = impurityEval-1(D);
8 for each attribute Ai ∈ A (={A1, A2, …, Ak}) do
9 pi = impurityEval-2(Ai, D)
10 endfor
11 Select Ag ∈ {A1, A2, …, Ak} that gives the biggest impurity reduction,

computed using p0 – pi;
12 if p0 – pg < threshold then // Ag does not significantly reduce impurity p0
13 make T a leaf node labeled with cj, the most frequent class in D.
14 else // Ag is able to reduce impurity p0
15 Make T a decision node on Ag;
16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m

disjoint subsets D1, D2, …, Dm based on the m values of Ag.
17 for each Dj in {D1, D2, …, Dm} do
18 if Dj ≠ ∅ then
19 create a branch (edge) node Tj for vj as a child node of T;
20 decisionTree(Dj, A−{Ag}, Tj) // Ag is removed
21 endif
22 endfor
23 endif
24 endif

Fig. 3.4. A decision tree learning algorithm

3.2 Decision Tree Induction 63

path. In tree learning, each successive recursion chooses the best attribute
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to
minimize the impurity after the partitioning (lines 7–11). In other words, it
maximizes the purity. The key in decision tree learning is thus the choice
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4.
The recursive recall of the algorithm is in line 20, which takes the subset of
training examples at the node for further partitioning to extend the tree.

This is a greedy algorithm with no backtracking. Once a node is created,
it will not be revised or revisited no matter what happens subsequently.

3.2.2 Impurity Function

Before presenting the impurity function, we use an example to show what
the impurity function aims to do intuitively.

Example 5: Figure 3.5 shows two possible root nodes for the data in Table
3.1.

Fig. 3.5. Two possible root nodes or two possible attributes for the root node

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house
as the root node. Their possible values (or outcomes) are the branches. At
each branch, we listed the number of training examples of each class (No
or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for
the root. From a prediction or classification point of view, Fig. 3.5(B)
makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house =
true every example has the class Yes. When Own_house = false, if we take
majority class (the most frequent class), which is No, we make three mis-
takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the
majority class for each branch, we make five mistakes (marked in bold).
Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the
tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age
to be the root node. Instead of counting the number of mistakes or errors,
C4.5 uses a more principled approach to perform this evaluation on every
attribute in order to choose the best attribute to build the tree. ▀

No: 0 No: 6
Yes: 6 Yes: 3

(B)

Own_house?

 true false

No: 3 No: 2 No: 1
Yes: 2 Yes: 3 Yes: 4

(A)

Age?

 Young middle old

64 3 Supervised Learning

The most popular impurity functions used for decision tree learning are
information gain and information gain ratio, which are used in C4.5 as
two options. Let us first discuss information gain, which can be extended
slightly to produce information gain ratio.

The information gain measure is based on the entropy function from in-
formation theory [484]:

,1)Pr(

)Pr(log)Pr()(

||

1

||

1
2

∑

∑

=

=

=

−=

C

j
j

j

C

j
j

c

ccDentropy

(2)

where Pr(cj) is the probability of class cj in data set D, which is the number
of examples of class cj in D divided by the total number of examples in D.
In the entropy computation, we define 0log0 = 0. The unit of entropy is
bit. Let us use an example to get a feeling of what this function does.

Example 6: Assume we have a data set D with only two classes, positive
and negative. Let us see the entropy values for three different compositions
of positive and negative examples:

1. The data set D has 50% positive examples (Pr(positive) = 0.5) and 50%
negative examples (Pr(negative) = 0.5).

.15.0log5.05.0log5.0)(22 =×−×−=Dentropy

2. The data set D has 20% positive examples (Pr(positive) = 0.2) and 80%
negative examples (Pr(negative) = 0.8).

.722.08.0log8.02.0log2.0)(22 =×−×−=Dentropy

3. The data set D has 100% positive examples (Pr(positive) = 1) and no
negative examples, (Pr(negative) = 0).

.00log01log1)(22 =×−×−=Dentropy

We can see a trend: When the data becomes purer and purer, the entropy
value becomes smaller and smaller. In fact, it can be shown that for this
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. ▀

It is clear that the entropy measures the amount of impurity or disorder
in the data. That is exactly what we need in decision tree learning. We now
describe the information gain measure, which uses the entropy function.

3.2 Decision Tree Induction 65

Information Gain

The idea is the following:

1. Given a data set D, we first use the entropy function (Equation 2) to
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 3.4 performs this task.

2. Then, we want to know which attribute can reduce the impurity most if
it is used to partition D. To find out, every attribute is evaluated (lines
8–10 in Fig. 3.4). Let the number of possible values of the attribute Ai be
v. If we are going to use Ai to partition the data D, we will divide D into
v disjoint subsets D1, D2, …, Dv. The entropy after the partition is

.)(
||
||

)(
1
∑
=

×=
v

j
j

j
A Dentropy

D
D

Dentropy
i

 (3)

 The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.
3. The information gain of attribute Ai is computed with:

).()(),(DentropyDentropyADgain
iAi −= (4)

Clearly, the gain criterion measures the reduction in impurity or disorder.
The gain measure is used in line 11 of Fig. 3.4, which chooses attribute Ag
resulting in the largest reduction in impurity. If the gain of Ag is too small,
the algorithm stops for the branch (line 12). Normally a threshold is used
here. If choosing Ag is able to reduce impurity significantly, Ag is em-
ployed to partition the data to extend the tree further, and so on (lines 15–
21 in Fig. 3.4). The process goes on recursively by building sub-trees using
D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag
any more, as all training examples in each branch has the same Ag value.

Example 7: Let us compute the gain values for attributes Age, Own_house
and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate
for the root node of a decision tree.

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have

.971.0
15
9log

15
9

15
6log

15
6)(22 =×−×−=Dentropy

We then try Age, which partitions the data into 3 subsets (as Age has
three possible values) D1 (with Age=young), D2 (with Age=middle), and D3
(with Age=old). Each subset has five training examples. In Fig. 3.5, we
also see the number of No class examples and the number of Yes examples
in each subset (or in each branch).

66 3 Supervised Learning

.888.0722.0
15
5971.0

15
5971.0

15
5

)(
15
5)(

15
5)(

15
5)(321

=×+×+×=

×−×−×−= DentropyDentropyDentropyDentropyAge

Likewise, we compute for Own_house, which partitions D into two sub-
sets, D1 (with Own_house=true) and D2 (with Own_house=false).

.551.0 918.0
15
90

15
6

)(
15
9)(

15
6)(21_

=×+×=

×−×−= DentropyDentropyDentropy houseOwn

Similarly, we obtain entropyHas_job(D) = 0.647, and entropyCredit_rating(D)
= 0.608. The gains for the attributes are:

gain(D, Age) = 0.971 − 0.888 = 0.083
gain(D, Own_house) = 0.971 − 0.551 = 0.420
gain(D, Has_job) = 0.971 − 0.647 = 0.324
gain(D, Credit_rating) = 0.971 − 0.608 = 0.363.

Own_house is the best attribute for the root node. Figure 3.5(B) shows the
root node using Own_house. Since the left branch has only one class (Yes)
of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false,
further extension is needed. The process is the same as above, but we only
use the subset of the data with Own_house = false, i.e., D2. ▀

Information Gain Ratio

The gain criterion tends to favor attributes with many possible values. An
extreme situation is that the data contain an ID attribute that is an identifi-
cation of each example. If we consider using this ID attribute to partition
the data, each training example will form a subset and has only one class,
which results in entropyID(D) = 0. So the gain by using this attribute is
maximal. From a prediction point of review, such a partition is useless.

Gain ratio (Equation 5) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our
previous entropy computations are done with respect to the class attribute:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

=
s

j

jj

i
i

D
D

D
D

ADgainADgainRatio

1 ||
||

log
||
||

),(),(
2

 (5)

where s is the number of possible values of Ai, and Dj is the subset of data

3.2 Decision Tree Induction 67

that has the jth value of Ai. |Dj|/|D| corresponds to the probability of Equa-
tion (2). Using Equation (5), we simply choose the attribute with the high-
est gainRatio value to extend the tree.

This method works because if Ai has too many values the denominator
will be large. For instance, in our above example of the ID attribute, the
denominator will be log2|D|. The denominator is called the split info in
C4.5. One note is that the split info can be 0 or very small. Some heuristic
solutions can be devised to deal with it (see [453]).

3.2.3 Handling of Continuous Attributes

It seems that the decision tree algorithm can only handle discrete attributes.
In fact, continuous attributes can be dealt with easily as well. In a real life
data set, there are often both discrete attributes and continuous attributes.
Handling both types in an algorithm is an important advantage.

To apply the decision tree building method, we can divide the value
range of attribute Ai into intervals at a particular tree node. Each interval
can then be considered a discrete value. Based on the intervals, gain or
gainRatio is evaluated in the same way as in the discrete case. Clearly, we
can divide Ai into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to
find a threshold value for the division.

Clearly, we should choose the threshold that maximizes the gain (or
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute Ai the number of possible
values that it can take is infinite, the number of actual values that appear in
the data is always finite. Let the set of distinctive values of attribute Ai that
occur in the data be {v1, v2, …, vr}, which are sorted in ascending order.
Clearly, any threshold value lying between vi and vi+1 will have the same
effect of dividing the training examples into those whose value of attribute
Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}.
There are thus only r−1 possible splits on Ai, which can all be evaluated.

The threshold value can be the middle point between vi and vi+1, or just
on the “right side” of value vi, which results in two intervals Ai ≤ vi and Ai
> vi. This latter approach is used in C4.5. The advantage of this approach is
that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can
modify the algorithm in Fig. 3.4 (lines 8–11) easily to accommodate this
computation so that both discrete and continuous attributes are considered.

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a
continuous attribute, we do not remove attribute Ag because an interval can

68 3 Supervised Learning

be further split recursively in subsequent tree extensions. Thus, the same
continuous attribute may appear multiple times in a tree path (see Example
9), which does not happen for a discrete attribute.

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits
from the root node to a leaf node represents a hyper-rectangle. Each side of
the hyper-rectangle is an axis-parallel hyperplane.

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions
the space, are produced by the decision tree in Fig. 3.6(B). There are two
classes in the data, represented by empty circles and filled rectangles. ▀

Fig. 3.6. A partitioning of the data space and its corresponding decision tree

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of
a continuous attribute takes |D|log|D| time, which can dominate the tree
learning process. Sorting is important as it ensures that gain or gainRatio
can be computed in one pass of the data.

3.2.4 Some Other Issues

We now discuss several other issues in decision tree learning.

Tree Pruning and Overfitting: A decision tree algorithm recursively par-
titions the data until there is no impurity or there is no attribute left. This
process may result in trees that are very deep and many tree leaves may
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not
effective, i.e., the decision tree does not generalize the data well. This

X

Y

2.6
2.5
 2

0 2 3 4

X

Y

≤ 2 > 2

Y
≤ 2 > 2

X
≤ 3 > 3

X

Y

≤ 4 > 4

≤ 2.5 > 2.5

≤ 2.6 > 2.6

(A) A partition of the data space (B). The decision tree

3.2 Decision Tree Induction 69

phenomenon is called overfitting. More specifically, we say that a classi-
fier f1 overfits the data if there is another classifier f2 such that f1 achieves a
higher accuracy on the training data than f2, but a lower accuracy on the
unseen test data than f2 [385].

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the
complexity and randomness of the application domain. These problems
cause the decision tree algorithm to refine the tree by extending it to very
deep using many attributes.

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to
do this, stopping early in tree building (which is also called pre-pruning)
and pruning the tree after it is built (which is called post-pruning). Post-
pruning has been shown more effective. Early-stopping can be dangerous
because it is not clear what will happen if the tree is extended further
(without stopping). Post-pruning is more effective because after we have
extended the tree to the fullest, it becomes clearer which branches/sub-
trees may not be useful (overfit the data). The general idea of post-pruning
is to estimate the error of each tree node. If the estimated error for a node
is less than the estimated error of its extended sub-tree, then the sub-tree is
pruned. Most existing tree learning algorithms take this approach. See
[453] for a technique called the pessimistic error based pruning.

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region

 X ≤ 2, Y > 2.5, Y ≤ 2.6

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and
contains only a single data point, which may be an error (or noise) in the
data collection. If it is pruned, we obtain Fig. 3.7(A) and (B). ▀

Fig. 3.7. The data space partition and the decision tree after pruning

X

Y

2.6
2.5
 2

0 2 3 4

X

Y

≤ 2 > 2

≤ 2 > 2

X
≤ 3 > 3

X
≤ 4 > 4

 (A) A partition of the data space (B). The decision tree

70 3 Supervised Learning

Another common approach to pruning is to use a separate set of data
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we
can find the errors at each node on the validation set. This enables us to
know what to prune based on the errors at each node.

Rule Pruning: We noted earlier that a decision tree can be converted to a
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted
to a set of rules in the way discussed in Example 4. Rule pruning is then
performed by removing some conditions to make the rules shorter and
fewer (after pruning some rules may become redundant). In most cases,
pruning results in a more accurate rule set as shorter rules are less likely to
overfit the training data. Pruning is also called generalization as it makes
rules more general (with fewer conditions). A rule with more conditions is
more specific than a rule with fewer conditions.

Example 10: The sub-tree below X ≤ 2 in Fig. 3.6(B) produces these rules:

Rule 1: X ≤ 2, Y > 2.5, Y > 2.6 →
Rule 2: X ≤ 2, Y > 2.5, Y ≤ 2.6 → O
Rule 3: X ≤ 2, Y ≤ 2.5 →

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule
1 should be

Rule 1: X ≤ 2, Y > 2.6 →

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to
produce:

X ≤ 2 →

Then Rule 2 and Rule 3 become redundant and can be removed. ▀

A useful point to note is that after pruning the resulting set of rules may
no longer be mutually exclusive and exhaustive. There may be data
points that satisfy the conditions of more than one rule, and if inaccurate
rules are discarded, of no rules. An ordering of the rules is thus needed to
ensure that when classifying a test case only one rule will be applied to de-
termine the class of the test case. To deal with the situation that a test case
does not satisfy the conditions of any rule, a default class is used, which is
usually the majority class.

Handling Missing Attribute Values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There
are many ways to deal with the problem. For example, we can fill each

3.3 Classifier Evaluation 71

missing value with the special value “unknown” or the most frequent value
of the attribute if the attribute is discrete. If the attribute is continuous, use
the mean of the attribute for each missing value.

The decision tree algorithm in C4.5 takes another approach. At a tree
node, distribute the training example with missing value for the attribute to
each branch of the tree proportionally according to the distribution of the
training examples that have values for the attribute.

Handling Skewed Class Distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases
according to how likely they may be intrusions. The human users can then
investigate the top ranked cases.

3.3 Classifier Evaluation

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.

There are many ways to evaluate a classifier, and there are also many
measures. The main measure is the classification accuracy (Equation 1),
which is the number of correctly classified instances in the test set divided
by the total number of instances in the test set. Some researchers also use
the error rate, which is 1 – accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance
tests may be used to check whether one classifier’s accuracy is signifi-
cantly better than that of another given the same training and test data sets.
Below, we first present several common methods for classifier evaluation,
and then introduce some other evaluation measures.

3.3.1 Evaluation Methods

Holdout Set: The available data D is divided into two disjoint subsets, the
training set Dtrain and the test set Dtest, D = Dtrain ∪ Dtest and Dtrain ∩ Dtest =

72 3 Supervised Learning

∅. The test set is also called the holdout set. This method is mainly used
when the data set D is large. Note that the examples in the original data set
D are all labeled with classes.

As we discussed earlier, the training set is used for learning a classifier
while the test set is used for evaluating the resulting classifier. The training
set should not be used to evaluate the classifier as the classifier is biased
toward the training set. That is, the classifier may overfit the training set,
which results in very high accuracy on the training set but low accuracy on
the test set. Using the unseen test set gives an unbiased estimate of the
classification accuracy. As for what percentage of the data should be used
for training and what percentage for testing, it depends on the data set size.
50–50 and two thirds for training and one third for testing are commonly
used.

To partition D into training and test sets, we can use a few approaches:

1. We randomly sample a set of training examples from D for learning and
use the rest for testing.

2. If the data is collected over time, then we can use the earlier part of the
data for training/learning and the later part of the data for testing. In
many applications, this is a more suitable approach because when the
classifier is used in the real-world the data are from the future. This ap-
proach thus better reflects the dynamic aspects of applications.

Multiple Random Sampling: When the available data set is small, using
the above methods can be unreliable because the test set would be too
small to be representative. One approach to deal with the problem is to per-
form the above random sampling n times. Each time a different training set
and a different test set are produced. This produces n accuracies. The final
estimated accuracy on the data is the average of the n accuracies.

Cross-Validation: When the data set is small, the n-fold cross-validation
method is very commonly used. In this method, the available data is parti-
tioned into n equal-size disjoint subsets. Each subset is then used as the test
set and the remaining n−1 subsets are combined as the training set to learn
a classifier. This procedure is then run n times, which gives n accuracies.
The final estimated accuracy of learning from this data set is the average of
the n accuracies. 10-fold and 5-fold cross-validations are often used.

A special case of cross-validation is the leave-one-out cross-validation.
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original
data has m examples, then this is m-fold cross-validation. This method is
normally used when the available data is very small. It is not efficient for a
large data set as m classifiers need to be built.

3.3 Classifier Evaluation 73

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a
decision tree or a set of rules. If a validation set is employed for that pur-
pose, it should not be used in testing. In that case, the available data is di-
vided into three subsets, a training set, a validation set and a test set. Apart
from using a validation set to help tree or rule pruning, a validation set is
also used frequently to estimate parameters in learning algorithms. In such
cases, the values that give the best accuracy on the validation set are used
as the final values of the parameters. Cross-validation can be used for pa-
rameter estimating as well. Then a separate validation set is not needed. In-
stead, the whole training set is used in cross-validation.

3.3.2 Precision, Recall, F-score and Breakeven Point

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in
classification involving skewed or highly imbalanced data, e.g., network
intrusion and financial fraud detection, we are typically interested in only
the minority class. The class that the user is interested in is commonly
called the positive class, and the rest negative classes (the negative classes
may be combined into one negative class). Accuracy is not a suitable
measure in such cases because we may achieve a very high accuracy, but
may not identify a single intrusion. For instance, 99% of the cases are
normal in an intrusion detection data set. Then a classifier can achieve
99% accuracy without doing anything by simply classifying every test case
as “not intrusion”. This is, however, useless.

Precision and recall are more suitable in such applications because they
measure how precise and how complete the classification is on the positive
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 3.2). A confusion matrix contains information about actual and
predicted results given by a classifier.

Table 3.2. Confusion matrix of a classifier

 Classified positive Classified negative
Actual positive TP FN
Actual negative FP TN

where
TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
TN: the number of correct classifications of negative examples (true negative)

74 3 Supervised Learning

Based on the confusion matrix, the precision (p) and recall (r) of the posi-
tive class are defined as follows:

. .
FNTP

TP r
FPTP

TPp
+

=
+

= (6)

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number of examples that are classified as posi-
tive. Recall r is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The
intuitive meanings of these two measures are quite obvious.

However, it is hard to compare classifiers based on two measures, which
are not functionally related. For a test set, the precision may be very high
but the recall can be very low, and vice versa.

Example 11: A test data set has 100 positive examples and 1000 negative
examples. After classification using a classifier, we have the following
confusion matrix (Table 3.3),

Table 3.3. Confusion matrix of a classifier

 Classified positive Classified negative
Actual positive 1 99
Actual negative 0 1000

This confusion matrix gives the precision p = 100% and the recall r = 1%
because we only classified one positive example correctly and classified no
negative examples wrongly. ▀

Although in theory precision and recall are not related, in practice high
precision is achieved almost always at the expense of recall and high recall
is achieved at the expense of precision. In an application, which measure is
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, the F-score is often used:

rp
prF
+

=
2 (7)

The F-score (also called the F1-score) is the harmonic mean of precision
and recall.

rp

F 11
2

+
= (8)

3.4 Rule Induction 75

The harmonic mean of two numbers tends to be closer to the smaller of
the two. Thus, for the F-score to be high, both p and r must be high.

There is also another measure, called precision and recall breakeven
point, which is used in the information retrieval community. The break-
even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we
can use the confidence of each leaf node as the value to rank test cases.

Example 12: We have the following ranking of 20 test documents. 1
represents the highest rank and 20 represents the lowest rank. “+” (“−”)
represents an actual positive (negative) documents.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
+ + + − + − + − + + − − + − − − + − − +

Assume that the test set has 10 positive examples.
At rank 1: p = 1/1 = 100% r = 1/10 = 10%
At rank 2: p = 2/2 = 100% r = 2/10 = 20%
… … …
At rank 9: p = 6/9 = 66.7% r = 6/10 = 60%
At rank 10: p = 7/10 = 70% r = 7/10 = 70%

The breakeven point is p = r = 70%. Note that interpolation is needed if
such a point cannot be found. ▀

3.4 Rule Induction

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules. Clearly, the set of rules can be used for classification as the tree. A
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule
induction or rule learning. We study two approaches in the section.

3.4.1 Sequential Covering

Most rule induction systems use an algorithm called sequential covering.
A classifier built with this algorithm consists of a list of rules, which is
also called a decision list [463]. In the list, the ordering of the rules is sig-
nificant.

The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned,

76 3 Supervised Learning

the training examples covered by the rule are removed. Only the remaining
data are used to find subsequent rules. Recall that a rule covers an example
if the example satisfies the conditions of the rule. We study two specific
algorithms based on this general strategy. The first algorithm is based on
the CN2 system [104], and the second algorithm is based on the ideas in
FOIL [452], I-REP [189], REP [70], and RIPPER [106] systems. Many
ideas are also taken from [385].

Algorithm 1 (Ordered Rules)

This algorithm learns each rule without pre-fixing a class. That is, in each
iteration, a rule of any class may be found. Thus rules of different classes
may intermix in the final rule list. The ordering of rules is important.

This algorithm is given in Fig. 3.8. D is the training data. RuleList is the
list of rules, which is initialized to empty set (line 1). Rule is the best rule
found in each iteration. The function learn-one-rule-1() learns the Rule
(lines 2 and 6). The stopping criteria for the while-loop can be of various
kinds. Here we use D = ∅ or Rule is NULL (a rule is not learned). Once a
rule is learned from the data, it is inserted into RuleList at the end (line 4).
All the training examples that are covered by the rule are removed from
the data (line 5). The remaining data is used to find the next rule and so on.
After rule learning ends, a default class is inserted at the end of RuleList.
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some
test cases may not be covered by any rule and thus cannot be classified.
The final list of rules is as follows:

<r1, r2, …, rk, default-class> (9)

where ri is a rule.

Algorithm 2 (Ordered Classes)

This algorithm learns all rules for each class together. After rule learning
for one class is completed, it moves to the next class. Thus all rules for
each class appear together in the rule list. The sequence of rules for each
class is unimportant, but the rule subsets for different classes are ordered.
Typically, the algorithm finds rules for the least frequent class first, then
the second least frequent class and so on. This ensures that some rules are
learned for rare classes. Otherwise, they may be dominated by frequent
classes and end up with no rules if considered after frequent classes.

The algorithm is given in Fig. 3.9. The data set D is split into two sub-
sets, Pos and Neg, where Pos contains all the examples of class c from D,

3.4 Rule Induction 77

and Neg the rest of the examples in D (line 3). c is the class that the algo-
rithm is working on now. Two stopping conditions for rule learning of
each class are in line 4 and line 6. The other parts of the algorithm are
quite similar to those of the first algorithm in Fig. 3.8. Both learn-one-rule-
1() and learn-one-rule-2() functions are described in Sect. 3.4.2.

Use of Rules for Classification

To use a list of rules for classification is straightforward. For a test case,
we simply try each rule in the list sequentially. The class of the first rule
that covers this test case is assigned as the class of the test case. Clearly, if
no rule applies to the test case, the default class is used.

Algorithm sequential-covering-1(D)
1 RuleList ← ∅;
2 Rule ← learn-one-rule-1(D);
3 while Rule is not NULL AND D ≠ ∅ do
4 RuleList ← insert Rule at the end of RuleList;
5 Remove from D the examples covered by Rule;
6 Rule ← learn-one-rule-1(D)
7 endwhile
8 insert a default class c at the end of RuleList, where c is the majority class

in D;
9 return RuleList

Fig. 3.8. The first rule learning algorithm based on sequential covering

Algorithm sequential-covering-2(D, C)
1 RuleList ← ∅; // empty rule set at the beginning
2 for each class c ∈ C do
3 prepare data (Pos, Neg), where Pos contains all the examples of class

c from D, and Neg contains the rest of the examples in D;
4 while Pos ≠ ∅ do
5 Rule ← learn-one-rule-2(Pos, Neg, c);
6 if Rule is NULL then
7 exit-while-loop
8 else RuleList ← insert Rule at the end of RuleList;
9 Remove examples covered by Rule from (Pos, Neg)
10 endif
11 endwhile
12 endfor
13 return RuleList

Fig. 3.9. The second rule learning algorithm based on sequential covering

78 3 Supervised Learning

3.4.2 Rule Learning: Learn-One-Rule Function

We now present the function learn-one-rule(), which works as follows: It
starts with an empty set of conditions. In the first iteration, one condition is
added. In order to find the best condition to add, all possible conditions are
tried, which form candidate rules. A condition is of the form Ai op v,
where Ai is an attribute and v is a value of Ai. We also called it an attrib-
ute-value pair. For a discrete attribute, op is “=”. For a continuous attrib-
ute, op ∈ {>, ≤}. The algorithm evaluates all the candidates to find the best
one (the rest are discarded). After the first best condition is added, it tries
to add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it
is implied, i.e., the majority class of the data covered by the conditions.

This is a heuristic and greedy algorithm in that after a condition is
added, it will not be changed or removed through backtracking. Ideally, we
would want to try all possible combinations of attributes and values. How-
ever, this is not practical as the number of possibilities grows exponen-
tially. Hence, in practice, the above greedy algorithm is used. However, in-
stead of keeping only the best set of conditions, we can improve the
function a little by keeping k best sets of conditions (k > 1) in each itera-
tion. This is called the beam search (k beams), which ensures that a larger
space is explored. Below, we present two specific implementations of the
algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-
rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-
2() is used in the sequential-covering-2 algorithm.

Learn-One-Rule-1
This function uses beam search (Fig. 3.10). The number of beams is k.
BestCond stores the conditions of the rule to be returned. The class is omit-
ted as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier
beams) and its size is less than or equal to k. Each condition set contains a
set of conditions connected by “and” (conjunction). newCandidateCondSet
stores all the new candidate condition sets after adding each attribute-value
pair (a possible condition) to every candidate in candidateCondSet (lines
5–11). Lines 13–17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better
than the existing best condition set BestCond (line 14). If so, it replaces the
current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k new best condition sets (new beams).

Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition (∅) using a threshold (line 20). If

3.4 Rule Induction 79

yes, a rule will be formed using BestCond and the most frequent (or the
majority) class of the data covered by BestCond (line 21). If not, NULL is
returned to indicate that no significant rule is found.

The evaluation() function (Fig. 3.11) uses the entropy function as in the
decision tree learning. Other evaluation functions are possible too. Note
that when BestCond = ∅, it covers every example in D, i.e., D = D′.

Function learn-one-rule-1(D)
1 BestCond ← ∅; // rule with no condition.
2 candidateCondSet ← {BestCond};
3 attributeValuePairs ← the set of all attribute-value pairs in D of the form

(Ai op v), where Ai is an attribute and v is a value or an interval;
4 while candidateCondSet ≠ ∅ do
5 newCandidateCondSet ← ∅;
6 for each candidate cond in candidateCondSet do
7 for each attribute-value pair a in attributeValuePairs do
8 newCond ← cond ∪ {a};
9 newCandidateCondSet ← newCandidateCondSet ∪ {newCond}
10 endfor
11 endfor
12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2};
13 for each candidate newCond in newCandidateCondSet do
14 if evaluation(newCond, D) > evaluation(BestCond, D) then
15 BestCond ← newCond
16 endif
17 endfor
18 candidateCondSet ← the k best members of newCandidateCondSet

according to the results of the evaluation function;
19 endwhile
20 if evaluation(BestCond, D) – evaluation(∅, D) > threshold then
21 return the rule: “BestCond → c” where is c the majority class of the data

covered by BestCond
22 else return NULL
23 endif

Fig. 3.10. The learn-one-rule-1 function

Function evaluation(BestCond, D)
1 D′ ← the subset of training examples in D covered by BestCond;
2 ∑ =

−=
||

1 2)Pr(log)Pr()'(C

j
jj ccDentropy ;

3 return – entropy(D’) // since entropy measures impurity.

Fig. 3.11. The entropy based evaluation function

80 3 Supervised Learning

Learn-One-Rule-2

In the learn-one-rule-2() function (Fig. 3.12), a rule is first generated and
then it is pruned. This method starts by splitting the positive and negative
training data Pos and Neg, into growing and pruning sets. The growing
sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule.
The pruning sets, PrunePos and PruneNeg are used to prune the rule be-
cause BestRule may overfit the data. Note that PrunePos and PruneNeg are
actually validation sets discussed in Sects. 3.2.4 and 3.3.1.

growRule() function: growRule() generates a rule (called BestRule) by
repeatedly adding a condition to its condition set that maximizes an
evaluation function until the rule covers only some positive examples in
GrowPos but no negative examples in GrowNeg. This is basically the same
as lines 4–17 in Fig. 3.10, but without beam search (i.e., only the best rule
is kept in each iteration). Let the current partially developed rule be R:

R: av1, .., avk → class

where each avj is a condition (an attribute-value pair). By adding a new
condition avk+1, we obtain the rule R+: av1, .., avk, avk+1→ class. The evalua-
tion function for R+ is the following information gain criterion (which is
different from the gain function used in decision tree learning):

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

×=+

00

0

11

1
1 22 loglog),(

np
p

np
ppRRgain (10)

where p0 (respectively, n0) is the number of positive (negative) examples
covered by R in Pos (Neg), and p1 (n1) is the number of positive (negative)
examples covered by R+ in Pos (Neg). The GrowRule() function simply re-
turns the rule R+ that maximizes the gain.

PruneRule() function: To prune a rule, we consider deleting every subset
of conditions from the BestRule, and choose the deletion that maximizes:

Function learn-one-rule-2(Pos, Neg, class)
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)
2 BestRule ← GrowRule(GrowPos, GrowNeg, class) // grow a new rule
3 BestRule ← PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then
5 return NULL
6 endif
7 return BestRule

Fig. 3.12. The learn-one-rule-2() function

3.5 Classification Based on Associations 81

,),,(
np
npPruneNegPrunePosBestRulev

+
−

= (11)

where p (respectively n) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).

3.4.3 Discussion

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning
is said to use the divide-and-conquer strategy. At each step, all attributes
are evaluated and one is selected to partition/divide the data into m disjoint
subsets, where m is the number of values of the attribute. Rule induction
discussed in this section is said to use the separate-and-conquer strategy,
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus,
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.
Rule Understandability: If-then rules are easy to understand by human
users. However, a word of caution about rules generated by sequential
covering is in order. Such rules can be misleading because the covered
data are removed after each rule is generated. Thus the rules in the rule list
are not independent of each other. A rule r may be of high quality in the
context of the data D′ from which r was generated. However, it may be a
weak rule with a very low accuracy (confidence) in the context of the
whole data set D (D′ ⊆ D) because many training examples that can be
covered by r have already been removed by rules generated before r. If
you want to understand the rules and possibly use them in some real-world
tasks, you should be aware of this fact.

3.5 Classification Based on Associations

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules, and in Sect. 3.4, we saw that a set of rules may also be found directly
for classification. It is thus only natural to expect that association rules, in
particular class association rules (CAR), may be used for classification
too. Yes, indeed! In fact, normal association rules can be employed for
classification as well as we will see in Sect. 3.5.3. CBA, which stands for
Classification Based on Associations, is the first reported system that uses

82 3 Supervised Learning

association rules for classification [343]. In this section, we describe three
approaches to employing association rules for classification:

1. Using class association rules for classification directly.
2. Using class association rules as features or attributes.
3. Using normal (or classic) association rules for classification.

The first two approaches can be applied to tabular data or transactional
data. The last approach is usually employed for transactional data only. All
these methods are useful in the Web environment as many types of Web
data are in the form of transactions, e.g., search queries issued by users,
and Web pages clicked by visitors. Transactional data sets are difficult to
handle by traditional classification techniques, but are very natural for as-
sociation rules. Below, we describe the three approaches in turn. We
should note that various sequential rules can be used for classification in
similar ways as well if sequential data sets are involved.

3.5.1 Classification Using Class Association Rules

Recall that a class association rule (CAR) is an association rule with only a
class label on the right-hand side of the rule as its consequent (Sect. 2.5).
For instance, from the data in Table 3.1, the following rule can be found:

Own_house = false, Has_job = true → Class = Yes [sup=3/15, conf=3/3],

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no
difference between rules from a decision tree (or a rule induction system)
and CARs if we consider only categorical (or discrete) attributes (more on
this later). The differences are in the mining processes and the final rule
sets. CAR mining finds all rules in data that satisfy the user-specified
minimum support (minsup) and minimum confidence (minconf) con-
straints. A decision tree or a rule induction system finds only a subset of
the rules (expressed as a tree or a list of rules) for classification.

Example 13: Recall that the decision tree in Fig. 3.3 gives the following
three rules:

Own_house = true → Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true → Class=Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false → Class=No [sup=6/15, conf=6/6].

However, there are many other rules that exist in data, e.g.,

Age = young, Has_job = true → Class=Yes [sup=2/15, conf=2/2]
Age = young, Has_job = false → Class=No [sup=3/15, conf=3/3]
Credit_rating = fair → Class=No [sup=4/15, conf=4/5]

3.5 Classification Based on Associations 83

and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. ▀

In many cases, rules that are not in the decision tree (or a rule list) may
be able to perform classification more accurately. Empirical comparisons
reported by several researchers show that classification using CARs can
perform more accurately on many data sets than decision trees and rule in-
duction systems (see Bibliographic Notes for references).
 The complete set of rules from CAR mining is also beneficial from a
rule usage point of view. In some applications, the user wants to act on
some interesting rules. For example, in an application for finding causes of
product problems, more rules are preferred to fewer rules because with
more rules, the user is more likely to find rules that indicate causes of the
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is reported
in [352]. We should, however, also bear in mind of the following:

1. Decision tree learning and rule induction do not use the minsup or min-
conf constraint. Thus, some rules that they find can have very low sup-
ports, which, of course, are likely to be pruned because the chance that
they overfit the training data is high. Although we can set a low minsup
for CAR mining, it may cause combinatorial explosion. In practice, in
addition to minsup and minconf, a limit on the total number of rules to
be generated may be used to further control the CAR generation
process. When the number of generated rules reaches the limit, the algo-
rithm stops. However, with this limit, we may not be able to generate
long rules (with many conditions). Recall that the Apriori algorithm
works in a level-wise fashion, i.e., short rules are generated before long
rules. In some applications, this might not be an issue as short rules are
often preferred and are sufficient for classification or for action. Long
rules normally have very low supports and tend to overfit the data.
However, in some other applications, long rules can be useful.

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can
use continuous attributes as well. There is still no satisfactory method to
deal with such attributes directly in association rule mining. Fortunately,
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals
[e.g., 151, 172], which are then considered as discrete values.

Mining Class Association Rules for Classification
There are many techniques that use CARs to build classifiers. Before de-
scribing them, let us first discuss some issues related to CAR mining for

84 3 Supervised Learning

classification. Since a CAR mining algorithm has been discussed in Sect.
2.5, we will not repeat it here.

Rule Pruning: CAR rules are highly redundant, and many of them are not
statistically significant (which can cause overfitting). Rule pruning is thus
needed. The idea of pruning CARs is basically the same as that in decision
tree building or rule induction. Thus, we will not discuss it further (see
[343, 328] for some of the pruning methods).

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single
minsup is inadequate for mining CARs because many practical classifica-
tion data sets have uneven class distributions, i.e., some classes cover a
large proportion of the data, while others cover only a very small propor-
tion (which are called rare or infrequent classes).

Example 14: Suppose we have a dataset with two classes, Y and N. 99% of
the data belong to the Y class, and only 1% of the data belong to the N
class. If we set minsup = 1.5%, we will not find any rule for class N. To
solve the problem, we need to lower down the minsup. Suppose we set
minsup = 0.2%. Then, we may find a huge number of overfitting rules for
class Y because minsup = 0.2% is too low for class Y. ▀

Multiple minimum class supports can be applied to deal with the prob-
lem. We can assign a different minimum class support minsupi for each
class ci, i.e., all the rules of class ci must satisfy minsupi. Alternatively, we
can provide one single total minsup, denoted by t_minsup, which is then
distributed to each class according to the class distribution:

minsupi = t_minsup × sup(ci) (12)

where sup(ci) is the support of class ci in training data. The formula gives
frequent classes higher minsups and infrequent classes lower minsups.
Parameter Selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class. However, minimum con-
fidences do not affect the classification much because classifiers tend to
use high confidence rules. One minimum confidence is sufficient as long
as it is not set too high. To determine the best minsupi for each class ci, we
can try a range of values to build classifiers and then use a validation set to
select the final value. Cross-validation may be used as well.
Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for
mining transaction data sets. However, many classification data sets are in
the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-
ily converted to a transaction data set.

3.5 Classification Based on Associations 85

Classifier Building

After all CAR rules are found, a classifier is built using the rules. There are
many existing methods, which can be grouped into three categories.

Use the Strongest Rule: This is perhaps the simplest strategy. It simply
uses CARs directly for classification. For each test instance, it finds the
strongest rule that covers the instance. Recall that a rule covers an instance
if the instance satisfies the conditions of the rule. The class of the strongest
rule is then assigned as the class of the test instance. The strength of a rule
can be measured in various ways, e.g., based on confidence, χ2 test, or a
combination of both support and confidence values.

Select a Subset of the Rules to Build a Classifier: The representative
method of this category is the one used in the CBA system. The method is
similar to the sequential covering method, but applied to class association
rules with additional enhancements as discussed above.

Let the set of all discovered CARs be S. Let the training data set be D.
The basic idea is to select a subset L (⊆ S) of high confidence rules to
cover the training data D. The set of selected rules, including a default
class, is then used as the classifier. The selection of rules is based on a total
order defined on the rules in S.

Definition: Given two rules, ri and rj, ri f rj (also called ri precedes rj or ri
has a higher precedence than rj) if
1. the confidence of ri is greater than that of rj, or
2. their confidences are the same, but the support of ri is greater than

that of rj, or
3. both the confidences and supports of ri and rj are the same, but ri is

generated earlier than rj.

A CBA classifier L is of the form:
 L = <r1, r2, …, rk, default-class>

where ri ∈ S, ra f rb if b > a. In classifying a test case, the first rule that
satisfies the case classifies it. If no rule applies to the case, it takes the de-
fault class (default-class). A simplified version of the algorithm for build-
ing such a classifier is given in Fig. 3.13. The classifier is the RuleList.

This algorithm can be easily implemented by making one pass through
the training data for every rule. However, this is extremely inefficient for
large data sets. An efficient algorithm that makes at most two passes over
the data is given in [343].

Combine Multiple Rules: Like the first approach, this approach does not
take any additional step to build a classifier. At the classification time, for

86 3 Supervised Learning

each test instance, the system first finds the subset of rules that covers the
instance. If all the rules in the subset have the same class, the class is as-
signed to the test instance. If the rules have different classes, the system
divides the rules into groups according to their classes, i.e., all rules of the
same class are in the same group. The system then compares the aggre-
gated effects of the rule groups and finds the strongest group. The class la-
bel of the strongest group is assigned to the test instance. To measure the
strength of each rule group, there again can be many possible techniques.
For example, the CMAR system uses a weighted χ2 measure [328].

3.5.2 Class Association Rules as Features

In the above two methods, rules are directly used for classification. In this
method, rules are used as features to augment the original data or simply
form a new data set, which is then fed to a traditional classification algo-
rithm, e.g., decision trees or the naïve Bayesian method.

To use CARs as features, only the conditional part of each rule is
needed, and it is often treated as a Boolean feature/attribute. If a data in-
stance in the original data contains the conditional part, the value of the
feature/attribute is set to 1, and otherwise it is set to 0. Several applications
of this method have been reported [23, 131, 255, 314]. The reason that this
approach is helpful is that CARs capture multi-attribute or multi-item cor-
relations with class labels. Many classification algorithms do not find such
correlations (e.g., naïve Bayesian), but they can be quite useful.

3.5.3 Classification Using Normal Association Rules

Not only can class association rules be used for classification, but also
normal association rules. For example, association rules are commonly

Algorithm CBA(S, D)
1 S = sort(S); // sorting is done according to the precedence f
2 RuleList = ∅; // the rule list classifier
3 for each rule r ∈ S in sequence do
4 if D ≠ ∅ AND r classifies at least one example in D correctly then
5 delete from D all training examples covered by r;
6 add r at the end of RuleList
7 endif
8 endfor
9 add the majority class as the default class at the end of RuleList

Fig. 3.13. A simple classifier building algorithm

3.6 Naïve Bayesian Classification 87

used in e-commerce Web sites for product recommendations, which work
as follows: When a customer purchases some products, the system will
recommend him/her some other related products based on what he/she has
already purchased (see Chap. 12).

Recommendation is essentially a classification or prediction problem. It
predicts what a customer is likely to buy. Association rules are naturally
applicable to such applications. The classification process is the following:

1. The system first uses previous purchase transactions (the same as mar-
ket basket transactions) to mine association rules. In this case, there are
no fixed classes. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one
item appears on the right-hand side of a rule.

2. At the prediction (e.g., recommendation) time, given a transaction (e.g.,
a set of items already purchased by a customer), all the rules that cover
the transaction are selected. The strongest rule is chosen and the item on
the right-hand side of the rule (i.e., the consequent) is then the predicted
item and recommended to the user. If multiple rules are very strong,
multiple items can be recommended.

This method is basically the same as the “use the strongest rule” method
described in Sect. 3.5.1. Again, the rule strength can be measured in vari-
ous ways, e.g., confidence, χ2 test, or a combination of both support and
confidence. For example, in [337], the product of support and confidence
is used as the rule strength. Clearly, the other two methods discussed in
Sect. 3.5.1 can be applied as well.

The key advantage of using association rules for recommendation is that
they can predict any item since any item can be the class item on the right-
hand side. Traditional classification algorithms only work with a single
fixed class attribute, and are not easily applicable to recommendations.

Finally, we note that multiple minimum supports (Sect. 2.4) can be of
significant help. Otherwise, rare items will never be recommended, which
causes the coverage problem (see Sect. 12.3.3). It is shown in [389] that
using multiple minimum supports can dramatically increase the coverage.

3.6 Naïve Bayesian Classification

Supervised learning can be naturally studied from a probabilistic point of
view. The task of classification can be regarded as estimating the class
posterior probabilities given a test example d, i.e.,

Pr(C= cj | d). (13)

88 3 Supervised Learning

We then see which class cj is more probable. The class with the highest
probability is assigned to the example d.

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values
in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|.
Given a test example d with observed attribute values a1 through a|A|,
where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,

 d = <A1=a1, ..., A|A|=a|A|>.

The prediction is the class cj such that Pr(C=cj | A1=a1, ..., A|A|=a|A|) is
maximal. cj is called a maximum a posteriori (MAP) hypothesis.

By Bayes’ rule, the above quantity (13) can be expressed as

.
)Pr()|,...,Pr(

)Pr()|,...,Pr(
),...,Pr(

)Pr()|,...,Pr(

),...,|Pr(

||

1
||||11

||||11

||||11

||||11

||||11

∑
=

====

====
=

==
====

=

===

C

k
kkAA

jjAA

AA

jjAA

AAj

cCcCaAaA

cCcCaAaA
aAaA

cCcCaAaA

aAaAcC

 (14)

Pr(C=cj) is the class prior probability of cj, which can be estimated from
the training data. It is simply the fraction of the data in D with class cj.

If we are only interested in making a classification, Pr(A1=a1, ...,
A|A|=a|A|) is irrelevant for decision making because it is the same for every
class. Thus, only Pr(A1=a1, ..., A|A|=a|A| | C=cj) needs to be computed,
which can be written as

Pr(A1=a1, ..., A|A|=a|A| | C=cj)
= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj)×Pr(A2=a2, ..., A|A|=a|A| | C=cj).

(15)

Recursively, the second term above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj))
can be written in the same way (i.e., Pr(A2=a2|A3=a3 ..., A|A|=a|A|, C=cj)×
Pr(A3=a3, ..., A|A|=a|A||C=cj)), and so on. However, to further our derivation,
we need to make an important assumption.
Conditional independence assumption: We assume that all attributes are
conditionally independent given the class C = cj. Formally, we assume,

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (16)

and similarly for A2 through A|A|. We then obtain

∏
=

======
||

1
||||11)|Pr()|,...,Pr(

A

i
jiijAA cCaAcCaAaA (17)

3.6 Naïve Bayesian Classification 89

.
)|Pr()Pr(

)|Pr()Pr(

),...,|Pr(

||

1

||

1

||

1

||||11

∑ ∏

∏

= =

=

===

===
=

===

C

k

A

i
kiik

A

i
jiij

AAj

cCaAcC

cCaAcC

aAaAcC

(18)

Next, we need to estimate the prior probabilities Pr(C=cj) and the condi-
tional probabilities Pr(Ai=ai | C=cj) from the training data, which are
straightforward.

set data in the examples ofnumber total
 class of examples ofnumber

)Pr(j
j

c
cC == (19)

.
 class of examples ofnumber

 class and with examples ofnumber
)|Pr(

j

jii
jii c

caA
cCaA

=
=== (20)

If we only need a decision on the most probable class for each test in-
stance, we only need the numerator of Equation (18) since the denominator
is the same for every class. Thus, given a test case, we compute the follow-
ing to decide the most probable class for the test case:

∏
=

====
||

1

)|Pr()Pr(maxarg
A

i
jiij

c
cCaAcCc

j

 (21)

Example 15: Suppose that we have the training data set in Fig. 3.14, which
has two attributes A and B, and the class C. We can compute all the prob-
ability values required to learn a naïve Bayesian classifier.

A B C
m b t
m s t
g q t
h s t
g q t
g q f
g s f
h b f
h q f
m b f

Fig. 3.14. An example of a training data set

90 3 Supervised Learning

Pr(C = t) = 1/2, Pr(C= f) = 1/2

Pr(A=m | C=t) = 2/5 Pr(A=g | C=t) = 2/5 Pr(A=h | C=t) = 1/5
Pr(A=m | C=f) = 1/5 Pr(A=g | C=f) = 2/5 Pr(A=h | C=f) =2/5
Pr(B=b | C=t) = 1/5 Pr(B=s | C=t) = 2/5 Pr(B=q | C=t) = 2/5
Pr(B=b | C=f) = 2/5 Pr(B=s | C=f) = 1/5 Pr(B=q | C=f) = 2/5

Now we have a test example:
 A = m B = q C = ?

We want to know its class. Equation (21) is applied. For C = t, we have

.
25
2

5
2

5
2

2
1)|Pr()Pr(

2

1

=××==== ∏
=j

jj tCaAtC

For class C = f, we have

.
25
1

5
2

5
1

2
1)|Pr()Pr(

2

1

=××==== ∏
=j

jj fCaAfC

Since C = t is more probable, t is the predicted class of the test case. ▀

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj))
required to build a naïve Bayesian classifier can be found in one scan of
the data. Thus, the algorithm is linear in the number of training examples,
which is one of the great strengths of the naïve Bayes, i.e., it is extremely
efficient. In terms of classification accuracy, although the algorithm makes
the strong assumption of conditional independence, several researchers
have shown that its classification accuracies are surprisingly strong. See
experimental comparisons of various techniques in [148, 285, 349].

To learn practical naïve Bayesian classifiers, we still need to address
some additional issues: how to handle numeric attributes, zero counts, and
missing values. Below, we deal with each of them in turn.

Numeric Attributes: The above formulation of the naïve Bayesian learn-
ing assumes that all attributes are categorical. However, most real-life data
sets have numeric attributes. Therefore, in order to use the naïve Bayeisan
algorithm, each numeric attribute needs to be discretized into intervals.
This is the same as for class association rule mining. Existing discretiza-
tion algorithms in [e.g., 151, 172] can be used.

Zero Counts: It is possible that a particular attribute value in the test set
never occurs together with a class in the training set. This is problematic
because it will result in a 0 probability, which wipes out all the other prob-
abilities Pr(Ai=ai | C=cj) when they are multiplied according to Equation

3.7 Naïve Bayesian Text Classification 91

(21) or Equation (18). A principled solution to this problem is to incorpo-
rate a small-sample correction into all probabilities.

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj
be the total number of examples with C=cj in the training data set. The un-
corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is

ij

ij
jii mn

n
cCaA

λ
λ

+
+

===)|Pr((22)

where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-
tribute), and λ is a multiplicative factor, which is commonly set to λ = 1/n,
where n is the total number of examples in the training set D [148, 285].
When λ = 1, we get the well known Laplace’s law of succession [204].
The general form of correction (also called smoothing) in Equation (22) is
called the Lidstone’s law of succession [330]. Applying the correction λ =
1/n, the probabilities of Example 15 are revised. For example,

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208.

Missing Values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.

3.7 Naïve Bayesian Text Classification

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes.
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics,
and Science. We want to learn a classifier that is able to classify future
news articles into these classes.

Due to the rapid growth of online documents in organizations and on the
Web, automated document classification is an important problem. Al-
though the techniques discussed in the previous sections can be applied to
text classification, it has been shown that they are not as effective as the
methods presented in this section and in the next two sections. In this sec-
tion, we study a naïve Bayesian learning method that is specifically formu-
lated for texts, which makes use of text specific characteristics. However,
the ideas are similar to those in Sect. 3.6. Below, we first present a prob-
abilistic framework for texts, and then study the naïve Bayesian equations
for their classification. There are several slight variations of this model.
This section is mainly based on the formulation given in [365].

92 3 Supervised Learning

3.7.1 Probabilistic Framework

The naïve Bayesian learning method for text classification is derived based
on a probabilistic generative model. It assumes that each document is
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data is used to estimate these parameters. The parame-
ters are then applied to classify each test document using Bayes’ rule by
calculating the posterior probability that the distribution associated with
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of
selecting the most probable class.

The generative model is based on two assumptions:

1. The data (or the text documents) are generated by a mixture model.
2. There is one-to-one correspondence between mixture components and

document classes.

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding
cluster. Each distribution in a mixture model is also called a mixture
component (the distribution can be of any kind). Figure 3.15 plots two
probability density functions of a mixture of two Gaussian distributions
that generate a 1-dimensional data set of two classes, one distribution per
class, whose parameters (denoted by θi) are the mean (µi) and the standard
deviation (σi), i.e., θi = (µi, σi).

Fig. 3.15. Probability density functions of the two distributions in the mixture
model

Let the number of mixture components (or distributions) in a mixture
model be K, and the jth distribution have the parameters θj. Let Θ be the
set of parameters of all components, Θ = {ϕ1, ϕ2, …, ϕK, θ1, θ2, …, θK},
where ϕj is the mixture weight (or mixture probability) of the mixture
component j and θj is the set of parameters of component j. The mixture

class 1 class 2

3.7 Naïve Bayesian Text Classification 93

weights are subject to the constraint .11 =∑ =
K
j jϕ The meaning of mixture

weights (or probabilities) will be clear below.
Let us see how the mixture model generates a collection of documents.

Recall the classes C in our classification problem are c1, c2, …, c|C|. Since
we assume that there is one-to-one correspondence between mixture com-
ponents and classes, each class corresponds to a mixture component. Thus
|C| = K, and the jth mixture component can be represented by its corre-
sponding class cj and is parameterized by θj. The mixture weights are class
prior probabilities, i.e., ϕj = Pr(cj|Θ). The mixture model generates each
document di by:

1. first selecting a mixture component (or class) according to class prior
probabilities (i.e., mixture weights), ϕj = Pr(cj|Θ);

2. then having this selected mixture component (cj) generate a document di
according to its parameters, with distribution Pr(di|cj; Θ) or more pre-
cisely Pr(di|cj; θj).

The probability that a document di is generated by the mixture model can
be written as the sum of total probability over all mixture components.
Note that to simplify the notation, we use cj instead of C = cj as in the pre-
vious section:

). ;|Pr()Θ|Pr()|Pr(
||

1
Θ=Θ ∑

=

C

j
jiji cdcd (23)

Since each document is attached with its class label, we can now derive the
naïve Bayesian model for text classification. Note that in the above prob-
ability expressions, we include Θ to represent their dependency on Θ as we
employ a generative model. In an actual implementation, we need not be
concerned with Θ, i.e., it can be ignored.

3.7.2 Naïve Bayesian Model

A text document consists of a sequence of sentences, and each sentence
consists of a sequence of words. However, due to the complexity of model-
ing word sequence and their relationships, several assumptions are made in
the derivation of the Bayesian classifier. That is also why we call the final
classification model, naïve Bayesian classification.

Specifically, the naïve Bayesian classification treats each document as a
“bag” of words. The generative model makes the following assumptions:

94 3 Supervised Learning

1. Words of a document are generated independently of the context, that is,
independently of the other words in the same document given the class
label. This is the familiar naïve Bayesian assumption used before.

2. The probability of a word is independent of its position in the document.
For example, the probability of seeing the word “student” in the first po-
sition of the document is the same as seeing it in any other position. The
document length is chosen independent of its class.

With these assumptions, each document can be regarded as generated by a
multinomial distribution. In other words, each document is drawn from a
multinomial distribution of words with as many independent trials as the
length of the document. The words are from a given vocabulary V = {w1,
w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why
this is a multinomial distribution, we give a short introduction to the multi-
nomial distribution.

A multinomial trial is a process that can result in any of k outcomes,
where k ≥ 2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk.
For example, the rolling of a die is a multinomial trial, with six possible
outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk = 1/6.

Now assume n independent trials are conducted, each with the k possi-
ble outcomes and the k probabilities, p1, p2, …, pk. Let us number the out-
comes 1, 2, 3, …, k. For each outcome, let Xt denote the number of trials
that result in that outcome. Then, X1, X2, …, Xk are discrete random vari-
ables. The collection of X1, X2, …, Xk is said to have the multinomial dis-
tribution with parameters, n, p1, p2, …, pk.

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …,
pk correspond to the probabilities of occurrence of the words in V in a
document, which are Pr(wt|cj; Θ). Xt is a random variable representing the
number of times that word wt appears in a document. We can thus directly
apply the probability function of the multinomial distribution to find the
probability of a document given its class (including the probability of
document length, Pr(|di|), which is assumed to be independent of class):

∏
=

Θ
=Θ

||

1 !
);|Pr(

|!||)Pr(|);|Pr(
V

t ti

N
jt

iiji N
cw

ddcd
ti

 (24)

where Nti is the number of times that word wt occurs in document di and

||
||

1
i

V

t
ti dN =∑

=

, and .1);|Pr(
||

1
∑
=

=Θ
V

t
jt cw (25)

3.7 Naïve Bayesian Text Classification 95

The parameters θj of the generative component for each class cj are the
probabilities of all words wt in V, written as Pr(wt|cj; Θ), and the probabili-
ties of document lengths, which are the same for all classes (or mixture
components) due to our assumption.

Parameter Estimation: The parameters can be estimated from the train-
ing data D = {D1, D2, …, D|C|}, where Dj is the subset of data for class cj
(recall |C| is the number of classes). The vocabulary V is the set of all
distinctive words in D. Note that we do not need to estimate the probability
of each document length as it is not used in our final classifier. The esti-
mate of Θ is written as Θ̂ . The parameters are estimated based on empiri-
cal counts.

The estimated probability of word wt given class cj is simply the number
of times that wt occurs in the training data Dj (of class cj) divided by the to-
tal number of word occurrences in the training data for that class:

.
)|Pr(

)|Pr(
)ˆ;|Pr(||

1

||

1

||

1

∑ ∑
∑
= =

==Θ V

s

D

i ijsi

D

i ijti
jt

dcN

dcN
cw (26)

In Equation (26), we do not use Dj explicitly. Instead, we include Pr(cj|di)
to achieve the same effect because Pr(cj|di) = 1 for each document in Dj
and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of
times that word wt occurs in document di.

In order to handle 0 counts for infrequently occurring words that do not
appear in the training set, but may appear in the test set, we need to smooth
the probability to avoid probabilities of 0 or 1. This is the same problem as
in Sect. 3.6. The standard way of doing this is to augment the count of each
distinctive word with a small quantity λ (0 ≤ λ ≤ 1) or a fraction of a word
in both the numerator and denominator. Thus, any word will have at least a
very small probability of occurrence.

.
)|Pr(||

)|Pr(
)ˆ;|Pr(||

1

||

1

||

1

∑ ∑
∑

= =

=

+

+
=Θ V

s

D

i ijsi

D

i ijti
jt

dcNV

dcN
cw

λ

λ
 (27)

This is called the Lidstone smoothing (Lidstone’s law of succession).
When λ = 1, the smoothing is known as the Laplace smoothing. Many
experiments have shown that λ < 1 works better for text classification [7].
The best λ value for a data set can be found through experiments using a
validation set or through cross-validation.

Finally, class prior probabilities, which are mixture weights ϕj, can be
easily estimated using the training data as well.

96 3 Supervised Learning

.
||

)|Pr(
)ˆ|Pr(

||

1

D
dc

c
D

i ij
j

∑ ==Θ (28)

Classification: Given the estimated parameters, at the classification time,
we need to compute the probability of each class cj for the test document
di. That is, we compute the probability that a particular mixture component
cj generated the given document di. Using Bayes rule and Equations (23),
(24), (27), and (28), we have

,
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr()ˆ|Pr(

)ˆ|Pr(
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr(

||

1

||

1 ,

||

1 ,

∑ ∏
∏

= =

=

ΘΘ

ΘΘ
=

Θ

ΘΘ
=Θ

C

r

d

k rkdr

d

k jkdj

i

jij
ij

i

i

i

i

cwc

cwc

d
cdc

dc

(29)

where wdi,k is the word in position k of document di (which is the same as
using wt and Nti). If the final classifier is to classify each document into a
single class, the class with the highest posterior probability is selected:

).ˆ;|Pr(maxarg Θ∈ ijCc dc
j

 (30)

3.7.3 Discussion

Most assumptions made by naïve Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naïve Bayesian learning produces very
accurate models.

Naïve Bayesian learning is also very efficient. It scans the training data
only once to estimate all the probabilities required for classification. It can
be used as an incremental algorithm as well. The model can be updated
easily as new data comes in because the probabilities can be conveniently
revised. Naïve Bayesian learning is thus widely used for text classification.

The naïve Bayesian formulation presented here is based on a mixture of
multinomial distributions. There is also a formulation based on multi-
variate Bernoulli distributions in which each word in the vocabulary is a
binary feature, i.e., it either appears or does not appear in the document.

3.8 Support Vector Machines 97

Thus, it does not consider the number of times that a word occurs in a
document. Experimental comparisons show that multinomial formulation
consistently produces more accurate classifiers [365].

3.8 Support Vector Machines

Support vector machines (SVM) is another type of learning system
[525], which has many desirable qualities that make it one of most popular
algorithms. It not only has a solid theoretical foundation, but also performs
classification more accurately than most other algorithms in many applica-
tions, especially those applications involving very high dimensional data.
For instance, it has been shown by several researchers that SVM is perhaps
the most accurate algorithm for text classification. It is also widely used in
Web page classification and bioinformatics applications.

In general, SVM is a linear learning system that builds two-class clas-
sifiers. Let the set of training examples D be

{(x1, y1), (x2, y2), …, (xn, yn)},

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued
space X ⊆ ℜ

r, yi is its class label (output value) and yi ∈ {1, -1}. 1 de-
notes the positive class and -1 denotes the negative class. Note that we use
slightly different notations in this section. For instance, we use y instead of
c to represent a class because y is commonly used to represent classes in
the SVM literature. Similarly, each data instance is called an input vector
and denoted by a bold face letter. In the following, we use bold face letters
for all vectors.

To build a classifier, SVM finds a linear function of the form

f(x) = 〈w ⋅ x〉 + b (31)

so that an input vector xi is assigned to the positive class if f(xi) ≥ 0, and to
the negative class otherwise, i.e.,

⎩
⎨
⎧

<+〉⋅〈−
≥+〉⋅〈

=
0if1
0if1

b
b

y
i

i
i xw

xw
 (32)

Hence, f(x) is a real-valued function f: X ⊆ ℜ r→ ℜ. w = (w1, w2, …, wr) ∈
ℜ r is called the weight vector. b ∈ ℜ is called the bias. 〈w ⋅ x〉 is the dot
product of w and x (or Euclidean inner product). Without using vector
notation, Equation (31) can be written as:

f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b,

98 3 Supervised Learning

where xi is the variable representing the ith coordinate of the vector x. For
convenience, we will use the vector notation from now on.

In essence, SVM finds a hyperplane

〈w ⋅ x〉 + b = 0 (33)

that separates positive and negative training examples. This hyperplane is
called the decision boundary or decision surface.

Geometrically, the hyperplane 〈w ⋅ x〉 + b = 0 divides the input space
into two half spaces: one half for positive examples and the other half for
negative examples. Recall that a hyperplane is commonly called a line in a
2-dimensional space and a plane in a 3-dimensional space.

Fig. 3.16(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the decision
boundary hyperplane (a line in this case), which separates positive (above
the line) and negative (below the line) data points. Equation (31), which is
also called the decision rule of the SVM classifier, is used to make classi-
fication decisions on test instances.

 (A) (B)

Fig. 3.16. (A) A linearly separable data set and (B) possible decision boundaries

Fig. 3.16(A) raises two interesting questions:

1. There are an infinite number of lines that can separate the positive and
negative data points as illustrated by Fig. 3.16(B). Which line should we
choose?

2. A hyperplane classifier is only applicable if the positive and negative
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?

The SVM framework provides good answers to both questions. Briefly, for
question 1, SVM chooses the hyperplane that maximizes the margin (the

〈w ⋅ x〉 + b = 0

y = 1

y = -1

3.8 Support Vector Machines 99

gap) between positive and negative data points, which will be defined for-
mally shortly. For question 2, SVM uses kernel functions. Before we dive
into the details, we should note that SVM requires numeric data and only
builds two-class classifiers. At the end of the section, we will discuss how
these limitations may be addressed.

3.8.1 Linear SVM: Separable Case

This sub-section studies the simplest case of linear SVM. It is assumed that
the positive and negative data points are linearly separable.

From linear algebra, we know that in 〈w ⋅ x〉 + b = 0, w defines a direc-
tion perpendicular to the hyperplane (see Fig. 3.17). w is also called the
normal vector (or simply normal) of the hyperplane. Without changing
the normal vector w, varying b moves the hyperplane parallel to itself.
Note also that 〈w ⋅ x〉 + b = 0 has an inherent degree of freedom. We can
rescale the hyperplane to 〈λw ⋅ x〉 + λb = 0 for λ ∈ ℜ + (positive real num-
bers) without changing the function/hyperplane.

Fig. 3.17. Separating hyperplanes and margin of SVM: Support vectors are circled

Since SVM maximizes the margin between positive and negative data
points, let us find the margin. Let d+ (respectively d−) be the shortest dis-
tance from the separating hyperplane (〈w ⋅ x〉 + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is
d++d−. SVM looks for the separating hyperplane with the largest margin,
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision
boundary is because theoretical results from structural risk minimization in

〈w ⋅ x〉 + b = 0
y = 1

y = -1

w

||||
||

w
b

H+: 〈w ⋅ x〉 + b = 1

H-: 〈w ⋅ x〉 + b = -1

x-

x+
d− d+

margin

100 3 Supervised Learning

computational learning theory show that maximizing the margin minimizes
the upper bound of classification errors.

Let us consider a positive data point (x+, 1) and a negative (x-, -1) that
are closest to the hyperplane <w ⋅ x> + b = 0. We define two parallel hyper-
planes, H+ and H-, that pass through x+ and x- respectively. H+ and H- are
also parallel to <w ⋅ x> + b = 0. We can rescale w and b to obtain

H+: 〈w ⋅ x+〉 + b = 1 (34)
H-: 〈w ⋅ x-〉 + b = -1 (35)

such that 〈w ⋅ xi〉 + b ≥ 1 if yi = 1
 〈w ⋅ xi〉 + b ≤ -1 if yi = -1,

which indicate that no training data fall between hyperplanes H+ and H-.
Now let us compute the distance between the two margin hyperplanes

H+ and H-. Their distance is the margin (d+ + d−). Recall from vector space
in linear algebra that the (perpendicular) Euclidean distance from a point xi
to a hyperplane 〈w ⋅ x〉 + b = 0 is:

||||
||

w
xw bi +〉⋅〈 , (36)

where ||w|| is the Euclidean norm of w,

22
2

2
1 ...|||| rwww +++=>⋅<= www (37)

To compute d+, instead of computing the distance from x+ to the separat-
ing hyperplane 〈w ⋅ x〉 + b = 0, we pick up any point xs on 〈w ⋅ x〉 + b = 0
and compute the distance from xs to 〈w ⋅ x+〉 + b = 1 by applying Equation
36 and noticing that 〈w ⋅ xs〉 + b = 0,

||||
1

||||
|1|

ww
xw s =

−+〉⋅〈
=+

bd (38)

Likewise, we can compute the distance of xs to 〈w ⋅ x+〉 + b = -1 to obtain
d− = 1/||w||. Thus, the decision boundary 〈w ⋅ x〉 + b = 0 lies half way be-
tween H+ and H-. The margin is thus

||||
2
w

=+= −+ ddmargin (39)

In fact, we can compute the margin in many ways. For example, it can
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (x2

-− x1
+) to the normal vector w.

3.8 Support Vector Machines 101

Since SVM looks for the separating hyperplane that maximizes the mar-
gin, this gives us an optimization problem. Since maximizing the margin is
the same as minimizing ||w||2/2 = 〈w ⋅ w〉/2. We have the following linear
separable SVM formulation.

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-
rable training examples,

D = {(x1, y1), (x2, y2), …, (xn, yn)},

learning is to solve the following constrained minimization problem,

niby ii ..., 2, 1, ,1)(:Subject to
2

 :Minimize

=≥+〉⋅〈

〉⋅〈

xw

ww
 (40)

Note that the constraint niby ii ..., 2, 1, ,1)(=≥+〉⋅〈 xw summarizes:

 〈w ⋅ xi〉 + b ≥ 1 for yi = 1
 〈w ⋅ xi〉 + b ≤ -1 for yi = -1.

Solving the problem (40) will produce the solutions for w and b, which in
turn give us the maximal margin hyperplane 〈w ⋅ x〉 + b = 0 with the mar-
gin 2/||w||.

A full description of the solution method requires a significant amount
of optimization theory, which is beyond the scope of this book. We will
only use those relevant results from optimization without giving formal
definitions, theorems or proofs.

Since the objective function is quadratic and convex and the constraints
are linear in the parameters w and b, we can use the standard Lagrange
multiplier method to solve it.

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to consider
constraints is obvious because they restrict the feasible solutions. Since our
inequality constraints are expressed using “≥”, the Lagrangian is formed
by the constraints multiplied by positive Lagrange multipliers and sub-
tracted from the objective function, i.e.,

]1)([
2
1

1
−+〉⋅〈−〉⋅〈= ∑

=

byL i

n

i
iiP xwww α (41)

where αi ≥ 0 are the Lagrange multipliers.
The optimization theory says that an optimal solution to (41) must sat-

isfy certain conditions, called Kuhn–Tucker conditions, which play a

102 3 Supervised Learning

central role in constrained optimization. Here, we give a brief introduction
to these conditions. Let the general optimization problem be

nibg
f

ii ..., 2, 1, ,)(:Subject to
)(:Minimize

=≤x
x (42)

where f is the objective function and gi is a constraint function (which is
different from yi in (40) as yi is not a function but a class label of 1 or -1).
The Lagrangian of (42) is,

)])([)(
1

i

n

i
iiP bgfL −+= ∑

=

xx α (43)

An optimal solution to the problem in (42) must satisfy the following
necessary (but not sufficient) conditions:

rj
x
L

j

P ..., ,2 ,1 ,0 ==
∂
∂ (44)

nibg ii ..., 2, 1, ,0)(=≤−x (45)
nii ..., 2, 1, ,0 =≥α (46)

nigb iiii ..., 2, 1, ,0))((==− xα (47)

These conditions are called the Kuhn–Tucker conditions. Note that
(45) is simply the original set of constraints in (42). The condition (47) is
called the complementarity condition, which implies that at the solution
point,

If αi > 0 then gi(x) = bi.
If gi(x) > bi then αi = 0.

These mean that for active constraints, αi > 0, whereas for inactive con-
straints αi = 0. As we will see later, they give some very desirable proper-
ties to SVM.

Let us come back to our problem. For the minimization problem (40),
the Kuhn–Tucker conditions are (48)–(52):

rjxyw
w
L n

i
ijiij

j

P ..., ,2 ,1 ,0
1

==−=
∂
∂ ∑

=

α (48)

0
1

=−=
∂
∂ ∑

=

n

i
ii

P y
b

L α (49)

niby ii ..., 2, 1, ,01)(=≥−+〉⋅〈 xw (50)

3.8 Support Vector Machines 103

nii ..., 2, 1, ,0 =≥α (51)
niby iii ..., 2, 1, ,0)1)((==−+〉⋅〈 xwα (52)

Inequality (50) is the original set of constraints. We also note that although
there is a Lagrange multiplier αi for each training data point, the comple-
mentarity condition (52) shows that only those data points on the margin
hyperplanes (i.e., H+ and H-) can have αi > 0 since for them yi(〈w ⋅ xi〉 + b)
– 1 = 0. These data points are called support vectors, which give the name
to the algorithm, support vector machines. All the other data points have
αi = 0.

In general, Kuhn–Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a
convex objective function and a set of linear constraints, the Kuhn–Tucker
conditions are both necessary and sufficient for an optimal solution.

Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem,
which is easier to solve than the original problem, which is called the pri-
mal problem (LP is called the primal Lagrangian).

The concept of duality is widely used in the optimization literature. The
aim is to provide an alternative formulation of the problem which is more
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve
computationally, but also crucial for using kernel functions to deal with
nonlinear decision boundaries as we do not need to compute w explicitly
(which will be clear later).

Transforming from the primal to its corresponding dual can be done by
setting to zero the partial derivatives of the Lagrangian (41) with respect to
the primal variables (i.e., w and b), and substituting the resulting relations
back into the Lagrangian. This is to simply substitute (48), which is

rjxyw
n

i
ijiij ..., ,2 ,1 ,

1
==∑

=

α (53)

and (49), which is

,0
1

=∑
=

n

i
iiyα (54)

into the original Lagrangian (41) to eliminate the primal variables, which
gives us the dual objective function (denoted by LD),

104 3 Supervised Learning

.
2
1

1,1

〉⋅〈−= ∑∑
==

ji

n

ji
jiji

n

i
iD yyL xxααα (55)

LD contains only dual variables and must be maximized under the simpler
constraints, (48) and (49), and αi ≥ 0. Note that (48) is not needed as it has
already been substituted into the objective function LD. Hence, the dual of
the primal Equation (40) is

Maximize: .
2
1

1,1
〉⋅〈−= ∑∑

==
ji

n

ji
jiji

n

i
iD yyL xxααα

Subject to:
. ..., ,2 ,1 ,0

0
1

ni

y

i

n

i
ii

=≥

=∑
=

α

α

(56)

This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that
the αi’s at the maximum of LD gives w and b occurring at the minimum of
LP (the primal).

Solving (56) requires numerical techniques and clever strategies beyond
the scope of this book. After solving (56), we obtain the values for αi,
which are used to compute the weight vector w and the bias b using Equa-
tions (48) and (52) respectively. Instead of depending on one support vec-
tor (αi > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because
the values of αi are computed numerically and can have numerical errors.
Our final decision boundary (maximal margin hyperplane) is

0=+〉⋅〈=+〉⋅〈 ∑
∈

byb
svi

iii xxxw α (57)

where sv is the set of indices of the support vectors in the training data.

Testing: We apply (57) for classification. Given a test instance z, we clas-
sify it using the following:

.)(⎟
⎠

⎞
⎜
⎝

⎛
+〉⋅〈=+〉⋅〈 ∑

∈svi
iii bysignbsign zxzw α (58)

If (58) returns 1, then the test instance z is classified as positive; otherwise,
it is classified as negative.

3.8 Support Vector Machines 105

3.8.2 Linear SVM: Non-separable Case

The linear separable case is the ideal situation. In practice, however, the
training data is almost always noisy, i.e., containing errors due to various
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even
for two identical input vectors, their labels may be different.

For SVM to be useful, it must allow noise in the training data. However,
with noisy data the linear separable SVM will not find a solution because
the constraints cannot be satisfied. For example, in Fig. 3.18, there is a
negative point (circled) in the positive region, and a positive point in the
negative region. Clearly, no solution can be found for this problem.

Recall that the primal for the linear separable case was:

. ..., 2, 1, ,1)(:Subject to
2

 :Minimize

niby ii =≥+〉⋅〈

〉⋅〈

xw

ww
 (59)

To allow errors in data, we can relax the margin constraints by introduc-
ing slack variables, ξi (≥ 0) as follows:

 〈w ⋅ xi〉 + b ≥ 1 − ξi for yi = 1
 〈w ⋅ xi〉 + b ≤ −1 + ξi for yi = -1.

Thus we have the new constraints:

Subject to: yi(〈w ⋅ xi〉 + b) ≥ 1 − ξi, i =1, 2, …, n,
 ξi ≥ 0, i =1, 2, …, n.

The geometric interpretation is shown in Fig. 3.18, which has two error
data points xa and xb (circled) in wrong regions.

Fig. 3.18. The non-separable case: xa and xb are error data points

〈w ⋅ x〉 + b = 0

||||
||

w
b

w

|||| w
bξ

xb

|||| w
aξ

xa

106 3 Supervised Learning

We also need to penalize the errors in the objective function. A natural
way is to assign an extra cost for errors to change the objective function to

kn

i
iC ⎟
⎠

⎞
⎜
⎝

⎛
+

〉⋅〈 ∑
=12

 :Minimize ξww (60)

where C ≥ 0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. k = 1 is commonly used,
which has the advantage that neither ξi nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the k = 1 case below.

The new optimization problem becomes:

. ..., 2, 1, ,0
 ..., 2, 1, ,1)(:Subject to

2
 :Minimize

1

ni
niby

C

i

iii

n

i
i

=≥
=−≥+〉⋅〈

+
〉⋅〈 ∑

=

ξ
ξ

ξ

xw

ww

(61)

This formulation is called the soft-margin SVM. The primal Lagrangian
(denoted by LP) of this formulation is as follows

∑∑∑
===

−+−+〉⋅〈−+〉⋅〈=
n

i
iiii

n

i
ii

n

i
iP byCL

111
]1)([

2
1 ξµξαξ xwww (62)

where αi, µi ≥ 0 are the Lagrange multipliers. The Kuhn–Tucker condi-
tions for optimality are the following:

rjxyw
w
L n

i
ijiij

j

P ..., ,2 ,1 ,0
1

==−=
∂
∂ ∑

=

α (63)

0
1

=−=
∂
∂ ∑

=

n

i
ii

P y
b

L α (64)

niCL
ii

i

P ..., ,2 ,1 ,0 ==−−=
∂
∂ µα
ξ

 (65)

niby iii ..., 2, 1, ,01)(=≥+−+〉⋅〈 ξxw (66)
nii ..., 2, 1, ,0 =≥ξ (67)
nii ..., 2, 1, ,0 =≥α (68)
nii ..., 2, 1, ,0 =≥µ (69)

niby iiii ..., 2, 1, ,0)1)((==+−+〉⋅〈 ξα xw (70)
niii ..., 2, 1, ,0 ==ξµ (71)

3.8 Support Vector Machines 107

As the linear separable case, we then transform the primal to its dual by
setting to zero the partial derivatives of the Lagrangian (62) with respect to
the primal variables (i.e., w, b and ξi), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (63), (64)
and (65) into the primal Lagrangian (62). From Equation (65), C − αi − µi
= 0, we can deduce that αi ≤ C because µi ≥ 0. Thus, the dual of (61) is

Maximize: 〉⋅〈−= ∑∑
==

ji

n

ji
jiji

n

i
iD yyL xxα

1,1 2
1)(ααα

Subject to:
. ..., ,2 ,1 ,0

0
1

niC

y

i

n

i
ii

=≤≤

=∑
=

α

α

(72)

Interestingly, ξi and its Lagrange multipliers µi are not in the dual and the
objective function is identical to that for the separable case. The only dif-
ference is the constraint αi ≤ C (inferred from C−αi−µi = 0 and µi ≥ 0).

The dual problem (72) can also be solved numerically, and the resulting
αi values are then used to compute w and b. w is computed using Equation
(63) and b is computed using the Kuhn–Tucker complementarity condi-
tions (70) and (71). Since we do not have values for ξi, we need to get
around it. From Equations (65), (70) and (71), we observe that if 0 < αi <
C then both ξi = 0 and .0)1)(=+−+〉⋅〈 iii by ξxw Thus, we can use any
training data point for which 0 < αi < C and Equation (70) (with ξi = 0) to
compute b:

.1
1

〉⋅〈−= ∑
=

j

n

i
iii

i

y
y

b xxα (73)

Again, due to numerical errors, we can compute all possible b’s and
then take their average as the final b value.

Note that Equations (65), (70) and (71) in fact tell us more:

αi = 0 ⇒ yi(〈w ⋅ xi〉 + b) ≥ 1 and ξi = 0
0 < αi < C ⇒ yi(〈w ⋅ xi〉 + b) = 1 and ξi = 0
αi = C ⇒ yi(〈w ⋅ xi〉 + b) ≤ 1 and ξi ≥ 0

(74)

Similar to support vectors for the separable case, (74) shows one of the
most important properties of SVM: the solution is sparse in αi. Most train-
ing data points are outside the margin area and their αi’s in the solution are
0. Only those data points that are on the margin (i.e., yi(〈w ⋅ xi〉 + b) = 1,
which are support vectors in the separable case), inside the margin (i.e., αi

108 3 Supervised Learning

= C and yi(〈w ⋅ xi〉 + b) < 1), or errors are non-zero. Without this sparsity
property, SVM would not be practical for large data sets.

The final decision boundary is (we note that many αi’s are 0)

.0
1

=+〉⋅〈=+〉⋅〈 ∑
=

byb
n

i
iii xxxw α (75)

The decision rule for classification (testing) is the same as the separable
case, i.e., sign(〈w ⋅ x〉 + b). We notice that for both Equations (75) and
(73), w does not need to be explicitly computed. This is crucial for using
kernel functions to handle nonlinear decision boundaries.

Finally, we still have the problem of determining the parameter C. The
value of C is usually chosen by trying a range of values on the training set
to build multiple classifiers and then to test them on a validation set before
selecting the one that gives the best classification result on the validation
set. Cross-validation is commonly used as well.

3.8.3 Nonlinear SVM: Kernel Functions

The SVM formulations discussed so far require that positive and negative
examples can be linearly separated, i.e., the decision boundary must be a
hyperplane. However, for many real-life data sets, the decision boundaries
are nonlinear. To deal with nonlinearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only
transform the input data from its original space into another space (usually
of a much higher dimensional space) so that a linear decision boundary can
separate positive and negative examples in the transformed space, which is
called the feature space. The original data space is called the input space.

Thus, the basic idea is to map the data in the input space X to a feature
space F via a nonlinear mapping φ,

).(
:

xx φ
φ
a

FX →
 (76)

After the mapping, the original training data set {(x1, y1), (x2, y2), …,
(xn, yn)} becomes:

{(φ(x1), y1), (φ(x2), y2), …, (φ(xn), yn)}. (77)

The same linear SVM solution method is then applied to F. Figure 3.19 il-
lustrates the process. In the input space (figure on the left), the training ex-
amples cannot be linearly separated. In the transformed feature space (fig-
ure on the right), they can be separated linearly.

3.8 Support Vector Machines 109

Fig. 3.19. Transformation from the input space to the feature space

With the transformation, the optimization problem in (61) becomes

ni
niby

C

i

iii

n

i
i

 ..., 2, 1, ,0
 ..., 2, 1, ,1))((:Subject to

2
 :Minimize

1

=≥
=−≥+〉⋅〈

+
〉⋅〈 ∑

=

ξ
ξφ

ξ

xw

ww

(78)

Its corresponding dual is

Maximize: .)()(
2
1

1,1
〉⋅〈−= ∑∑

==
ji

n

ji
jiji

n

i
iD yyL xx φφααα

Subject to:
. ..., ,2 ,1 ,0

0
1

niC

y

i

n

i
ii

=≤≤

=∑
=

α

α

(79)

The final decision rule for classification (testing) is

by
n

i
iii +〉⋅〈∑

=1
)()(xx φφα (80)

Example 16: Suppose our input space is 2-dimensional, and we choose the
following transformation (mapping):

)2 , ,() ,(21
2

2
2

121 xxxxxx a (81)

The training example ((2, 3), -1) in the input space is transformed to the
following training example in the feature space:

 ((4, 9, 8.5), -1). ▀

The potential problem with this approach of transforming the input data
explicitly to a feature space and then applying the linear SVM is that it

φ
x

Input space X
x

x
x

x

o

Feature space F

o

o o

φ(x)
φ(x)
φ(x) φ(x)

φ(x)
φ(o)

φ(o) φ(o) φ(o)

110 3 Supervised Learning

may suffer from the curse of dimensionality. The number of dimensions in
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This
makes it computationally infeasible to handle.

Fortunately, explicit transformations can be avoided if we notice that in
the dual representation both the construction of the optimal hyperplane
(79) in F and the evaluation of the corresponding decision/classification
function (80) only require the evaluation of dot products 〈φ(x) ⋅ φ(z)〉 and
never the mapped vector φ(x) in its explicit form. This is a crucial point.

Thus, if we have a way to compute the dot product 〈φ(x) ⋅ φ(z)〉 in the
feature space F using the input vectors x and z directly, then we would not
need to know the feature vector φ(x) or even the mapping function φ itself.
In SVM, this is done through the use of kernel functions, denoted by K,

K(x, z) = 〈φ(x) ⋅ φ(z)〉, (82)

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example of a kernel
function is the polynomial kernel,

K(x, z) = 〈x ⋅ z〉d. (83)

Example 17: Let us compute this kernel with degree d = 2 in a 2-
dimensional space. Let x = (x1, x2) and z = (z1, z2).

,)()(

)2()2(

2

)(

2222

2222

22

1
22

11
22

1

22
11

2
1

2
1

2
11

2

〉⋅〈=

〉⋅〈=

++=

+=〉⋅〈

zx

zx

φφ

zz,z,zxx,x,x

zxzxzxzx

zxzx

(84)

where),2()(22 1
22

1 xx,x,x x =φ which shows that the kernel 〈x ⋅ z〉2 is a dot
product in the transformed feature space. The number of dimensions in the
feature space is 3. Note that φ(x) is actually the mapping function used in
Example 16. Incidentally, in general the number of dimensions in the fea-
ture space for the polynomial kernel function K(x, z) = 〈x ⋅ z〉d is ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+
d
dr 1 ,

which is a huge number even with a reasonable number (r) of attributes in
the input space. Fortunately, by using the kernel function in (83), the huge
number of dimensions in the feature space does not matter. ▀

The derivation in (84) is only for illustration purposes. We do not need
to find the mapping function. We can simply apply the kernel function di-

3.8 Support Vector Machines 111

rectly. That is, we replace all the dot products 〈φ(x) ⋅ φ(z)〉 in (79) and (80)
with the kernel function K(x, z) (e.g., the polynomial kernel in (83)). This
strategy of directly using a kernel function to replace dot products in the
feature space is called the kernel trick. We would never need to explicitly
know what φ is.

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (84)? That is, how do
we know that a kernel function is indeed a dot product in some feature
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [118] for details.

It is clear that the idea of kernel generalizes the dot product in the input
space. The dot product is also a kernel with the feature map being the iden-
tity

K(x, z) = 〈x ⋅ z〉. (85)

Commonly used kernels include

Polynomial: dK)(),(θ+〉⋅〈= zxzx (86)

Gaussian RBF: σ2|||| 2
),(zxzx −−= eK (87)

where θ ∈ ℜ, d ∈ N, and σ > 0.

Summary

SVM is a linear learning system that finds the maximal margin decision
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Nonlinear decision boundaries
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done.
Instead, kernel functions are used to compute dot products required in
learning without the need to even know the transformation function.

Due to the separation of the learning algorithm and kernel functions,
kernels can be studied independently from the learning algorithm. One can
design and experiment with different kernel functions without touching the
underlying learning algorithm.

SVM also has some limitations:

1. It works only in real-valued space. For a categorical attribute, we need
to convert its categorical values to numeric values. One way to do this is
to create an extra binary attribute for each categorical value, and set the
attribute value to 1 if the categorical value appears, and 0 otherwise.

112 3 Supervised Learning

2. It allows only two classes, i.e., binary classification. For multiple class
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [138].

3. The hyperplane produced by SVM is hard to understand by users. It is
difficult to picture where the hyperplane is in a high-dimensional space.
The matter is made worse by kernels. Thus, SVM is commonly used in
applications that do not required human understanding.

3.9 K-Nearest Neighbor Learning

All the previous learning methods learn some kinds of models from the
data, e.g., decision trees, sets of rules, posterior probabilities, and hyper-
planes. These learning methods are often called eager learning methods as
they learn models of the data before testing. In contrast, k-nearest neighbor
(kNN) is a lazy learning method in the sense that no model is learned from
the training data. Learning only occurs when a test example needs to be
classified. The idea of kNN is extremely simple and yet quite effective in
many applications, e.g., text classification.

It works as follows: Again let D be the training data set. Nothing will be
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The k most similar (closest) examples in
D are then selected. This set of examples is called the k nearest neighbors
of d. d then takes the most frequent class among the k nearest neighbors.
Note that k = 1 is usually not sufficient for determining the class of d due
to noise and outliers in the data. A set of nearest neighbors is needed to ac-
curately decide the class. The general kNN algorithm is given in Fig. 3.20.

Algorithm kNN(D, d, k)
1 Compute the distance between d and every example in D;
2 Choose the k examples in D that are nearest to d, denote the set by P (⊆ D);
3 Assign d the class that is the most frequent class in P (or the majority class).

Fig. 3.20. The k-nearest neighbor algorithm

The key component of a kNN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next chapter.

The number of nearest neighbors k is usually determined by using a
validation set, or through cross validation on the training data. That is, a

3.10 Ensemble of Classifiers 113

range of k values are tried, and the k value that gives the best accuracy on
the validation set (or cross validation) is selected. Figure 3.21 illustrates
the importance of choosing the right k.

Example 18: In Fig. 3.21, we have two classes of data, positive (filled
squares) and negative (empty circles). If 1-nearest neighbor is used, the
test data point ⊕ will be classified as negative, and if 2-nearest neighbors
are used, the class cannot be decided. If 3-nearest neighbors are used, the
class is positive as two positive examples are in the 3-nearest neighbors.

Fig. 3.21. An illustration of k-nearest neighbor classification

Despite its simplicity, researchers have showed that the classification
accuracy of kNN can be quite strong and in many cases as accurate as
those elaborated methods. For instance, it is showed in [574] that kNN per-
forms equally well as SVM for some text classification tasks. kNN is also
very flexible. It can work with any arbitrarily shaped decision boundaries.

kNN is, however, slow at the classification time. Due to the fact that
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming
especially when the training set D and the test set are large. Another disad-
vantage is that kNN does not produce an understandable model. It is thus
not applicable if an understandable model is required in the application.

3.10 Ensemble of Classifiers

So far, we have studied many individual classifier building techniques. A
natural question to ask is: can we build many classifiers and then combine
them to produce a better classifier? Yes, in many cases. This section de-
scribes two well known ensemble techniques, bagging and boosting. In
both these methods, many classifiers are built and the final classification
decision for each test instance is made based on some forms of voting of
the committee of classifiers.

1-nearst neighbor
2-nearst neighbor
3-nearst neighbor

114 3 Supervised Learning

3.10.1 Bagging

Given a training set D with n examples and a base learning algorithm, bag-
ging (for Bootstrap Aggregating) works as follows [63]:

Training:
1. Create k bootstrap samples S1, S2, and Sk. Each sample is produced by

drawing n examples at random from D with replacement. Such a sample
is called a bootstrap replicate of the original training set D. On aver-
age, each sample Si contains 63.2% of the original examples in D, with
some examples appearing multiple times.

2. Build a classifier based on each sample Si. This gives us k classifiers.
All the classifiers are built using the same base learning algorithm.

Testing: Classify each test (or new) instance by voting of the k classifiers
(equal weights). The majority class is assigned as the class of the instance.

Bagging can improve the accuracy significantly for unstable learning al-
gorithms, i.e., a slight change in the training data resulting in a major
change in the output classifier. Decision tree and rule induction methods
are examples of unstable learning methods. k-nearest neighbor and naïve
Bayesian methods are examples of stable techniques. For stable classifiers,
Bagging may sometime degrade the accuracy.

3.10.2 Boosting

Boosting is a family of ensemble techniques, which, like bagging, also
manipulates the training examples and produces multiple classifiers to im-
prove the classification accuracy [477]. Here we only describe the popular
AdaBoost algorithm given in [186]. Unlike bagging, AdaBoost assigns a
weight to each training example.

Training: AdaBoost produces a sequence of classifiers (also using the
same base learner). Each classifier is dependent on the previous one, and
focuses on the previous one’s errors. Training examples that are incor-
rectly classified by the previous classifiers are given higher weights.

Let the original training set D be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi
is an input vector, yi is its class label and yi ∈ Y (the set of class labels).
With a weight attached to each example, we have, {(x1, y1, w1), (x2, y2, w2),
…, (xn, yn, wn)}, and ∑i wi = 1. The AdaBoost algorithm is given in Fig.
3.22.

The algorithm builds a sequence of k classifiers (k is specified by the
user) using a base learner, called BaseLeaner in line 3. Initially, the weight

Bibliographic Notes 115

for each training example is 1/n (line 1). In each iteration, the training data
set becomes Dt, which is the same as D, but with different weights. Each
iteration builds a new classifier ft (line 3). The error of ft is calculated in
line 4. If it is too large, delete the iteration and exit (lines 5–7). Lines 9–11
update and normalize the weights for building the next classifier.

Testing: For each test case, the results of the series of classifiers are com-
bined to determine the final class of the test case, which is shown in line 14
of Fig. 3.22 (a weighted voting).

Boosting works better than bagging in most cases as shown in [454]. It
also tends to improve performance more when the base learner is unstable.

Bibliographic Notes

Supervised learning has been studied extensively by the machine learning
community. The book by Mitchell [385] covers most learning techniques
and is easy to read. Duda et al.’s pattern classification book is also a great

AdaBoost(D, Y, BaseLeaner, k)
1. Initialize D1(wi) ← 1/n for all i; // initialize the weights
2. for t = 1 to k do
3. ft ← BaseLearner(Dt); // build a new classifier ft
4. ∑

≠

←
iitt yDfi

itt wDe
))((:

)(
x

; // compute the error of ft

5. if et > ½ then // if the error is too large,
6. k ← k – 1; // remove the iteration and
7. exit-loop // exit
8. else
9. βt ← et / (1− et);

10 Dt+1(wi) ← Dt(wi) × ;
 otherwise1

))((if

⎩
⎨
⎧ = iittt yDf xβ // update the weights

11. Dt+1(wi) ←
∑ = +

+
n

i it

it

wD
wD

1 1

1

)(
)(// normalize the weights

12. endif
13. endfor

14. ∑
=∈

←
yft tYy

final
t

f
)(:

1logmaxarg)(
x

x
β

 // the final output classifier

Fig. 3.22. The AdaBoost algorithm

116 3 Supervised Learning

reference [155]. Most data mining books have one or two chapters on su-
pervised learning, e.g., those by Han and Kamber [218], Hand et al. [221],
Tan et al. [512], and Witten and Frank [549].

For decision tree induction, Quinlan’s book [453] has all the details and
the code of his popular decision tree system C4.5. Other well-known
systems include CART by Breiman et al. [62] and CHAD by Kass [270].
Scaling up of decision tree algorithms was also studied in several papers.
These algorithms can have the data on disk, and are thus able to run with
huge data sets. See [195] for an algorithm and also additional references.

Rule induction algorithms generate rules directly from the data. Well-
known systems include AQ by Michalski et al. [381], CN2 by Clark and
Niblett [104], FOIL by Quinlan [452], FOCL by Pazzani et al. [438], I-
REP by Furnkranz and Widmer [189], and RIPPER by Cohen [106].

Using association rules to build classifiers was proposed by Liu et al. in
[343], which also reported the CBA system. CBA selects a small subset of
class association rules as the classifier. Other classifier building techniques
include combining multiple rules by Li et al. [328], using rules as features
by Meretakis and Wüthrich [379], Antonie and Zaiane [23], Deshpande
and Karpis [131], Jindal and Liu [255], and Lesh et al. [314], generating a
subset of rules by Cong et al. [112, 113], Wang et al. [536], Yin and Han
[578], and Zaki and Aggarwal [587]. Other systems include those by Dong
et al. [149], Li et al. [319, 320], Yang et al. [570], etc.

The naïve Bayesian classification model described in Sect. 3.6 is based
on the papers by Domingos and Pazzani [148], Kohavi et al. [285] and
Langley et al [301]. The naïve Bayesian classification for text discussed in
Sect. 3.7 is based on the multinomial formulation given by McCallum and
Nigam [365]. This model was also used earlier by Lewis and Gale [317],
Li and Yamanishi [318], and Nigam et al. [413]. Another formulation of
naïve Bayes is based on the multivariate Bernoulli model, which was used
in Lewis [316], and Robertson and Sparck-Jones [464].

Support vector machines (SVM) was first introduced by Vapnik and his
colleagues in 1992 [59]. Further details were given in his 1995 book [525].
Two other books on SVM and kernel methods are those by Cristianini and
Shawe-Taylor [118] and Scholkopf and Smola [479]. The discussion of
SVM in this chapter is heavily influenced by Cristianini and Shawe-
Taylor’s book and the tutorial paper by Burges [74]. Two popular SVM
systems are SVMLight (available at http://svmlight.joachims.org/) and
LIBSVM (available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Existing classifier ensemble methods include bagging by Breiman [63],
boosting by Schapire [477] and Freund and Schapire [186], random forest
also by Breiman [65], stacking by Wolpert [552], random trees by Fan
[169], and many others.

4 Unsupervised Learning

Supervised learning discovers patterns in the data that relate data attributes
to a class attribute. These patterns are then utilized to predict the values of
the class attribute of future data instances. These classes indicate some
real-world predictive or classification tasks such as determining whether a
news article belongs to the category of sports or politics, or whether a pa-
tient has a particular disease. However, in some other applications, the data
have no class attributes. The user wants to explore the data to find some in-
trinsic structures in them. Clustering is one technology for finding such
structures. It organizes data instances into similarity groups, called clus-
ters such that the data instances in the same cluster are similar to each
other and data instances in different clusters are very different from each
other. Clustering is often called unsupervised learning, because unlike
supervised learning, class values denoting an a priori partition or grouping
of the data are not given. Note that according to this definition, we can also
say that association rule mining is an unsupervised learning task. However,
due to historical reasons, clustering is closely associated and even syn-
onymous with unsupervised learning while association rule mining is not.
We follow this convention, and describe some main clustering techniques
in this chapter.

Clustering has been shown to be one of the most commonly used data
analysis techniques. It also has a long history, and has been used in almost
every field, e.g., medicine, psychology, botany, sociology, biology, arche-
ology, marketing, insurance, library science, etc. In recent years, due to the
rapid increase of online documents and the expansion of the Web, text
document clustering too has become a very important task. In Chap. 12,
we will also see that clustering is very useful in Web usage mining.

4.1 Basic Concepts

Clustering is the process of organizing data instances into groups whose
members are similar in some way. A cluster is therefore a collection of
data instances which are “similar” to each other and are “dissimilar” to

118 4 Unsupervised Learning

data instances in other clusters. In the clustering literature, a data instance
is also called an object as the instance may represent an object in the real-
world. It is also called a data point as it can be seen as a point in an r-
dimension space, where r is the number of attributes in the data.

Fig. 4.1 shows a 2-dimensional data set. We can clearly see three groups
of data points. Each group is a cluster. The task of clustering is to find the
three clusters hidden in the data. Although it is easy for a human to visu-
ally detect clusters in a 2-dimensional or even 3-demensional space, it be-
comes very hard, if not impossible, to detect clusters visually as the num-
ber of dimensions increases. Additionally, in many applications, clusters
are not as clear-cut or well separated as the three clusters in Fig. 4.1. Auto-
matic techniques are thus needed for clustering.

Fig. 4.1. Three natural groups or clusters of data points

After seeing the example in Fig. 4.1, you may ask the question: What is
clustering for? To answer it, let us see some application examples from
different domains.

Example 1: A company wants to conduct a marketing campaign to pro-
mote its products. The most effective strategy is to design a set of person-
alized marketing materials for each individual customer according to
his/her profile and financial situation. However, this is too expensive for a
large number of customers. At the other extreme, the company designs
only one set of marketing materials to be used for all customers. This one-
size-fits-all approach, however, may not be effective. The most cost-
effective approach is to segment the customers into a small number of
groups according to their similarities and design some targeted marketing
materials for each group. This segmentation task is commonly done using
clustering algorithms, which partition customers into similarity groups. In
marketing research, clustering is often called segmentation. ▀

Example 2: A company wants to produce and sell T-shirts. Similar to the
case above, on one extreme, for each customer it can measure his/her size
and have a T-shirt tailor-made for him/her. Obviously, this T-shirt is going
to be expensive. On the other extreme, only one size of T-shirts is made.

4.1 Basic Concepts 119

Since this size may not fit most people, the company might not be able to
sell as many T-shirts. Again, the most cost effective way is to group people
based on their sizes and make a different generalized size of T-shirts for
each group. This is why we see small, medium and large size T-shirts in
shopping malls, and seldom see T-shirts with only a single size. The
method used to group people according to their sizes is clustering. The
process is usually as follows: The T-shirt manufacturer first samples a
large number of people and measure their sizes to produce a measurement
database. It then clusters the data, which partitions the data into some
similarity subsets, i.e., clusters. For each cluster, it computes the average
of the sizes and then uses the average to mass-produce T-shirts for all peo-
ple of similar size. ▀

Example 3: Everyday, news agencies around the world generate a large
number of news articles. If a Web site wants to collect these news articles
to provide an integrated news service, it has to organize the collected arti-
cles according to some topic hierarchy. The question is: What should the
topics be, and how should they be organized? One possibility is to employ
a group of human editors to do the job. However, the manual organization
is costly and very time consuming, which makes it unsuitable for news and
other time sensitive information. Throwing all the news articles to the
readers with no organization is clearly not an option. Although classifica-
tion is able to classify news articles according to predefined topics, it is not
applicable here because classification needs training data, which have to be
manually labeled with topic classes. Since news topics change constantly
and rapidly, the training data would need to change constantly as well,
which is infeasible via manual labeling. Clustering is clearly a solution for
this problem because it automatically groups a stream of news articles
based on their content similarities. Hierarchical clustering algorithms
can also organize documents hierarchically, i.e., each topic may contain
sub-topics and so on. Topic hierarchies are particularly useful for texts. ▀

The above three examples indicate two types of clustering, partitional
and hierarchical. Indeed, these are the two most important types of clus-
tering approaches. We will study some specific algorithms of these two
types of clustering.

Our discussion and examples above also indicate that clustering needs a
similarity function to measure how similar two data points (or objects) are,
or alternatively a distance function to measure the distance between two
data points. We will use distance functions in this chapter. The goal of
clustering is thus to discover the intrinsic grouping of the input data
through the use of a clustering algorithm and a distance function.

120 4 Unsupervised Learning

4.2 K-means Clustering

The k-means algorithm is the best known partitional clustering algo-
rithm. It is perhaps also the most widely used among all clustering algo-
rithms due to its simplicity and efficiency. Given a set of data points and
the required number of k clusters (k is specified by the user), this algorithm
iteratively partitions the data into k clusters based on a distance function.

4.2.1 K-means Algorithm

Let the set of data points (or instances) D be

{x1, x2, …, xn},

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X ⊆ ℜ
r, and r

is the number of attributes in the data (or the number of dimensions of the
data space). The k-means algorithm partitions the given data into k clus-
ters. Each cluster has a cluster center, which is also called the cluster cen-
troid. The centroid, usually used to represent the cluster, is simply the
mean of all the data points in the cluster, which gives the name to the algo-
rithm, i.e., since there are k clusters, thus k means. Figure 4.2 gives the k-
means clustering algorithm.

At the beginning, the algorithm randomly selects k data points as the
seed centroids. It then computes the distance between each seed centroid
and every data point. Each data point is assigned to the centroid that is
closest to it. A centroid and its data points therefore represent a cluster.
Once all the data points in the data are assigned, the centroid for each clus-
ter is re-computed using the data points in the current cluster. This process
repeats until a stopping criterion is met. The stopping (or convergence) cri-
terion can be any one of the following:

Algorithm k-means(k, D)
1 choose k data points as the initial centroids (cluster centers)
2 repeat
3 for each data point x ∈ D do
4 compute the distance from x to each centroid;
5 assign x to the closest centroid // a centroid represents a cluster
6 endfor
7 re-compute the centroid using the current cluster memberships
8 until the stopping criterion is met

Fig. 4.2. The k-means algorithm

4.2 K-means Clustering 121

1. no (or minimum) re-assignments of data points to different clusters.
2. no (or minimum) change of centroids.
3. minimum decrease in the sum of squared error (SSE),

,),(
1

2∑∑
= ∈

=
k

j C
j

j

distSSE
x

mx (1)

where k is the number of required clusters, Cj is the jth cluster, mj is the
centroid of cluster Cj (the mean vector of all the data points in Cj), and
dist(x, mj) is the distance between data point x and centroid mj.

The k-means algorithm can be used for any application data set where the
mean can be defined and computed. In Euclidean space, the mean of a
cluster is computed with:

,
||

1 ∑
∈

=
ji C

i
j

j C x
xm (2)

where |Cj| is the number of data points in cluster Cj. The distance from a
data point xi to a cluster mean (centroid) mj is computed with

.)(...)()(

||||),(
22

22
2

11 jrirjiji

jiji

mxmxmx

dist

−++−+−=

−= mxmx

(3)

Example 4: Figure 4.3(A) shows a set of data points in a 2-dimensional
space. We want to find 2 clusters from the data, i.e., k = 2. First, two data
points (each marked with a cross) are randomly selected to be the initial
centroids (or seeds) shown in Fig. 4.3(A). The algorithm then goes to the
first iteration (the repeat-loop).

Iteration 1: Each data point is assigned to its closest centroid to form 2
clusters. The resulting clusters are given in Fig. 4.3(B). Then the cen-
troids are re-computed based on the data points in the current clusters
(Fig. 4.3(C)). This leads to iteration 2.

Iteration 2: Again, each data point is assigned to its closest new centroid to
form two new clusters shown in Fig. 4.3(D). The centroids are then re-
computed. The new centroids are shown in Fig. 4.3(E).

Iteration 3: The same operations are performed as in the first two itera-
tions. Since there is no re-assignment of data points to different clusters
in this iteration, the algorithm ends.

The final clusters are those given in Fig. 4.3(G). The set of data points in
each cluster and its centroid are output to the user.

122 4 Unsupervised Learning

Fig. 4.3. The working of the k-means algorithm through an example ▀

One problem with the k-means algorithm is that some clusters may be-
come empty during the clustering process since no data point is assigned to
them. Such clusters are called empty clusters. To deal with an empty clus-
ter, we can choose a data point as the replacement centroid, e.g., a data
point that is furthest from the centroid of a large cluster. If the sum of the
squared error (SSE) is used as the stopping criterion, the cluster with the
largest squared error may be used to find another centroid.

+
+

+ +

+ +

(A). Random selection of k seeds (or centroids)

+
+

+ +

+ +

Iteration 2: (D). Cluster assignment (E). Re-compute centroids

+ +

Iteration 3: (F). Cluster assignment (G). Re-compute centroids

Iteration 1: (B). Cluster assignment (C). Re-compute centroids

4.2 K-means Clustering 123

4.2.2 Disk Version of the K-means Algorithm

The k-means algorithm may be implemented in such a way that it does not
need to load the entire data set into the main memory, which is useful for
large data sets. Notice that the centroids for the k clusters can be computed
incrementally in each iteration because the summation in Equation (2) can
be calculated separately first. During the clustering process, the number of
data points in each cluster can be counted incrementally as well. This gives
us a disk based implementation of the algorithm (Fig. 4.4), which produces
exactly the same clusters as that in Fig. 4.2, but with the data on disk. In
each for-loop, the algorithm simply scans the data once.

The whole clustering process thus scans the data t times, where t is the
number of iterations before convergence, which is usually not very large
(< 50). In applications, it is quite common to set a limit on the number of
iterations because later iterations typically result in only minor changes to
the clusters. Thus, this algorithm may be used to cluster large data sets
which cannot be loaded into the main memory. Although there are several
special algorithms that scale-up clustering algorithms to large data sets,
they all require sophisticated techniques.

Algorithm disk-k-means(k, D)
1 Choose k data points as the initial centriods mj, j = 1, …, k;
2 repeat
3 initialize sj ← 0, j = 1, …, k; // 0 is a vector with all 0’s
4 initialize nj ← 0, j = 1, …, k; // nj is the number of points in cluster j
5 for each data point x ∈ D do
6);,(minarg

},...2,1{
i

ki
distj mx

∈
←

7 assign x to the cluster j;
8 sj ← sj + x;
9 nj ← nj + 1;
10 endfor
11 mj ← sj/nj, j = 1, …, k;
12 until the stopping criterion is met

Fig. 4.4. A simple disk version of the k-means algorithm

Let us give some explanations of this algorithm. Line 1 does exactly the
same thing as the algorithm in Fig. 4.2. Line 3 initializes vector sj which is
used to incrementally compute the sum in Equation (2) (line 8). Line 4 ini-
tializes nj which records the number of data points assigned to cluster j
(line 9). Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in
the original algorithm in Fig. 4.2. Line 11 re-computes the centroids,

124 4 Unsupervised Learning

which are used in the next iteration. Any of the three stopping criteria may
be used here. If the sum of squared error is applied, we can modify the al-
gorithm slightly to compute the sum of square error incrementally.

4.2.3 Strengths and Weaknesses

The main strengths of the k-means algorithm are its simplicity and effi-
ciency. It is easy to understand and easy to implement. Its time complexity
is O(tkn), where n is the number of data points, k is the number of clusters,
and t is the number of iterations. Since both k and t are normally much
smaller than n, the k-means algorithm is considered a linear algorithm in
the number of data points.

The weaknesses and ways to address them are as follows:

1. The algorithm is only applicable to data sets where the notion of the
mean is defined. Thus, it is difficult to apply to categorical data sets.
There is, however, a variation of the k-means algorithm called k-modes,
which clusters categorical data. The algorithm uses the mode instead of
the mean as the centroid. Assuming that the data instances are described
by r categorical attributes, the mode of a cluster Cj is a tuple mj = (mj1,
mj2, …, mjr) where mji is the most frequent value of the ith attribute of
the data instances in cluster Cj. The similarity (or distance) between a
data instance and a mode is the number of values that they match (or do
not match).

2. The user needs to specify the number of clusters k in advance. In prac-
tice, several k values are tried and the one that gives the most desirable
result is selected. We will discuss the evaluation of clusters later.

3. The algorithm is sensitive to outliers. Outliers are data points that are
very far away from other data points. Outliers could be errors in the data
recording or some special data points with very different values. For ex-
ample, in an employee data set, the salary of the Chief-Executive-
Officer (CEO) of the company may be considered as an outlier because
its value could be many times larger than everyone else. Since the k-
means algorithm uses the mean as the centroid of each cluster, outliers
may result in undesirable clusters as the following example shows.

Example 5: In Fig. 4.5(A), due to an outlier data point, the two result-
ing clusters do not reflect the natural groupings in the data. The ideal
clusters are shown in Fig. 4.5(B). The outlier should be identified and
reported to the user. ▀

There are several methods for dealing with outliers. One simple
method is to remove some data points in the clustering process that are

4.2 K-means Clustering 125

much further away from the centroids than other data points. To be safe,
we may want to monitor these possible outliers over a few iterations and
then decide whether to remove them. It is possible that a very small
cluster of data points may be outliers. Usually, a threshold value is used
to make the decision.

Fig. 4.5. Clustering with and without the effect of outliers ▀

Another method is to perform random sampling. Since in sampling
we only choose a small subset of the data points, the chance of selecting
an outlier is very small. We can use the sample to do a pre-clustering
and then assign the rest of the data points to these clusters, which may
be done in any of the three ways below:
• Assign each remaining data point to the centroid closest to it. This is

the simplest method.
• Use the clusters produced from the sample to perform supervised

learning (classification). Each cluster is regarded as a class. The clus-
tered sample is thus treated as the training data for learning. The re-
sulting classifier is then applied to classify the remaining data points
into appropriate classes or clusters.

• Use the clusters produced from the sample as seeds to perform semi-
supervised learning. Semi-supervised learning is a new learning
model that learns from a small set of labeled examples (with classes)
and a large set of unlabeled examples (without classes). In our case,
the clustered sample data are used as the labeled set and the remain-
ing data points are used as the unlabeled set. The results of the learn-

++
outlier

++

outlier

(A): Undesirable clusters

(B): Ideal clusters

126 4 Unsupervised Learning

ing naturally cluster all the remaining data points. We will study this
technique in the next chapter.

4. The algorithm is sensitive to initial seeds, which are the initially se-
lected centroids. Different initial seeds may result in different clusters.
Thus, if the sum of squared error is used as the stopping criterion, the
algorithm only achieves local optimal. The global optimal is computa-
tionally infeasible for large data sets.

Example 6: Figure 4.6 shows the clustering process of a 2-dimensional
data set. The goal is to find two clusters. The randomly selected initial
seeds are marked with crosses in Fig. 4.6(A). Figure 4.6(B) gives the
clustering result of the first iteration. Figure 4.6(C) gives the result of
the second iteration. Since there is no re-assignment of data points, the
algorithm stops.

Fig. 4.6. Poor initial seeds (centroids)

If the initial seeds are different, we may obtain entirely different clus-
ters as Fig. 4.7 shows. Figure 4.7 uses the same data as Fig. 4.6, but dif-
ferent initial seeds (Fig. 4.7(A)). After two iterations, the algorithm
ends, and the final clusters are given in Fig. 4.7(C). These two clusters
are more reasonable than the two clusters in Fig. 4.6(C), which indicates
that the choice of the initial seeds in Fig. 4.6(A) is poor.

To select good initial seeds, researchers have proposed several meth-
ods. One simple method is to first compute the mean m (the centroid) of
the entire data set (any random data point rather than the mean can be

+
+

(A). Random selection of seeds (centroids)

 (B). Iteration 1 (C). Iteration 2

+

+

+

+

4.2 K-means Clustering 127

used as well). Then the first seed data point x1 is selected to be the fur-
thest from the mean m. The second data point x2 is selected to be the
furthest from x1. Each subsequent data point xi is selected such that the
sum of distances from xi to those already selected data points is the larg-
est. However, if the data has outliers, the method will not work well. To
deal with outliers, again, we can randomly select a small sample of the
data and perform the same operation on the sample. As we discussed
above, since the number of outliers is small, the chance that they show
up in the sample is very small.

Fig. 4.7. Good initial seeds (centroids) ▀

Another method is to sample the data and use the sample to perform
hierarchical clustering, which we will discuss in Sect. 4.4. The centroids
of the resulting k clusters are used as the initial seeds.

Yet another approach is to manually select seeds. This may not be a
difficult task for text clustering applications because it is easy for human
users to read some documents and pick some good seeds. These seeds
may help improve the clustering result significantly and also enable the
system to produce clusters that meet the user’s needs.

5. The k-means algorithm is not suitable for discovering clusters that are
not hyper-ellipsoids (or hyper-spheres).

Example 7: Figure 4.8(A) shows a 2-dimensional data set. There are
two irregular shaped clusters. However, the two clusters are not hyper-

(A). Random selection of k seeds (centroids)

 (B). Iteration 1 (C). Iteration 2

+
+

+
+

++

128 4 Unsupervised Learning

ellipsoids, which means that the k-means algorithm will not be able to
find them. Instead, it may find the two clusters shown in Fig. 4.8(B).

The question is: are the two clusters in Fig. 4.8(B) necessarily bad?
The answer is no. It depends on the application. It is not true that a clus-
tering algorithm that is able to find arbitrarily shaped clusters is always
better. We will discuss this issue in Sect. 4.3.2.

Fig. 4.8. Natural (but irregular) clusters and k-means clusters ▀

Despite these weaknesses, k-means is still the most popular algorithm in
practice due to its simplicity, efficiency and the fact that other clustering
algorithms have their own lists of weaknesses. There is no clear evidence
showing that any other clustering algorithm performs better than the k-
means algorithm in general, although it may be more suitable for some
specific types of data or applications than k-means. Note also that compar-
ing different clustering algorithms is a very difficult task because unlike
supervised learning, nobody knows what the correct clusters are, especially
in high dimensional spaces. Although there are several cluster evaluation
methods, they all have drawbacks. We will discuss the evaluation issue in
Sect. 4.9.

4.3 Representation of Clusters

Once a set of clusters is found, the next task is to find a way to represent
the clusters. In some applications, outputting the set of data points that
makes up the cluster to the user is sufficient. However, in other applica-
tions that involve decision making, the resulting clusters need to be repre-
sented in a compact and understandable way, which also facilitates the
evaluation of the resulting clusters.

 (A): Two natural clusters (B): k-means clusters

+

+

4.3 Representation of Clusters 129

4.3.1 Common Ways of Representing Clusters

There are three main ways to represent clusters:

1. Use the centroid of each cluster to represent the cluster. This is the most
popular way. The centroid tells where the center of the cluster is. One
may also compute the radius and standard deviation of the cluster to de-
termine the spread in each dimension. The centroid representation alone
works well if the clusters are of the hyper-spherical shape. If clusters are
elongated or are of other shapes, centroids may not be suitable.

2. Use classification models to represent clusters. In this method, we treat
each cluster as a class. That is, all the data points in a cluster are re-
garded as having the same class label, e.g., the cluster ID. We then run a
supervised learning algorithm on the data to find a classification model.
For example, we may use the decision tree learning to distinguish the
clusters. The resulting tree or set of rules provide an understandable rep-
resentation of the clusters.

Figure 4.9 shows a partitioning produced by a decision tree algo-
rithm. The original clustering gave three clusters. Data points in cluster
1 are represented by 1’s, data points in cluster 2 are represented by 2’s,
and data points in cluster 3 are represented by 3’s. We can see that the
three clusters are separated and each can be represented with a rule.

x ≤ 2 → cluster 1
x > 2, y > 1.5 → cluster 2
x > 2, y ≤ 1.5 → cluster 3

Fig. 4.9. Description of clusters using rules

We make two remarks about this representation method:

• The partitioning in Fig. 4.9 is an ideal case as each cluster is repre-
sented by a single rectangle (or rule). However, in most applications,
the situation may not be so ideal. A cluster may be split into a few

1

1 1

1
1

2 1 1

1
1

1 1
1 2

1
2

2
2
2

2

2 2 2

2

3

3 3
3 3 3

3

3

3

2 x

 y

1.5

2

2

130 4 Unsupervised Learning

hyper-rectangles or rules. However, there is usually a dominant or
large rule which covers most of the data points in the cluster.

• One can use the set of rules to evaluate the clusters to see whether
they conform to some existing domain knowledge or intuition.

3. Use frequent values in each cluster to represent it. This method is
mainly for clustering of categorical data (e.g., in the k-modes cluster-
ing). It is also the key method used in text clustering, where a small set
of frequent words in each cluster is selected to represent the cluster.

4.3.2 Clusters of Arbitrary Shapes

Hyper-elliptical and hyper-spherical clusters are usually easy to represent,
using their centroids together with spreads (e.g., standard deviations),
rules, or a combination of both. However, other arbitrary shaped clusters,
like the natural clusters shown in Fig. 4.8(A), are hard to represent espe-
cially in high dimensional spaces.

A common criticism about an algorithm like k-means is that it is not
able to find arbitrarily shaped clusters. However, this criticism may not be
as bad as it sounds because whether one type of clustering is desirable or
not depends on the application. Let us use the natural clusters in Fig.
4.8(A) to discuss this issue together with an artificial application.

Example 8: Assume that the data shown in Fig. 4.8(A) is the measurement
data of people’s physical sizes. We want to group people based on their
sizes into only two groups in order to mass-produce T-shirts of only 2 sizes
(say large and small). Even if the measurement data indicate two natural
clusters as in Fig. 4.8(A), it is difficult to use the clusters because we need
centroids of the clusters to design T-shirts. The clusters in Fig. 4.8(B) are
in fact better because they provide us the centroids that are representative
of the surrounding data points. If we use the centroids of the two natural
clusters as shown in Fig. 4.10 to make T-shirts, it is clearly inappropriate
because they are too near to each other in this case. In general, it does not
make sense to define the concept of center or centroid for an irregularly
shaped cluster. ▀

Note that clusters of arbitrary shapes can be found by neighborhood
search algorithms such as some hierarchical clustering methods (see the
next section), and density-based clustering methods [164]. Due to the dif-
ficulty of representing an arbitrarily shaped cluster, an algorithm that finds
such clusters may only output a list of data points in each cluster, which
are not as easy to use. These kinds of clusters are more useful in spatial
and image processing applications, but less useful in others.

4.4 Hierarchical Clustering 131

Fig. 4.10. Two natural clusters and their centroids

4.4 Hierarchical Clustering

Hierarchical clustering is another major clustering approach. It has a num-
ber of desirable properties which make it popular. It clusters by producing
a nested sequence of clusters like a tree (also called a dendrogram). Sin-
gleton clusters (individual data points) are at the bottom of the tree and one
root cluster is at the top, which covers all data points. Each internal cluster
node contains child cluster nodes. Sibling clusters partition the data points
covered by their common parent. Figure 4.11 shows an example.

Fig. 4.11. An illustration of hierarchical clustering

At the bottom of the tree, there are 5 clusters (5 data points). At the next
level, cluster 6 contains data points 1 and 2, and cluster 7 contains data
points 4 and 5. As we move up the tree, we have fewer and fewer clusters.
Since the whole clustering tree is stored, the user can choose to view clus-
ters at any level of the tree.

+
+

9

8

6

1 32

7

4 5

132 4 Unsupervised Learning

There are two main types of hierarchical clustering methods:

Agglomerative (bottom up) clustering: It builds the dendrogram (tree)
from the bottom level, and merges the most similar (or nearest) pair of
clusters at each level to go one level up. The process continues until all
the data points are merged into a single cluster (i.e., the root cluster).

Divisive (top down) clustering: It starts with all data points in one cluster,
the root. It then splits the root into a set of child clusters. Each child
cluster is recursively divided further until only singleton clusters of in-
dividual data points remain, i.e., each cluster with only a single point.

Agglomerative methods are much more popular than divisive methods. We
will focus on agglomerative hierarchical clustering. The general agglom-
erative algorithm is given in Fig. 4.12.

Algorithm Agglomerative(D)
1 Make each data point in the data set D a cluster,
2 Compute all pair-wise distances of x1, x2, …, xn ∈ D;
2 repeat
3 find two clusters that are nearest to each other;
4 merge the two clusters form a new cluster c;
5 compute the distance from c to all other clusters;
12 until there is only one cluster left

Fig. 4.12. The agglomerative hierarchical clustering algorithm

Example 9: Figure 4.13 illustrates the working of the algorithm. The data
points are in a 2-dimensional space. Figure 4.13(A) shows the sequence of
nested clusters, and Fig. 4.13(B) gives the dendrogram. ▀

Fig. 4.13. The working of an agglomerative hierarchical clustering algorithm

4

3

1

p1 p3p2

p1
p2

p3
p4

p5
2

p4 p5

4

1 2

3

(A). Nested clusters (B) Dendrogram

4.4 Hierarchical Clustering 133

Unlike the k-means algorithm, which uses only the centroids in distance
computation, hierarchical clustering may use anyone of several methods to
determine the distance between two clusters. We introduce them next.

4.4.1 Single-Link Method

In single-link (or single linkage) hierarchical clustering, the distance be-
tween two clusters is the distance between two closest data points in the
two clusters (one data point from each cluster). In other words, the single-
link clustering merges the two clusters in each step whose two nearest data
points (or members) have the smallest distance, i.e., the two clusters with
the smallest minimum pair-wise distance. The single-link method is suit-
able for finding non-elliptical shape clusters. However, it can be sensitive
to noise in the data, which may cause the chain effect and produce strag-
gly clusters. Figure 4.14 illustrates this situation. The noisy data points
(represented with filled circles) in the middle connect two natural clusters
and split one of them.

Fig. 4.14. The chain effect of the single-link method

With suitable data structures, single-link hierarchical clustering can be
done in O(n2) time, where n is the number of data points. This is much
slower than the k-means method, which performs clustering in linear time.

4.4.2 Complete-Link Method

In complete-link (or complete linkage) clustering, the distance between
two clusters is the maximum of all pair-wise distances between the data
points in the two clusters. In other words, the complete-link clustering
merges the two clusters in each step whose two furthest data points have
the smallest distance, i.e., the two clusters with the smallest maximum
pair-wise distance. Figure 4.15 shows the clusters produced by complete-
link clustering using the same data as in Fig. 4.14.

134 4 Unsupervised Learning

Fig. 4.15. Clustering using the complete-link method

Although the complete-link method does not have the problem of chain
effects, it can be sensitive to outliers. Despite this limitation, it has been
observed that the complete-link method usually produces better clusters
than the single-link method. The worse case time complexity of the com-
plete-link clustering is O(n2log n), where n is the number of data points.

4.4.3 Average-Link Method

This is a compromise between the sensitivity of complete-link clustering to
outliers and the tendency of single-link clustering to form long chains that
do not correspond to the intuitive notion of clusters as compact, spherical
objects. In this method, the distance between two clusters is the average
distance of all pair-wise distances between the data points in two clusters.
The time complexity of this method is also O(n2log n).

Apart from the above three popular methods, there are several others.
The following two methods are also commonly used:

Centroid method: In this method, the distance between two clusters is the
distance between their centroids.

Ward's method: In this method, the distance between two clusters is de-
fined as the increase in the sum of squared error (distances) from that of
two clusters to that of one merged cluster. Thus, the clusters to be merged
in the next step are the ones that will increase the sum the least. Recall that
the sum of squared error (SSE) is one of the measures used in the k-means
clustering (Equation (1)).

4.4.4. Strengths and Weaknesses

Hierarchical clustering has several advantages compared to the k-means
and other partitioning clustering methods. It is able to take any form of dis-
tance or similarity function. Moreover, unlike the k-means algorithm
which only gives k clusters at the end, the hierarchy of clusters from hier-

4.5 Distance Functions 135

archical clustering enables the user to explore clusters at any level of detail
(or granularity). In many applications, this resulting hierarchy can be very
useful in its own right. For example, in text document clustering, the clus-
ter hierarchy may represent a topic hierarchy in the documents.

Some studies have shown that agglomerative hierarchical clustering of-
ten produces better clusters than the k-means method. It can also find clus-
ters of arbitrary shapes, e.g., using the single-link method.

Hierarchical clustering also has several weaknesses. As we discussed
with the individual methods, the single-link method may suffer from the
chain effect, and the complete-link method is sensitive to outliers. The
main shortcomings of all hierarchical clustering methods are their compu-
tation complexities and space requirements, which are at least quadratic.
Compared to the k-means algorithm, this is very inefficient and not practi-
cal for large data sets. One can use sampling to deal with the problems. A
small sample is taken to do clustering and then the rest of the data points
are assigned to each cluster either by distance comparison or by supervised
learning (see Sect. 4.3.1). Some scale-up methods may also be applied to
large data sets. The main idea of the scale-up methods is to find many
small clusters first using an efficient algorithm, and then to use the cen-
troids of these small clusters to represent the clusters to perform the final
hierarchical clustering (see the BIRCH method in [610]).

4.5 Distance Functions

Distance or similarity functions play a central role in all clustering algo-
rithms. Numerous distance functions have been reported in the literature
and used in applications. Different distance functions are also used for dif-
ferent types of attributes (also called variables).

4.5.1 Numeric Attributes

The most commonly used distance functions for numeric attributes are the
Euclidean distance and Manhattan (city block) distance. Both distance
measures are special cases of a more general distance function called the
Minkowski distance. We use dist(xi, xj) to denote the distance between
two data points of r dimensions. The Minkowski distance is:

,)||...|||(|),(
1

2211
hh

jrir
h

ji
h

jiji xxxxxxdist −++−+−=xx (4)

where h is a positive integer.

136 4 Unsupervised Learning

If h = 2, it is the Euclidean distance,

.)(...)()(),(22
22

2
11 jrirjijiji xxxxxxdist −++−+−=xx (5)

If h = 1, it is the Manhattan distance,

.||...||||),(2211 jrirjijiji xxxxxxdist −++−+−=xx (6)

Other common distance functions include:

Weighted Euclidean distance: A weight is associated with each attribute
to express its importance in relation to other attributes.

.)(...)()(),(22
222

2
111 jrirrjijiji xxwxxwxxwdist −++−+−=xx (7)

Squared Euclidean distance: the standard Euclidean distance is squared
in order to place progressively greater weights on data points that are fur-
ther apart. The distance is

.)(...)()(),(22
22

2
11 jrirjijiji xxxxxxdist −++−+−=xx (8)

Chebychev distance: This distance measure is appropriate in cases where
one wants to define two data points as “different” if they are different on
any one of the attributes. The Chebychev distance is

|).| ..., |,| |,max(|),(2211 jrirjijiji xxxxxxdist −−−=xx (9)

4.5.2 Binary and Nominal Attributes

The above distance measures are only appropriate for numeric attributes.
For binary and nominal attributes (also called unordered categorical at-
tributes), we need different functions. Let us discuss binary attributes first.

A binary attribute has two states or values, usually represented by 1
and 0. The two states have no numerical ordering. For example, Gender
has two values, male and female, which have no ordering relations but are
just different. Existing distance functions for binary attributes are based on
the proportion of value matches in two data points. A match means that,
for a particular attribute, both data points have the same value. It is easy to
use a confusion matrix to introduce these measures. Given the ith and jth
data points, xi and xj, we can construct the confusion matrix in Fig. 4.16.

To give the distance functions, we further divide binary attributes into
symmetric and asymmetric attributes. For different types of attributes,
different distance functions need to be used [271]:

4.5 Distance Functions 137

a: the number of attributes with the value of 1 for both data points.
b: the number of attributes for which xif = 1 and xjf = 0, where xif (xjf) is

the value of the fth attribute of the data point xi (xj).
c: the number of attributes for which xif = 0 and xjf = 1.
d: the number of attributes with the value of 0 for both data points.

Fig. 4.16. Confusion matrix of two data points with only binary attributes

Symmetric attributes: A binary attribute is symmetric if both of its states
(0 and 1) have equal importance, and carry the same weight, e.g., male and
female of the attribute Gender. The most commonly used distance function
for symmetric attributes is the simple matching distance, which is the
proportion of mismatches (Equation (10)) of their values. We assume that
every attribute in the data set is a symmetric attribute.

dcba
cbdist ji +++

+
=),(xx (10)

We can also weight some components in Equation (10) according to ap-
plication needs. For example, we may want mismatches to carry twice the
weight of matches, or vice versa:

)(2
)(2),(

cbda
cbdist ji +++

+
=xx (11)

cbda
cbdist ji +++

+
=

)(2
),(xx (12)

Example 10: Given the following two data points, where each attribute is
a symmetric binary attribute,

x1 1 1 1 0 1 0 0
x2 0 1 1 0 0 1 0

the distance computed based on the simple matching distance is

 Data point xj
 1 0

1 a b a+b
0 c d c+d
 a+c b+d a+b+c+d

Data point xi

138 4 Unsupervised Learning

.429.0
7
3

2122
12),(==
+++

+
=jidist xx (13)

▀
Asymmetric attributes: A binary attribute is asymmetric if one of the
states is more important or valuable than the other. By convention, we use
state 1 to represent the more important state, which is typically the rare or
infrequent state. The most commonly used distance measure for asymmet-
ric attributes is the Jaccard distance:

.),(
cba

cbdist ji ++
+

=xx (14)

Similarly, we can vary the Jaccard distance by giving more weight to
(b+c) or more weight to a to express different emphases.

.
)(2

)(2),(
cba

cbdist ji ++
+

=xx (15)

.
2

),(
cba

cbdist ji ++
+

=xx (16)

Note that there is also a Jaccard coefficient, which measures similarity
(rather than distance) and is defined as a / (a+b+c).

For general nominal attributes with more than two states or values, the
commonly used distance measure is also based on the simple matching dis-
tance. Given two data points xi and xj, let the number of attributes be r, and
the number of values that match in xi and xj be q:

.),(
r

qrdist ji
−

=xx (17)

As that for binary attributes, we can give higher weights to different com-
ponents in Equation (17) according to different application characteristics.

4.5.3 Text Documents

Although a text document consists of a sequence of sentences and each
sentence consists of a sequence of words, a document is usually considered
as a “bag” of words in document clustering. The sequence and the position
information of words are ignored. Thus a document can be represented as a
vector just like a normal data point. However, we use similarity to com-
pare two documents rather than distance. The most commonly used simi-

4.6 Data Standardization 139

larity function is the cosine similarity. We will study this similarity meas-
ure in Sect. 6.2.2 when we discuss information retrieval and Web search.

4.6 Data Standardization

One of the most important steps in data pre-processing for clustering is to
standardize the data. For example, using the Euclidean distance, standardi-
zation of attributes is highly recommended so that all attributes can have
equal impact on the distance computation. This is to avoid obtaining clus-
ters that are dominated by attributes with the largest amounts of variation.

Example 11: In a 2-dimensional data set, the value range of one attribute
is from 0 to 1, while the value range of the other attribute is from 0 to
1000. Consider the following pair of data points xi: (0.1, 20) and xj: (0.9,
720). The Euclidean distance between the two points is

,700.000457)20720()1.09.0(),(22 =−+−=jidist xx (18)

which is almost completely dominated by (720−20) = 700. To deal with
the problem, we standardize the attributes, e.g., to force the attributes to
have a common value range. If both attributes are forced to have a scale
within the range 0−1, the values 20 and 720 become 0.02 and 0.72. The
distance on the first dimension becomes 0.8 and the distance on the second
dimension 0.7, which are more equitable. Then, dist(xi, xj) = 1.063. ▀

This example shows that standardizing attributes is important. In fact,
different types of attributes require different treatments. We list these
treatments below.

Interval-scaled attributes: These are numeric/continuous attributes. Their
values are real numbers following a linear scale. Examples of such attrib-
utes are age, height, weight, cost, etc. The idea is that intervals keep the
same importance through out the scale. For example, the difference in age
between 10 and 20 is the same as that between 40 and 50.

There are two main approaches to standardize interval scaled attributes,
range and z-score. The range method divides each value by the range of
valid values of the attribute so that the transformed value ranges between 0
and 1. Given the value xif of the fth attribute of the ith data point, the new
value rg(xif) is,

,
)min()max(

)min(
)(

ff
fx

xrg if
if −

−
= (19)

140 4 Unsupervised Learning

where min(f) and max(f) are the minimum value and maximum value of at-
tribute f respectively. max(f) − min(f) is the value range of the valid values
of attribute f.

The z-score method transforms an attribute value based on the mean and
the standard deviation of the attribute. That is, the z-score of the value in-
dicates how far and in what direction the value deviates from the mean of
the attribute, expressed in units of the standard deviation of the attribute.
The standard deviation of attribute f, denoted by σf, is computed with:

,
1

)(2
1

−

−
= ∑ =

n
x f

n

i if
f

µ
σ

(20)

where n is the number of data points in the data set, xif is the same as
above, and µf is the mean of attribute f, which is computed with:

.1
1∑ =

=
n

i iff x
n

µ (21)

Given the value xif, its z-score (the new value after transformation) is z(xif),

.)(
f

fif
if

x
xz

σ
µ−

= (22)

Ratio-Scaled Attributes: These are also numeric attributes taking real
values. However, unlike interval-scaled attributes, their scales are not lin-
ear. For example, the total amount of microorganisms that evolve in a time
t is approximately given by

 AeBt,

where A and B are some positive constants. This formula is referred to as
exponential growth. If we have such attributes in a data set for clustering,
we have one of the following two options:

1. Treat it as an interval-scaled attribute. This is often not recommended
due to scale distortion.

2. Perform logarithmic transformation to each value, xif, i.e.,

).log(ifx (23)

After the transformation, the attribute can be treated as an interval-
scaled attribute.

Nominal (Unordered Categorical) Attributes: As we discussed in Sect.
4.5.2, the value of such an attribute can take anyone of a set of states (also

4.7 Handling of Mixed Attributes 141

called categories). The states have no logical or numerical ordering. For
example, the attribute fruit may have the possible values, Apple, Orange,
and Pear, which have no ordering. A binary attribute is a special case of
a nominal attribute with only two states or values.

Although nominal attributes are not standardized as numeric attributes,
it is sometime useful to convert a nominal attribute to a set of binary at-
tributes. Let the number of values of a nominal attribute be v. We can then
create v binary attributes to represent them, i.e., one binary attribute for
each value. If a data instance for the nominal attribute takes a particular
value, the value of its corresponding binary attribute is set to 1, otherwise
it is set to 0. The resulting binary attributes can be used as numeric attrib-
utes. We will discuss this again in Sect. 4.7.
Example 12: For the nominal attribute fruit, we create three binary attrib-
utes called, Apple, Orange, and Pear in the new data. If a particular data
instance in the original data has Apple as the value for fruit, then in the
transformed data, we set the value of the attribute Apple to 1, and the val-
ues of attributes Orange and Pear to 0. ▀

Ordinal (Ordered Categorical) Attributes: An ordinal attribute is like a
nominal attribute, but its values have a numerical ordering. For example,
the age attribute may have the values, Young, Middle-Age and Old. The
common approach to distance computation is to treat ordinal attributes as
interval-scaled attributes and use the same methods as for interval-scaled
attributes to standardize the values of ordinal attributes.

4.7 Handling of Mixed Attributes

So far, we have assumed that a data set contains only one type of attrib-
utes. However, in practice, a data set may contain mixed attributes. That is,
it may contain any subset of the six types of attributes, interval-scaled,
symmetric binary, asymmetric binary, ratio-scaled, ordinal and nomi-
nal attributes. Clustering a data set involving mixed attributes is a chal-
lenging problem.

One way to deal with such a data set is to choose a dominant attribute
type and then convert the attributes of other types to this type. For exam-
ple, if most attributes in a data set are interval-scaled, we can convert ordi-
nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-
cussed above. It is also appropriate to treat symmetric binary attributes as
interval-scaled attributes. However, it does not make much sense to con-
vert a nominal attribute with more than two values or an asymmetric bi-
nary attribute to an interval-scaled attribute, but it is still frequently done in

142 4 Unsupervised Learning

practice by assigning some numbers to them according to some hidden or-
dering. For instance, in the example of Apple, Orange, and Pear, one may
order them according to their prices, and thus make the attribute fruit an
ordinal attribute or even an interval-scaled attribute. In the previous sec-
tion, we also saw that a nominal attribute can be converted to a set of
(symmetric) binary attributes, which in turn can be regarded as interval-
scaled attributes.

Another method of handling mixed attributes is to compute the distance
of each attribute of the two data points separately and then combine all the
individual distances to produce an overall distance. We describe one such
method, which is due to Gower [205] and is also described in [218, 271].
We describe the combination formula first (Equation (24)) and then pre-
sent the methods to compute individual distances.

.),(
1

1

∑
∑

=

== r

f
f

ij

f
ij

r

f
f

ij
ji

d
dist

δ

δ
xx (24)

This distance value is between 0 and 1. r is the number of attributes in the
data set. The indicator f

ijδ is 1 if both values xif and xjf for attribute f are
non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f is
asymmetric and the match is 0–0. Equation (24) cannot be computed if all

f
ijδ ’s are 0. In such a case, some default value may be used or one of the

data points is removed. f
ijd is the distance contributed by attribute f, and it

is in the range 0–1. If f is a binary or nominal attribute,

⎩
⎨
⎧ ≠

=
otherwise

xxif
d jfiff

ij 0
 1

 (25)

If all the attributes are nominal, Equation (24) reduces to Equation (17).
The same is true for symmetric binary attributes, in which we recover the
simple matching distance (Equation (10)). When the attributes are all
asymmetric, we obtain the Jaccard distance (Equation (14)).

If attribute f is interval-scaled, we use

f

jfiff
ij R

xx
d

|| −
= (26)

where Rf is the value range of attribute f, which is

)min()max(ffRf −= (27)

4.9 Cluster Evaluation 143

Ordinal attributes and ratio-scaled attributes are handled in the same way
after conversion.

If all the attributes are interval-scaled, Equation (24) becomes the Man-
hattan distance assuming that all attribute values are standardized by divid-
ing their values with the ranges of their corresponding attributes.

4.8 Which Clustering Algorithm to Use?

Clustering research and application has a long history. Over the years, a
vast collection of clustering algorithms has been designed. This chapter
only introduced several of the main algorithms.

Given an application data set, choosing the “best” clustering algorithm
to cluster the data is a challenge. Every clustering algorithm has limitations
and works well with only certain data distributions. However, it is very
hard, if not impossible, to know what distribution the application data fol-
lows. Worse still, the application data set may not fully follow any “ideal”
structure or distribution required by the algorithms. Apart from choosing a
suitable clustering algorithm from a large collection of available algo-
rithms, deciding how to standardize the data, to choose a suitable distance
function and to select other parameter values (e.g., k in the k-means algo-
rithm) are complex as well. Due to these complexities, the common prac-
tice is to run several algorithms using different distance functions and pa-
rameter settings, and then to carefully analyze and compare the results.

The interpretation of the results should be based on insight into the
meaning of the original data together with knowledge of the algorithms
used. That is, it is crucial that the user of a clustering algorithm fully un-
derstands the algorithm and its limitations. He/she should also have the
domain expertise to examine the clustering results. In many cases, generat-
ing cluster descriptions using a supervised learning method (e.g., decision
tree induction) can be particularly helpful to the analysis and comparison.

4.9 Cluster Evaluation

After a set of clusters is found, we need to assess the goodness of the clus-
ters. Unlike classification, where it is easy to measure accuracy using la-
beled test data, for clustering nobody knows what the correct clusters are
given a data set. Thus, the quality of a clustering is much harder to evalu-
ate. We introduce a few commonly used evaluation methods below.

144 4 Unsupervised Learning

User Inspection: A panel of experts is asked to inspect the resulting clus-
ters and to score them. Since this process is subjective, we take the average
of the scores from all the experts as the final score of the clustering. This
manual inspection is obviously a labor intensive and time consuming task.
It is subjective as well. However, in most applications, some level of man-
ual inspection is necessary because no other existing evaluation methods
are able to guarantee the quality of the final clusters. It should be noted
that direct user inspection may be easy for certain types of data, but not for
others. For example, user inspection is not hard for text documents because
one can read them easily. However, for a relational table with only num-
bers, staring at the data instances in each cluster makes no sense. The user
can only meaningfully study the centroids of the clusters, or rules that
characterize the clusters generated by a decision tree algorithm or some
other supervised learning methods (see Sect. 4.3.1).

Ground Truth: In this method, classification data sets are used to evalu-
ate clustering algorithms. Recall that a classification data set has several
classes, and each data instance/point is labeled with one class. Using such
a data set for cluster evaluation, we make the assumption that each class
corresponds to a cluster. For example, if a data set has three classes, we as-
sume that it has three clusters, and we request the clustering algorithm to
also produce three clusters. After clustering, we compare the cluster mem-
berships with the class memberships to determine how good the clustering
is. A variety of measures can be used to assess the clustering quality, e.g.,
entropy, purity, precision, recall, and F-score.

To facilitate evaluation, a confusion matrix can be constructed from the
resulting clusters. From the matrix, various measurements can be com-
puted. Let the set of classes in the data set D be C = (c1, c2, …, ck). The
clustering method also produces k clusters, which partition D into k dis-
joint subsets, D1, D2, …, Dk.

Entropy: For each cluster, we can measure its entropy as follows:

),(Prlog)(Pr)(
1

2 ji

k

j
jii ccDentropy ∑

=

−= (28)

where Pri(cj) is the proportion of class cj data points in cluster i or Di. The
total entropy of the whole clustering (which considers all clusters) is

.)(
||
||)(

1
∑
=

×=
k

i
i

i
total Dentropy

D
DDentropy (29)

4.9 Cluster Evaluation 145

Purity: This measures the extent that a cluster contains only one class of
data. The purity of each cluster is computed with

)).((Prmax)(jiji cDpurity = (30)

The total purity of the whole clustering (considering all clusters) is

.)(
||
||)(

1
∑
=

×=
k

i
i

i
total Dpurity

D
DDpurity (31)

Precision, recall, and F-score can be computed as well for each cluster
based on the class that is the most frequent in the cluster. Note that these
measures are based on a single class (see Sect. 3.3.2).

Example 13: Assume we have a text collection D of 900 documents from
three topics (or three classes), Science, Sports, and Politics. Each class has
300 documents, and each document is labeled with one of the topics
(classes). We use this collection to perform clustering to find three clus-
ters. Class/topic labels are not used in clustering. After clustering, we want
to measure the effectiveness of the clustering algorithm.

First, a confusion matrix (Fig. 4.17) is constructed based on the cluster-
ing results. From Fig. 4.17, we see that cluster 1 has 250 Science docu-
ments, 20 Sports documents, and 10 Politics documents. The entries of the
other rows have similar meanings. The last two columns list the entropy
and purity values of each cluster and also the total entropy and purity of
the whole clustering (last row). We observe that cluster 1, which contains
mainly Science documents, is a much better (or purer) cluster than the
other two. This fact is also reflected by both their entropy and purity val-
ues.

Cluster Science Sports Politics Entropy Purity
1 250 20 10 0.589 0.893
2 20 180 80 1.198 0.643
3 30 100 210 1.257 0.617

Total 300 300 300 1.031 0.711

Fig. 4.17. Confusion matrix with entropy and purity values

Obviously, we can use the total entropy or the total purity to compare
different clustering results from the same algorithm with different parame-
ter settings or from different algorithms.

Precision and recall may be computed similarly for each cluster. For ex-
ample, the precision of Science documents in cluster 1 is 0.89. The recall

146 4 Unsupervised Learning

of Science documents in cluster 1 is 0.83. The F-score for Science docu-
ments is thus 0.86. ▀

A final remark about this evaluation method is that although an algo-
rithm may perform well on some labeled data sets, there is no guarantee
that it will perform well on the actual application data at hand, which has
no class labels. However, the fact that it performs well on some labeled
data sets does give us some confidence on the quality of the algorithm.
This evaluation method is said to be based on external data or informa-
tion.

There are also methods that evaluate clusters based on the internal in-
formation in the clusters (without using external data with class labels).
These methods measure intra-cluster cohesion (compactness) and inter-
cluster separation (isolation). Cohesion measures how near the data
points in a cluster are to the cluster centroid. Sum of squared error (SSE) is
a commonly used measure. Separation measures how far apart different
cluster centroids are from one another. Any distance functions can be used
for the purpose. We should note, however, that good values for these
measurements do not always mean good clusters. In most applications, ex-
pert judgments are still the key. Clustering evaluation remains to be a very
difficult problem.

Indirect Evaluation: In some applications, clustering is not the primary
task. Instead, it is used to help perform another more important task. Then,
we can use the performance on the primary task to determine which clus-
tering method is the best for the task. For instance, in a Web usage mining
application, the primary task is to recommend books to online shoppers. If
the shoppers can be clustered according to their profiles and their past pur-
chasing history, we may be able to provide better recommendations. A few
clustering methods can be tried, and their results are then evaluated based
on how well they help with the recommendation task. Of course, here we
assume that the recommendation results can be reliably evaluated.

4.10 Discovering Holes and Data Regions

In this section, we wander a little to discuss something related but quite
different from the preceding algorithms. We show that unsupervised learn-
ing tasks may be performed by using supervised learning techniques [350].

In clustering, data points are grouped into clusters according to their dis-
tances (or similarities). However, clusters only represent one aspect of the
hidden knowledge in data. Another aspect that we have not studied is the
holes. If we treat data instances as points in an r-dimensional space, a hole

4.10 Discovering Holes and Data Regions 147

is simply a region in the space that contains no or few data points. The ex-
istence of holes is due to the following two reasons:

1. insufficient data in certain areas, and/or
2. certain attribute-value combinations are not possible or seldom occur.

Although clusters are important, holes in the space can be quite useful
too. For example, in a disease database we may find that certain symptoms
and/or test values do not occur together, or when a certain medicine is
used, some test values never go beyond certain ranges. Discovery of such
information can be of great importance in medical domains because it
could mean the discovery of a cure to a disease or some biological laws.

The technique discussed in this section aims to divide the data space
into two types of regions, data regions (also called dense regions) and
empty regions (also called sparse regions). A data region is an area in the
space that contains a concentration of data points and can be regarded as a
cluster. An empty region is a hole. A supervised learning technique similar
to decision tree induction is used to separate the two types of regions. The
algorithm (called CLTree for CLuser Tree [350]) works for numeric at-
tributes, but can be extended to discrete or categorical attributes.

Decision tree learning is a popular technique for classifying data of
various classes. For a decision tree algorithm to work, we need at least two
classes of data. A clustering data set, however, has no class label for each
data point. Thus, the technique is not directly applicable. However, the
problem can be dealt with by a simple idea.

We can regard each data instance/point in the data set as having a class
label Y. We assume that the data space is uniformly distributed with an-
other type of points, called non-existing points, which we will label N.
With the N points added to the original data space, our problem of parti-
tioning the data space into data regions and empty regions becomes a su-
pervised classification problem. The decision tree algorithm can be
adapted to solve the problem. Let us use an example to illustrate the idea.

Example 14: Figure 4.18(A) gives a 2-dimensional space with 24 data (Y)
points. Two data regions (clusters) exist in the space. We then add some
uniformly distributed N points (represented by “o”) to the data space (Fig.
4.18(B)). With the augmented data set, we can run a decision tree algo-
rithm to obtain the partitioning of the space in Fig. 4.18(B). Data regions
and empty regions are separated. Each region is a rectangle, which can be
expressed as a rule. ▀

The reason that this technique works is that if there are clusters (or
dense data regions) in the data space, the data points cannot be uniformly
distributed in the entire space. By adding some uniformly distributed N

148 4 Unsupervised Learning

points, we can isolate data regions because within each data region there
are significantly more Y points than N points. The decision tree technique
is well known for this partitioning task.

Fig. 4.18. Separating data and empty regions using a decision tree

An interesting question is: can the task be performed without physically
adding the N points to the original data? The answer is yes. Physically add-
ing N points increases the size of the data and thus the running time. A
more important issue is that it is unlikely that we can have points truly uni-
formly distributed in a high-dimensional space as we would need an expo-
nential number of them. Fortunately, we do not need to physically add any
N points. We can compute them when needed. The CLTree method is able
to produce the partitioning in Fig. 4.18(C) with no N points added. The de-
tails are quite involved. Interested readers can refer to [350]. This method
has some interesting characteristics:

• It provides descriptions or representations of the resulting data regions
and empty regions in terms of hyper-rectangles, which can be expressed
as rules as we have seen in Sect. 3.2 of Chap. 3 and in Sect. 4.3.1. Many
applications require such descriptions, which can be easily interpreted
by users.

• It automatically detects outliers, which are data points in empty regions.
• It may not use all attributes in the data just as in decision tree building

(A): The original data space

 (B). Partitioning with added (C). Partitioning without adding
N points N points.

Bibliographic Notes 149

for supervised learning. That is, it can automatically determine what at-
tributes are important and what are not. This means that it can perform
subspace clustering, i.e., finding clusters that exist in some subspaces
(represented by some subsets of the attributes) of the original space.

This method also has limitations. The main limitation is that data re-
gions of irregular shapes are hard to handle since decision tree learning
only generates hyper-rectangles (formed by axis-parallel hyper-planes),
which are rules. Hence, an irregularly shaped data or empty region may be
split into several hyper-rectangles. Post-processing is needed to join them
if desired (see [350] for additional details).

Bibliographic Notes

Clustering or unsupervised learning has a long history and a very large
body of work. This chapter described only some widely used core algo-
rithms. Most other algorithms are variations or extensions of these meth-
ods. For a comprehensive coverage of clustering, please refer to several
books dedicated to clustering, e.g., those by Everitt [167], Hartigan [222],
Jain and Dubes [252], Kaufman and Rousseeuw [271], and Mirkin [383].
Most data mining texts also have excellent coverage of clustering tech-
niques, e.g., Han and Kamber [218] and Tan et al. [512], which have influ-
enced the writing of this chapter. Below, we review some more recent de-
velopments on clustering and give some further readings.

A density-based clustering algorithm based on local data densities was
proposed by Ester et al. [164] and Xu et al. [564] for finding clusters of ar-
bitrary shapes. Hinneburg and Keim [239], Sheikholeslami et al. [485] and
Wang et al. [538] proposed several grid-based clustering methods which
first partition the space into small grids. A popular neural network cluster-
ing algorithm is the Self-Organizing Map (SOM) by Kohonen [287].
Fuzzy clustering (e.g., fuzzy c-means) was studied by Bezdek [50] and
Dunn [157]. Cheeseman et al. [94] and Moore [396] studied clustering us-
ing mixture models. The method assumes that clusters are a mixture of
Gaussians and uses the EM algorithm [127] to learn a mixture density. We
will see in Chap. 5 that EM based partially supervised learning algorithms
are basically clustering methods with some given initial seeds.

Most clustering algorithms work on numeric data. Categorical data
and/or transaction data clustering were investigated by Barbará et al. [36],
Ganti et al. [193], Gibson et al. [197], Guha et al. [212], Wang et al. [537],
etc. A related area in artificial intelligence is the conceptual clustering,
which was studied by Fisher [178], Misha et al. [384] and many others.

150 4 Unsupervised Learning

Many clustering algorithms, e.g., hierarchical clustering algorithms,
have high time complexities and are thus not suitable for large data sets.
Scaling up such algorithms becomes an important issue for large applica-
tions. Several researchers have designed techniques to scale up clustering
algorithms, e.g., Bradley et al. [61], Guha et al. [211], Ng and Han [406],
and Zhang et al. [610].

In recent years, there were quite a few new developments in clustering.
The first one is subspace clustering. Traditional clustering algorithms use
the whole space to find clusters, but natural clusters may exist in only
some sub-spaces. That is, some clusters may only use certain subsets of the
attributes. This problem was investigated by Agrawal et al. [8], Aggarwal
et al. [4], Aggarwal and Yu [5], Cheng et al. [99], Liu et al. [350], Zaki et
al. [590], and many others.

The second new research is semi-supervised clustering, which means
that the user can provide some initial information to guide the clustering
process. For example, the user can select some initial seeds [39] and/or
specify some constraints, e.g., must-link (two points must be in the same
cluster) and cannot-link (two points cannot be in the same cluster) [528].

The third is the spectral clustering, which emerged from several fields,
e.g., VLSI [17] and computer vision [481, 489, 542]. It clusters data points
by computing eigenvectors of the similarity matrix. Recently, it was also
studied in machine learning and data mining [141, 404, 594].

Yet another new research is co-clustering, which simultaneously clus-
ters both rows and columns. This approach was studied by Cheng and
Church [100], Dhillon [134], Dhillon et al. [135], and Hartigan [223].

Regarding document and Web page clustering, most implementations
are still based on k-means and hierarchical clustering methods, or their
variations but using text specific similarity or distance functions. Steinbach
et al. [506], and Zhao and Karypis [614, 615] experimented with k-means
and agglomerative hierarchical clustering methods and also proposed some
improvements. Many researchers also worked on clustering of search en-
gine results (or snippets) to organize search results into different topics,
e.g., Hearst and Pedersen [233], Kummamuru et al. [294], Leouski and
Croft [311], Zamir and Etzioni [591, 592], and Zeng et al. [593].

5 Partially Supervised Learning

In supervised learning, the learning algorithm uses labeled training exam-
ples from every class to generate a classification function. One of the
drawbacks of this classic paradigm is that a large number of labeled exam-
ples are needed in order to learn accurately. Since labeling is often done
manually, it can be very labor intensive and time consuming. In this chap-
ter, we study two partially supervised learning tasks. As their names sug-
gest, these two learning tasks do not need full supervision, and thus are
able to reduce the labeling effort. The first is the task of learning from la-
beled and unlabeled examples, which is commonly known as semi-
supervised learning. In this chapter, we also call it LU learning (L and U
stand for “labeled” and “unlabeled” respectively). In this learning setting,
there is a small set of labeled examples of every class, and a large set of
unlabeled examples. The objective is to make use of the unlabeled exam-
ples to improve learning.

The second is the task of learning from positive and unlabeled exam-
ples. This problem assumes two-class classification. However, the training
data only has a set of labeled positive examples and a set of unlabeled ex-
amples, but no labeled negative examples. In this chapter, we also call this
problem PU learning (P and U stand for “positive” and “unlabeled” re-
spectively). The objective is to build an accurate classifier without labeling
any negative examples. We study these two problems in the context of text
classification and Web page classification in this chapter. However, the
general ideas and the algorithms are also applicable to other kinds of clas-
sification tasks.

5.1 Learning from Labeled and Unlabeled Examples

As we described in Chap. 3, the common approach to learning a classifica-
tion function is to label a set of examples with some pre-defined categories
or classes, and then use a learning algorithm to produce a classifier. This
classifier is applied to assign classes to future instances (or test data). In
the context of text classification and Web page classification, the examples
are text documents and Web pages. This approach to building a classifier

With Wee Sun Lee

152 5 Partially Supervised Learning

is called supervised learning because the training documents/pages have
been labeled with pre-defined classes.

The main bottleneck of building such a classifier is that a large, often
prohibitive, number of labeled training documents are needed to build ac-
curate classifiers. In text classification, the labeling is typically done
manually by reading the documents, which is a time consuming task.
However, we cannot eliminate labeling completely because without it a
machine learning algorithm will not know what the user is interested in.
Although unsupervised learning or clustering may help to some extent,
clustering does not guarantee to produce the categorization results required
by the user. This raises an important question: Can the manual labeling ef-
fort be reduced, and can other sources of information be used so that the
number of labeled examples required for learning would not be too large?

This section addresses the problem of learning from a small set of la-
beled examples and a large set of unlabeled examples, i.e., LU learning.
Thus, in this setting only a small set of examples needs to be labeled for
each class. However, since a small set of labeled examples is not sufficient
for building an accurate classifier, a large number of unlabeled examples
are utilized to help. One key point to note is that although the number may
be small, every class must have some labeled examples.

In many applications, unlabeled examples are easy to come by. This is
especially true for online documents. For example, if we want to build a
classifier to classify news articles into different categories or classes, it is
fairly easy to collect a huge number of unlabeled news articles from the
Web. In fact, in many cases, the new data that need to be classified (which
have no class labels) can be used as the unlabeled examples.

The question is: why do the unlabeled data help? In the context of text
classification, one reason is that the unlabeled data provide information on
the joint probability distribution over words. For example, using only the
labeled data we find that documents containing the word “homework” tend
to belong to a particular class. If we use this fact to classify the unlabeled
documents, we may find that “lecture” co-occurs with “homework” fre-
quently in the unlabeled set. Then, “lecture” may also be an indicative
word for the class. Such correlations provide a helpful source of informa-
tion to increase classification accuracy, especially when the labeled data
are scarce.

Several researchers have shown that unlabeled data help learning. That
is, under certain conditions using both labeled and unlabeled data in learn-
ing is better than using a small set of labeled data alone. Their techniques
can thus alleviate the labor-intensive labeling effort. We now study some
of these learning techniques, and also discuss their limitations.

5.1 Learning from Labeled and Unlabeled Examples 153

5.1.1 EM Algorithm with Naïve Bayesian Classification

One of the LU learning techniques uses the Expectation–Maximization
(EM) algorithm [127]. EM is a popular iterative algorithm for maximum
likelihood estimation in problems with missing data. The EM algorithm
consists of two steps, the Expectation step (or E-step), and the Maximi-
zation step (or M-step). The E-step basically fills in the missing data
based on the current estimation of the parameters. The M-step, which
maximizes the likelihood, re-estimates the parameters. This leads to the
next iteration of the algorithm, and so on. EM converges to a local mini-
mum when the model parameters stabilize.

The ability of EM to work with missing data is exactly what is needed
for learning from labeled and unlabeled examples. The documents in the
labeled set (denoted by L) all have class labels (or values). The documents
in the unlabeled set (denoted by U) can be regarded as having missing
class labels. We can use EM to estimate them based on the current model,
i.e., to assign probabilistic class labels to each document di in U, i.e.,
Pr(cj|di). After a number of iterations, all probabilities will converge.

Note that the EM algorithm is not really a specific “algorithm”, but is a
framework or strategy. It simply runs a base algorithm iteratively. We will
use the naïve Bayesian (NB) algorithm discussed in Sect. 3.7 as the base
algorithm, and run it iteratively. The parameters that EM estimates in this
case are the probability of each word given a class and the class prior
probabilities (see Equation (27) and (28) in Sect. 3.7 of Chap. 3).

Although it is quite involved to derive the EM algorithm with the NB
classifier, it is fairly straightforward to implement and to apply the algo-
rithm. That is, we use a NB classifier in each iteration of EM, Equation
(29) in Chap. 3 for the E-step, and Equations (27) and (28) in Chap. 3 for
the M-step. Specifically, we first build a NB classifier f using the labeled
examples in L. We then use f to classify the unlabeled examples in U, more
accurately to assign a probability to each class for every unlabeled exam-
ple, i.e., Pr(cj|di), which takes the value in [0, 1] instead of {0, 1}. Some
explanations are in order here.

Let the set of classes be C = {c1, c2, …, c|C|}. Each iteration of EM will
assign every example di in U a probability distribution on the classes that it
may belong to. That is, it assigns di the class probabilities of Pr(c1|di),
Pr(c2|di), …, Pr(c|C||di). This is different from the example in the labeled set
L, where each document belongs to only a single class ck, i.e., Pr(ck|di) = 1
and Pr(cj|di) = 0 for j ≠ k.

Based on the assignments of Pr(cj|di) to each document in U, a new NB
classifier can be constructed. This new classifier can use both the labeled
set L and the unlabeled set U as the examples in U now have probabilistic

154 5 Partially Supervised Learning

labels, Pr(cj|di). This leads to the next iteration. The process continues until
the classifier parameters (Pr(wt|cj) and Pr(cj)) no longer change (or have
minimum changes).

The EM algorithm with NB classification was proposed for LU learning
by Nigam et al. [413]. The algorithm is shown in Fig. 5.1. EM here can
also be seen as a clustering method with some initial seeds (labeled data)
in each cluster. The class labels of the seeds indicate the class labels of the
resulting clusters.

The derivation of the EM algorithm in Fig. 5.1 is quite involved and is
given as an appendix at the end of this chapter. Two assumptions are made
in the derivation. They are in fact the two mixture model assumptions in
Sect. 3.7 of Chap. 3 for deriving the naïve Bayesian classifier for text clas-
sification, i.e.,

1. the data is generated by a mixture model, and
2. there is a one-to-one correspondence between mixture components and

classes.

It has been shown that the EM algorithm in Fig. 5.1 works well if the
two mixture model assumptions for a particular data set are true. Note that
although naïve Bayesian classification makes additional assumptions as we
discussed in Sect. 3.7 of Chap. 3, it performs surprisingly well despite the
obvious violation of the assumptions. The two mixture model assumptions,
however, can cause major problems when they do not hold. In many real-
life situations, they may be violated. It is often the case that a class (or
topic) contains a number of sub-classes (or sub-topics). For example, the
class Sports may contain documents about different sub-classes of sports,

Algorithm EM(L, U)
1 Learn an initial naïve Bayesian classifier f from only the labeled set L (us-

ing Equations (27) and (28) in Chap. 3);
2 repeat

 // E-Step
3 for each example di in U do
4 Using the current classifier f to compute Pr(cj|di) (using Equation

(29) in Chap. 3).
5 end

 // M-Step
6 learn a new naïve Bayesian classifier f from L ∪ U by computing Pr(cj)

and Pr(wt|cj) (using Equations (27) and (28) in Chap. 3).
7 until the classifier parameters stabilize
Return the classifier f from the last iteration.

Fig. 5.1. The EM algorithm with naïve Bayesian classification

5.1 Learning from Labeled and Unlabeled Examples 155

e.g., Baseball, Basketball, Tennis, and Softball. Worse still, a class cj may
even contain documents from completely different topics, e.g., Science,
Politics, and Sports. The first assumption above is usually not a problem.
The second assumption is critical. If the condition holds, EM works very
well and is particularly useful when the labeled set is very small, e.g.,
fewer than five labeled documents per class. In such cases, every iteration
of EM is able to improve the classifier dramatically. However, if the sec-
ond condition does not hold, the classifier from each iteration can become
worse and worse. That is, the unlabeled set hurts learning instead of help-
ing it.

Two methods are proposed to remedy the situation.

Weighting the Unlabeled Data: In LU learning, the labeled set is small,
but the unlabeled set is very large. So the EM’s parameter estimation is
almost completely determined by the unlabeled set after the first iteration.
This means that EM essentially performs unsupervised clustering. When
the two mixture model assumptions are true, the natural clusters of the data
are in correspondence with the class labels. The resulting clusters can be
used as the classifier. However, when the assumptions are not true, the
clustering can go very wrong, i.e., the clustering may not converge to mix-
ture components corresponding to the given classes, and are therefore det-
rimental to classification accuracy. In order to reduce the effect of the
problem, we can weight down the unlabeled data during parameter estima-
tion (EM iterations). Specifically, we change the computation of Pr(wt|cj)
(Equation (27) in Chap. 3) to the following, where the counts of the unla-
beled documents are decreased by a factor of µ, 0 ≤ µ ≤ 1:

,
)|Pr()(||

)|Pr()(
)|Pr(||

1

||

1

||

1

∑ ∑
∑

= =

=

Λ+

Λ+
= V

s

D

i ijti

D

i ijti
jt

dcNiV

dcNi
cw

λ

λ
 (1)

where

⎩
⎨
⎧

∈
∈

=Λ
. if1

 if
)(

Ld
Ud

i
i

iµ (2)

When µ = 1, each unlabeled document is weighted the same as a labeled
document. When µ = 0, the unlabeled data are not considered. The value of
µ can be chosen based on leave-one-out cross-validation accuracy on the
labeled training data. The µ value that gives the best result is used.

Finding Mixture Components: Instead of weighting unlabeled data low,
we can attack the problem head on, i.e., by finding the mixture components
(sub-classes) of the class. For example, the original class Sports may con-

156 5 Partially Supervised Learning

sist of documents from Baseball, Tennis, and Basketball, which are three
mixture components (sub-classes or sub-topics) of Sports. Instead of using
the original class, we try to find these components and treat each of them
as a class. That is, if we can find the three mixture components, we can use
them to replace the class Sports. There are several automatic approaches
for identifying mixture components. For example, a hierarchical clustering
technique was proposed in [111] to find the mixture components, which
showed good performances. A simple approach based on leave-one-out
cross-validation on the labeled training set was also given in [413].

Manually identifying different components may not be a bad option for
text documents because one only needs to read the documents in the la-
beled set (or some sampled unlabeled documents), which is very small.

5.1.2 Co-Training

Co-training is another approach to learning from labeled and unlabeled ex-
amples. This approach assumes that the set of attributes (or features) in the
data can be partitioned into two subsets. Each of them is sufficient for
learning the target classification function. For example, in Web page clas-
sification, one can build a classifier using either the text appearing on the
page itself, or the anchor text attached to hyperlinks pointing to the page
from other pages on the Web. This means that we can use the same train-
ing data to build two classifiers using two subsets of features.

Traditional learning algorithms do not consider this division of features
(attributes), or feature redundancy. All the features are pooled together in
learning. In some cases, feature selection algorithms are applied to remove
redundant features. Co-training exploits this feature division to learn sepa-
rate classifiers over each of the feature sets, and utilizes the fact that the
two classifiers must agree on their labeling of the unlabeled data to do LU
learning.

Blum and Mitchell [55] formalize the co-training setting and provide a
theoretical guarantee for accurate learning subject to certain assumptions.
In the formalization, we have an example (data) space X = X1 × X2, where
X1 and X2 provide two different “views” of the example. That is, each ex-
ample x (represented as a vector) is given as a pair (x1, x2). This simply
means that the set of features (or attributes) is partitioned into two subsets.
Each “view” or feature subset is sufficient for correct classification. Under
some further assumptions, it was proven that co-training algorithms can
learn from unlabeled data starting from only a weak classifier built using
the small set of labeled training documents.

5.1 Learning from Labeled and Unlabeled Examples 157

The first assumption is that the example distribution is compatible with
the target functions; that is, for most examples, the target classification
functions over the feature sets predict the same label. In other words, if f
denotes the combined classifier, f1 denotes the classifier learned from X1, f2
denotes the classifier learned from X2 and c is the actual class label of ex-
ample x, then f(x) = f1(x1) = f2(x2) = c for most examples.

The second assumption is that the features in one set of an example are
conditionally independent of the features in the other set, given the class
of the example. In the case of Web page classification, this assumes that
the words on a Web page are not related to the words on its incoming hy-
perlinks, except through the class of the Web page. This is a somewhat un-
realistic assumption in practice.

The co-training algorithm explicitly uses the feature split to learn from
labeled and unlabeled data. The algorithm is iterative. The main idea is that
in each iteration, it learns a classifier from the labeled set L with each sub-
set of the features, and then applies the classifier to classify (or label) the
unlabeled examples in U. A number (ni) of most confidently classified ex-
amples in U from each class ci are added to L. This process ends when U
becomes empty (or a fixed number of iterations is reached). In practice, we
can set a different ni for a different class ci depending on class distribu-
tions. For example, if a data set has one third of class 1 examples and two
thirds of class 2 examples, we can set n1 = 1 and n2 = 2.

The whole co-training algorithm is shown in Fig. 5.2. Lines 2 and 3
build two classifiers f1 and f2 from the two “views” of the data respectively.
f1 and f2 are then applied to classify the unlabeled examples in U (lines 4
and 5). Some most confidently classified examples are removed from U
and added to L. The algorithm then goes to the next iteration.

Algorithm co-training(L, U)
1 repeat
2 Learn a classifier f1 using L based on only x1 portion of the examples x.
3 Learn a classifier f2 using L based on only x2 portion of the examples x.
4 Apply f1 to classify the examples in U, for each class ci, pick ni examples

that f1 most confidently classifies as class ci, and add them to L.
5 Apply f2 to classify the examples in U, for each class ci, pick ni examples

that f2 most confidently classifies as class ci, and add them to L.
6 until U becomes empty or a fixed number of iterations are reached

Fig. 5.2. A co-training algorithm

When the co-training algorithm ends, it returns two classifiers. At classi-
fication time, for each test example the two classifiers are applied sepa-
rately and their scores are combined to decide the class. For naïve Bayes-
ian classifiers, we multiply the two probability scores, i.e.,

158 5 Partially Supervised Learning

Pr(cj|x) = Pr(cj|x1)Pr(cj|x2) (3)

The key idea of co-training is that classifier f1 adds examples to the la-
beled set that are used for learning f2 based on the X2 view, and vice versa.
Due to the conditional independence assumption, the examples added by f1
can be considered as new and random examples for learning f2 based on the
X2 view. Then the learning will progress. The situation is illustrated in Fig.
5.3. This example has classes, positive and negative, and assumes linear
separation of the two classes. In the X1 view (Fig. 5.3(A)), the circled ex-
amples are most confident positive and negative examples classified (or
labeled) by f1 in the unlabeled set U. In the X2 view (Fig. 5.3(B)), these cir-
cled examples appear randomly. With these random examples from U
added to L, a better f2 will be learned in the next iteration.

Fig. 5.3. Two views of co-training.

However, if the added examples to L are not random examples in the X2
space but very similar to the situation in Fig. 5.3(A), then these examples
are not informative to learning. That is, if the two subsets of features are
correlated given the class or the conditional independence assumption is
violated, the added examples will not be random but isolated in a specific
region similar to those in Fig. 5.3(A). Then they will not be as useful or in-
formative to learning. Consequently, co-training will not be effective.

In [411], it is shown that co-training produces more accurate classifiers
than the EM algorithm presented in the previous section, even for data sets
whose feature division does not completely satisfy the strict requirements
of compatibility and conditional independence.

5.1.3 Self-Training

Self-training, which is similar to both EM and co-training, is another
method for LU learning. It is an incremental algorithm that does not use
the split of features. Initially, a classifier (e.g., naïve Bayesian classifier) is

+

+

+

+

+ +
+

+ +

+
+

+

+

+

+ +
+

+

+

−
− −

−
−

− −
−

− −
−

−
+

+

−

−

−

− −

−
−

−

−
+

+

+
+ +
+

+
+

+ +

+ +

+

+

−
−
−

−
−

−

−
−

−
−

−

−

−

−

−

+
+

+

+ ++

−
−

− −
−
−

−

(A) X1 view: data in U labeled by h1 (B) X2 view: the same data

5.1 Learning from Labeled and Unlabeled Examples 159

trained with the small labeled set considering all features. The classifier is
then applied to classify the unlabeled set. Those most confidently classi-
fied (or unlabeled) documents of each class, together with their predicted
class labels, are added to the labeled set. The classifier is then re-trained
and the procedure is repeated. This process iterates until all the unlabeled
documents are given class labels. The basic idea of this method is that the
classifier uses its own predictions to teach itself.

5.1.4 Transductive Support Vector Machines

Support vector machines (SVM) is one of the most effective methods for
text classification. One way to use unlabeled data in training SVM is by se-
lecting the labels of the unlabeled data in such a way that the resulting
margin of the classifier is maximized. Training for the purpose of labeling
known (unlabeled) test instances is referred to as transduction, giving rise
to the name transductive SVM [526]. An example of how transduction
can change the decision boundary is shown in Fig. 5.4. In this example, the
old decision boundary, constructed using only labeled data, would have a
very small margin on the unlabeled data. By utilizing the unlabeled data in
the training process, a classifier that has the largest margin on both the la-
beled and unlabeled data can be obtained.

y = 1

y = -1
x-

x+

Old decision boundary

New decision
boundary

Fig. 5.4. The old decision boundary (before the addition of unlabeled data) and the
new decision boundary created by transductive SVM. The unlabeled data are indi-
cated by circles around them

The main difficulty with applying transductive SVM is the computa-
tional complexity. When all the labels are observed, training SVM is a
convex optimization problem that can be solved efficiently. The problem

160 5 Partially Supervised Learning

of assigning labels to unlabeled examples in such a way that the resulting
margin of the classifier is maximized can no longer be solved efficiently.

To solve the problem, Joachims [259] used a sub-optimal iterative
method that starts by learning a classifier using only the labeled data. The
method then treats a subset of unlabeled instances that are most confi-
dently labeled positive by the learned classifier as initial positive examples
while the rest of the unlabeled examples are treated as initial negative ex-
amples. The number of instances to label as positive can be specified by
the user to change the precision–recall trade-off and is maintained through-
out the iterations. The method then tries to improve the soft margin cost
function by iteratively changing the labels of some of the instances and re-
training the SVM. The ratio of positive to negative instances is maintained
by selecting one positively labeled instance p and one negatively labeled
instance q to change in each iteration. It was shown in [259] that if the two
instances are selected such that the slack variables ξp > 0, ξq > 0 and ξp +
ξq > 2, the soft margin cost function will decreases at each iteration. Fur-
ther improvements described in [259] include allowing the soft margin er-
ror of unlabeled examples to be penalized differently from the soft margin
error of the labeled examples and penalizing the soft margin error on the
positive unlabeled examples differently from the soft margin error on the
negative unlabeled examples. The penalty on the unlabeled examples is
also iteratively increased from a small value to the desired value. This may
improve the chances of finding a good local optimum as it may be easier to
improve the cost function when the penalty is small. The method was ap-
plied successfully to text classification problems.

Like other methods of learning from labeled and unlabeled examples,
transductive SVM can be sensitive to its assumptions. When the large
margin assumption is correct on the dataset, it may improve performance
but when the assumption is incorrect, it can decrease performance com-
pared to supervised learning. As an example, the transductive SVM per-
formed poorly using small labeled data sets when separating Project Web
pages from other types of university Web pages in [259]. It was conjec-
tured that, with a small number of labeled data, separating the Web pages
according to some of the underlying topics of the Web pages may give a
larger margin than separating them according to whether the Web pages
are Project pages or not.

5.1.5 Graph-Based Methods

Graph-based LU learning methods can be viewed as extensions of nearest
neighbor supervised learning algorithms that work with both labeled and

5.1 Learning from Labeled and Unlabeled Examples 161

unlabeled instances. The basic idea in these methods is to treat labeled and
unlabeled instances as vertices in a graph where a similarity function is
used to define the edge weights between instances. The graph, with similar
instances connected by larger weights, is then used to help label the unla-
beled instances in such a way that labels of vertices connected by edges
with large weights tend to agree with each other. Methods used for con-
structing the graphs include connecting each instance to its k-nearest
neighbors, connecting each instance to other instances within a certain dis-
tance δ and using a fully connected graph with an exponentially decreasing
similarity function such as the Gaussian function to assign the weights.
The assumptions used in these methods are similar to those of the nearest
neighbor classifier, that is, near neighbors should have the same labels and
we have a good measure of similarity between instances. We discuss three
types of graph-based LU learning methods below: mincut, Gaussian
fields and spectral graph transducer. All three methods work on binary
classification problems but, like the support vector machines, can be used
with strategies such as one-against-rest for solving multiple class classifi-
cation problems.

Mincut: This method was proposed by Blum and Chalwa [54]. A
weighted graph G = (V, E, W) is constructed first, where V consists of the
labeled and unlabeled instances, E consists of edges between the instances
and W is a function on the edges with W(i, j) = wij denoting the similarity
of instances i and j. The vertices associated with labeled instances are then
given values from {0, 1} consistent with their binary labels. The idea in the
mincut algorithm is to find an assignment of values vi from the set {0, 1}
to the unlabeled instances in V such that the cost function ∑ ∈

−
Eji jiij vvw

),(
||

is minimized. The advantage of this formulation is that the problem can be
solved in polynomial time even though it is a combinatorial optimization
problem. One way to do this is to transform the problem into a max-flow
problem (see [116] for a description of the max-flow problem). To do that,
we convert the graph into a flow network by introducing a source vertex v+
and a sink vertex v−, where the source vertex is connected by edges with
infinite capacities to the positive labeled instances while the sink vertex is
connected by edges with infinite capacities to the negative labeled in-
stances. The other edge weights in the graph are also treated as edge ca-
pacities in the flow network. A cut of the network is a partition of the ver-
tices into two subsets V+ and V− such that v+ ∈ V+ and v− ∈ V−. A minimum
cut is a partition that has the smallest sum of capacities in the edges con-
necting V+ and V−. Finding a minimum cut is equivalent to minimizing the
function ∑ ∈

−
Eji jiij vvw

),(
|| since all the vertices are assigned values from {0,

162 5 Partially Supervised Learning

1}. Max-flow algorithms can be used to efficiently find a mincut of the
network in time O(|V|3).

Gaussian Fields: Instead of minimizing ∑ ∈
−

Eji jiij vvw
),(

|| , Zhu et al. [619]

proposed minimizing ∑ ∈
−

Eji jiij vvw
),(

2)(with the value of the vertices being

selected from [0, 1] instead of {0, 1}. The advantage of using this formula-
tion is that it allows the solution to be obtained using linear algebra. Let W
be the weight matrix corresponding to the graph,

⎥
⎦

⎤
⎢
⎣

⎡
=

UUUL

LULL

WW
WW

W , (4)

where WLL , WLU , WUL and WUU are sub-matrices with the subscript L de-
noting labeled instances and the subscript U denoting the unlabeled in-
stances. Let D be a diagonal matrix where ∑= j ijii wD is the sum of the en-

tries in row (or column) i. We also form a vector v, consisting of values
assigned to the labeled and unlabeled instances. The labeled instances are
assigned fixed values in {0, 1} consistent with their labels while the values
vi assigned to the unlabeled instances are chosen to minimize
∑ ∈

−
Eji jiij vvw

),(
2.)(The solution can be written as

,)(1
LULUUUUU vv WWD −−= (5)

where vU is the part of the vector v that contains values assigned to the
unlabeled instances, vL is the part of the vector that contains values as-
signed to labeled instances and DUU is the sub-matrix of D consisting of
sum of entries of rows in W associated with unlabeled instances.

The optimization problem ∑ ∈
−

Eji jiij vvw
),(

2)(can also be written in ma-

trix form as vT∆v where ∆ = D − W is known as the combinatorial Lapla-
cian of the graph. The matrix ∆ is known to be positive semidefinite, so it
can be viewed as an inverse covariance matrix of a multivariate Gaussian
random variable, giving rise to the name Gaussian field.

Spectral Graph Transducer: One potential problem with the mincut
formulation is that the mincut cost function tends to prefer unbalanced cuts
where the number of instances in either the positive or negative class
vastly outnumbers the number of instances in the other class. Unbalanced
cuts tend to have a lower cost in the mincut formulation because the num-
ber of edges between V+ and V− is maximized when the sizes of V+ and V−
are equal and is small when either one of them is small. For example, if

5.1 Learning from Labeled and Unlabeled Examples 163

we have n vertices and V+ contains a single element, then there are poten-
tially n−1 edges between V+ and V− . In contrast, if V+ and V− are the same
size, then there are potentially n2/4 edges between the two sets of vertices.

Let cut(V+, V−) be the sum of the edge weights connecting V+ and V−. To
mitigate the effect of preferring unbalanced cut, Joachims [261] proposed
to minimize a cost function of normalized cut

||||
),(

−+

−+

VV
VVcut , where the cut

value is normalized by the number of edges between the two sets. Mini-
mizing this cost function is computationally difficult, so Joachims [261]
proposed minimizing a relaxed version of the problem.

Let ∆ be the combinatorial Laplacian of the graph. It can be shown that
minimizing the normalized cut (with no labeled data) using α and β num-
ber of instances (α and β are specified by the user) in the two partitions is
equivalent to minimizing vT∆v for vi ∈ {γ+, γ−}, where

α
βγ =+ and

β
αγ −=− . (6)

Instead of using vi ∈ {γ+, γ−}, Joachims [261] proposed to allow vi to take
real values under the constraint vT1=0 and vTv=n, where 1 is the all one
vector. To make sure that the labeled instances are properly classified, a
term (v−γ)TC(v−γ) is added to the cost function, where C is a diagonal ma-
trix with non-zero entries only for labeled instances and γ is the target vec-
tor for approximation by v. The components of γ that correspond to posi-
tive and negative instances are set to γ+ and γ− respectively, while the
components of γ that correspond to unlabeled instances do not affect the
cost function because their corresponding diagonal entries of C are set to
zero. The values of the non-zero entries of C can be set by the user to give
different misclassification costs to each instance. This gives the combined
optimization problem of

nandts

c
TT

TT
v

==

−−+∆

vv1v

vvvv

0..

)()(min γγ C

(7)

where c gives a trade-off between the cost for the labeled and unlabeled
parts. The solution of Equation (7) is obtained using spectral methods.

The Gaussian field method and spectral graph transduction have been
applied to the natural language processing problem of word sense disam-
biguation in [414, 442]. Word sense disambiguation is the problem of as-
signing appropriate meanings to words (which may have multiple mean-
ings) according to the context that they appear in. Although some
improvements are observed, the success of these methods is still limited.

164 5 Partially Supervised Learning

5.1.6 Discussion

We discuss two issues: (1) whether the unlabeled set U is always helpful
and (2) the evaluation of LU learning.

Does the Unlabeled Set Always Help? The answer is no. As we have
seen, all approaches make strong assumptions. For example, EM makes
two mixture model assumptions, and co-training makes the feature split as-
sumption. When the assumptions are true for an application data set, unla-
beled data can help learning (even dramatically). When the assumptions
are not true, the unlabeled data may harm learning. Automatically detect-
ing bad match of the problem structure with the model assumptions in ad-
vance is, however, very hard and remains an open problem.

A related issue is that researchers have not shown that when the labeled
data set is sufficiently large, the unlabeled data still help. Manual labeling
more text documents may not be as difficult as it seems in some applica-
tions, especially when the number of classes is small. In most cases, to la-
bel a document one does not even need to read the entire document (if it is
long). Typically, the first few sentences can already tell its class. Com-
pounded with the problem of inability to decide whether the unlabeled data
indeed help classification, practical applications of LU learning are still
limited.

Evaluation: The evaluation of LU learning is commonly done in the same
way as traditional classification. However, there is a problem with the
availability of sufficient test data. In practice, users always want to have a
reasonable guarantee on the predictive accuracy of a classification system
before they are willing to use the system. This means that test data sets
have to be used to evaluate the system. Existing algorithms for LU learn-
ing assume that there is a large set of labeled test data for this purpose.
However, this contradicts the LU learning problem statement, which says
that the labeled set is very small. If we can ask the user to label more data,
then we do not need LU learning because some examples of the test set can
be used in training. Evaluation without more labeled data is also an open
problem.

One may look at this problem in another way. We first use the classifier
generated by LU learning to classify the unlabeled set or a new test set and
then sample some classified documents to be checked manually in order to
estimate the classification accuracy. If classification is sufficiently accu-
rate, the results of the classifier will be used. Otherwise, improvements
need to be made. In this case, additional labeled data obtained during man-
ual inspection can be added to the original labeled set. You see we end up
doing more labeling! Hopefully, we do not have to do too much labeling.

5.2 Learning from Positive and Unlabeled Examples 165

5.2 Learning from Positive and Unlabeled Examples

In some applications, the problem is to identify a particular class P of
documents from a set of mixed documents, which contains documents of
class P and also other kinds of documents. We call the class of documents
that one is interested in the positive class documents, or simply positive
documents. We call the rest of the documents the negative class docu-
ments or simply negative documents.

This problem can be seen as a classification problem with two classes,
positive and negative. However, there are no labeled negative documents
for training. The problem is stated more formally as follows,

Problem Statement: Given a set P of positive documents that we are in-
terested in, and a set U of unlabeled documents (the mixed set), which
contains both positive documents and negative documents, we want to
build a classifier using P and U that can identify positive documents in U
or in a separate test set − in other words, we want to accurately classify
positive and negative documents in U or in the test (or future) data set.

This problem is called PU learning. Note that the set U can be used in
both training and testing because U is unlabeled.

The key feature of this problem is that there is no labeled negative
document for learning. Traditional supervised learning algorithms are thus
not directly applicable because they all require both labeled positive and
labeled negative documents to build a classifier. This is also the case for
LU learning, although the labeled set for each class may be very small.

5.2.1 Applications of PU Learning

The PU learning problem occurs frequently in Web and text retrieval ap-
plications because most of the time the user is only interested in Web
pages or text documents of a particular topic. For example, one may be in-
terested in only travel related pages (positive pages). Then all the other
types of pages are negative pages. Let us use a concrete example to show
the actual setting of a PU learning application.

Example 1: We want to build a repository of data mining research papers.
We can start with an initial set of papers from a data mining conference or
journal, which are positive examples. We then want to find data mining
papers from online journals and conference series in the fields of databases
and artificial intelligence. Journals and conferences in these fields all con-
tain some data mining papers. They also contain many other types of pa-
pers. The problem is how to extract data mining papers from such confer-

166 5 Partially Supervised Learning

ences and journals, or in other words, how to classify the papers from these
sources into data mining papers and non-data mining papers without label-
ing any negative papers in any source. ▀

In practical applications, positive documents are usually available be-
cause if one has worked on a particular task for some time one should have
accumulated many related documents. Even if no positive document is
available initially, collecting some from the Web or any other source is
relatively easy. One can then use this set to find the same class of docu-
ments from other sources without manually labeling any negative docu-
ments. PU learning is particularly useful in the following situations:

1. Learning with multiple unlabeled sets: In some applications, one
needs to find positive documents from a large number of document col-
lections. For example, we want to identify Web pages that sell printers.
We can easily obtain a set of positive pages from an online merchant,
e.g., amazon.com. Then we want to find printer pages from other mer-
chants. We can crawl each site one by one, and extract printer pages
from each site using PU learning. We do not need to manually label
negative pages (non-printer pages) from any site.

Although it may not be hard to label some negative pages from a sin-
gle site, it is difficult to label for every site. Note that in general the
classifier built based on the negative pages from one site s1 may not be
used to classify pages from another site s2 because the negative pages in
s2 can be very different from the negative pages in s1. The reason is that
although both sites sell printers, the other products that they sell can be
quite different. Thus using the classifier built for s1 to classify pages in
s2 may violate the fundamental assumption of machine learning: the dis-
tribution of training examples is identical to the distribution of test ex-
amples. As a consequence, we may obtain poor accuracy results.

2. Learning with unreliable negative examples: This situation often oc-
curs in experimental sciences. For example, in biology, biologists per-
form experiments to determine some biological functions. They are of-
ten quite confident about positive cases that they have discovered.
However, they may not be confident about negative cases because labo-
ratory results can be affected by all kinds of conditions. The negative
cases are thus unreliable. It is perhaps more appropriate to treat such
negative cases as unlabeled examples than negative examples.

PU learning is also useful for the following seemingly unrelated problems:

Detecting unexpected documents in the test set: In many applications,
the test set (or future instance set in practice) contains some classes of
documents that are not seen in the training set. For instance, our training

5.2 Learning from Positive and Unlabeled Examples 167

set has only two classes, Sports and Science. Then, a learning algorithm
will produce a classifier to separate Sports and Science documents. How-
ever, in the test set, some other types of documents, e.g., Politics and Relig-
ion, may appear, which are called unexpected documents. In traditional
classification, those Politics and Religion documents in the test set will be
classified as either Sports or Science documents, which is clearly inappro-
priate. In PU learning, we can remove Politics and Religion documents by
treating the whole training set as the positive data, and the whole test set as
the unlabeled data. A study of this problem is reported in [323].

Detecting outliers: Traditional outlier detection algorithms are mainly
based on clustering. During clustering, those data points that are too far
away from cluster centroids are considered outliers. PU learning can be
applied to outlier detection as follows: A random sample is drawn from the
original data. The sample is treated as the set of positive examples, and the
remaining data is treated as the set of unlabeled examples. The method
given in [323] can then be applied. This strategy may work because since
the number of outliers is small, the chance of selecting them during sam-
pling will be extremely small. To make the method more robust, one can
run the technique multiple times using multiple random samples.

Before discussing theoretical foundations of PU learning, let us first de-
velop some intuition on why PU learning is possible and why unlabeled
data are helpful. Figure 5.5 shows the idea.

Fig. 5.5. Unlabeled data are helpful

In Fig. 5.5(A), we see only positive documents (data points) represented
with +’s. We assume that a linear classifier is sufficient for the classifica-
tion task. In this case, it is hard to know where to draw the line to separate
positive and negative examples because we do not know where the nega-
tive examples might be. There are infinite possibilities. However, if the
unlabeled data (represented by small circles) are added to the space (Fig.
5.5(B)), it is very clear where the separation line should be. Let us now
discuss the theoretical result of PU learning.

(A) With only positive data (B) With both positive and unlabeled data

+

+

+

+ +
+

+

+

+

+
+

+

+

+

+

+

+

+

+ +
+

+

+

+

+
+

+

+

+

+

168 5 Partially Supervised Learning

5.2.2 Theoretical Foundation

Let (xi, yi) be random variables drawn independently from probability dis-
tribution D(x,y) where y ∈ {−1, 1} is the conditional random variable that
we wish to estimate given x. xi represents a document, and yi is its class,
which can be 1 (positive) or –1 (negative). Let Dx|y=1 be the conditional
distribution from which the positive examples are independently drawn
and let Dx be the marginal distribution from which unlabeled examples are
independently drawn. Our objective is to learn a classification function f
that can separate positive and negative documents. Since learning is to
produce a classifier that has the minimum probability of error, Pr(f(x)≠y),
let us rewrite it into a more useful form,

Pr(f(x)≠y) = Pr(f(x)=1 and y=−1) + Pr(f(x)= −1 and y=1). (8)

The first term can be rewritten as

Pr(f(x)=1 and y=−1)
= Pr(f(x)=1) – Pr(f(x)=1 and y=1)
= Pr(f(x)=1) – (Pr(y=1) – Pr(f(x)= −1 and y=1)).

(9)

Substituting (9) into Equation (8), we obtain

Pr(f(x)≠y)
= Pr(f(x)=1) – Pr(y=1) + 2Pr(f(x)= −1|y=1)Pr(y=1).

(10)

Since Pr(y = 1) is constant (although it is unknown), we can minimize the
probability of error by minimizing

Pr(f(x)=1) + 2Pr(f(x)= −1|y =1)Pr(y=1). (11)

If we can hold Pr(f(x)= −1|y=1) small, then learning is approximately
the same as minimizing Pr(f(x)=1). Holding Pr(f(x)= −1|y=1) small while
minimizing Pr(f(x)=1) is approximately the same as minimizing
Pru(f(x)=1) (on the unlabeled set U) while holding PrP(f(x)=1) ≥ r (on the
positive set P), where r is the recall, i.e., Pr(f(x)=1|y=1). Note that
(PrP(f(x)=1) ≥ r) is the same as (PrP(f(x)= −1) ≤ 1–r).

Two theorems given by Liu et al. [348] state these formally and show
that in both the noiseless case (P has no error) and the noisy case (P con-
tains errors, i.e., some negative documents) reasonably good learning re-
sults can be achieved if

• the problem is posed as a constrained optimization problem where the
algorithm tries to minimize the number of unlabeled examples labeled
positive subject to the constraint that the fraction of errors on the posi-
tive examples is no more than 1− r.

5.2 Learning from Positive and Unlabeled Examples 169

Example 2: Figure 5.6 illustrates the constrained optimization problem.
Assume that positive and negative documents can be linearly separated.
Positive documents are represented with +’s, and unlabeled documents
with small circles. Assume also that the positive set has no error and we
want the recall r on the positive set to be 100%. Each line in the figure is a
possible linear classifier. Every document on the left of each line will be
labeled (classified) by the line as positive, and every document on the right
will be labeled as negative. Lines 1 and 2 are clearly not solutions because
the constraint “the fraction of errors on the positive examples must be no
more than 1− r (= 0)” is violated, although the number of unlabeled exam-
ples labeled (classified) as positive is minimized by line 1. Lines 4, 5, and
6 are poor solutions too because the number of unlabeled examples labeled
as positive is not minimized by any of them. Line 3 is the optimal solution.
Under the constraint that no positive example is labeled negative, line 3
minimizes the number of unlabeled examples labeled as positive. ▀

Fig. 5.6. An illustration of the constrained optimization problem

Based on the constrained optimization idea, two kinds of approaches
have been proposed to build PU classifiers: the two-step approach and the
direct approach. In the actual learning algorithms, the user may not need
to specify a desired recall level r on the positive set because some of these
algorithms have their evaluation methods that can automatically determine
whether a good solution has been found.

5.2.3 Building Classifiers: Two-Step Approach

As its name suggests the two-step approach works in two steps:

1. Identifying a set of reliable negative documents (denoted by RN) from
the unlabeled set U.

2. Building a classifier using P, RN and U − RN. This step may apply an
existing learning algorithm once or iteratively depending on the quality
and the size of the RN set.

+ +
+ +

+
+

+
+

++

o
o

o

o
o
o

o o
o

o

o
o

o

o

o o o
o

o
o

o
o

o
o

o

o o

o
o

o
1 2 3 4 5 6

170 5 Partially Supervised Learning

This two-step approach is illustrated in Fig. 5.7. Here, we assume that
step 2 uses an iterative algorithm. In step 1, a set of reliable negative
documents (RN) is found from the unlabeled set U, which divides U into
two subsets, RN and Q (= U − RN). Q is called the likely positive set. In
step 2, the algorithm iteratively improves the results by adding more
documents to RN until a convergence criterion is met. We can see that the
process is trying to minimize the number of unlabeled examples labeled
positive since Q becomes smaller and smaller while RN becomes larger
and larger. In other words, it tries to iteratively increase the number of
unlabeled examples that are labeled negative while maintaining the posi-
tive examples in P correctly classified. We present several techniques for
each step below.

Fig. 5.7. An illustration of the two-step approach

Techniques for Step 1

We introduce four methods to extract reliable negative documents from the
unlabeled set U.

Spy Technique: This technique works by sending some “spy” documents
from the positive set P to the unlabeled set U. Figure 5.8 gives the algo-
rithm of the technique, which is used in the S-EM system [348]. The algo-
rithm has three sub-steps:

1. It randomly samples a set S of positive documents from P and put them
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM.

U

P

……

Reliable
negative
(RN)

Q=U−RN

P

Step 1 Step 2

positive negative

PP

5.2 Learning from Positive and Unlabeled Examples 171

The documents in S act as “spy” documents from the positive set to the
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of
the unknown positive documents in U.

2. It randomly samples a set S of positive documents from P and put them
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM.
The documents in S act as “spy” documents from the positive set to the
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of
the unknown positive documents in U.

3. It runs the naïve Bayesian (NB) algorithm using the set P − S as positive
and the set U ∪ S as negative (lines 3–7). The NB classifier is then ap-
plied to classify each document d in U ∪ S (or Us), i.e., to assign it a
probabilistic class label Pr(1|d), where 1 represents the positive class.

4. It uses the probabilistic labels of the spies to decide which documents
are most likely to be negative. A threshold t is employed to make the
decision. Those documents in U with lower probabilities (Pr(1|d)) than t
are the most likely negative documents, denoted by RN (lines 10–14).

We now discuss how to determine t using spies (line 9). Let the set of
spies be S = {s1, s2, …, sk}, and the probabilistic labels assigned to each
si be Pr(1|si). Intuitively, we can use the minimum probability in S as the
threshold value t, i.e., t = min{Pr(1|s1), Pr(1|s2), …, Pr(1|sk)}, which
means that we want to retrieve all spy documents. In a noiseless case,
using the minimum probability is acceptable. However, most real-life
document collections have outliers and noise. Using the minimum prob-

Algorithm Spy(P, U)
1. RN ← ∅;
2. S ← Sample(P, s%);
3. Us ← U ∪ S;
4. Ps ← P – S;
5. Assign each document in Ps the class label 1;
6. Assign each document in Us the class label −1;
7. NB(Us, Ps); // This produces a NB classifier.
8. Classify each document in Us using the NB classifier;
9. Determine a probability threshold t using S;
10. for each document d ∈ Us do
11. if its probability Pr(1|d) < t then
12. RN ← RN ∪ {d};
13. endif
14. endfor

Fig. 5.8. The spy technique.

172 5 Partially Supervised Learning

ability is unreliable. The reason is that the posterior probability Pr(1|si)
of an outlier document si in S could be 0 or smaller than most (or even
all) actual negative documents. However, we do not know the noise
level of the data. To be safe, the S-EM system uses a large noise level l
= 15% as the default. The final classification result is not very sensitive
to l as long it is not too small. To determine t, we first sort the docu-
ments in S according to their Pr(1|si) values. We then use the selected
noise level l to decide t: we select t such that l percent of documents in S
have probability less than t. Hence, t is not a fixed value. The actual pa-
rameter is in fact l.

Note that the reliable negative set RN can also be found through multiple
iterations. That is, we run the spy algorithm multiple times. Each time a
new random set of spies S is selected from P and a different set of reliable
negative documents is obtained, denoted by RNi. The final set of reliable
negative documents is the intersection of all RNi. This may be a better
technique because we do not need to worry that one set of random spies S
may not be chosen well, especially when the set P is not large.

1DNF Technique: The 1DNF method (Fig. 5.9) is used in [583]. It first
builds a positive feature set PF containing words that occur in the positive
set P more frequently than in the unlabeled set U (lines 1–7). Line 1 col-
lects all the words in U ∪ P to obtain a vocabulary V. Lines 8–13 try to
identify reliable negative documents from U. A document in U that does
not contain any feature in PF is regarded as a reliable negative document.

NB Technique: This method is employed in [340]. It simply uses a naïve
Bayesian classifier to identify a set of reliable negative documents RN
from the unlabeled set U. The algorithm is given in Fig. 5.10.

This method may also be run multiple times. Each time we randomly
remove a few documents from P to obtain a different set of reliable nega-
tive documents, denoted by RNi. The final set of reliable negative docu-
ments RN is the intersection of all RNi.

Rocchio technique: This method is employed in [321]. The algorithm is
the same as that in Fig. 5.10 except that NB is replaced with Rocchio. The
Rocchio classification method is described in Sect. 6.3.

Techniques for Step 2

There are two approaches for this step.

1. Run a learning algorithm (e.g., NB or SVM) using P and RN. The set of
documents in U−RN is discarded. This method works well if the reliable
negative set RN is sufficiently large and contains mostly negative docu-

5.2 Learning from Positive and Unlabeled Examples 173

ments. The spy technique, NB and Rocchio in step 1 are often able to
produce a sufficiently large set of negative documents. The 1DNF tech-
nique may only identify a very small set of negative documents. Then
running a learning algorithm will not be able to build a good classifier.

2. Run a learning algorithm iteratively till it converges or some stopping
criterion is met. This method is used when the set RN is small.

We will not discuss the first approach as it is straightforward. SVM usually
does very well. Below, we introduce two techniques for the second ap-
proach, which are based on EM and SVM respectively.

EM Algorithm with Naïve Bayesian Classification: The EM algorithm
can be used naturally here [348]. As in LU learning, the Expectation step
basically fills in the missing data. In our case, it produces and revises the
probabilistic labels of the documents in U−RN (see below). The parameters
are estimated in the Maximization step after the missing data are filled.
This leads to the next iteration of the algorithm. EM converges when its
parameters stabilize. Using NB in each iteration, EM employs the same
equations as those used in building a NB classifier (Equation (29) for the
Expectation step, and Equations (27) and (28) for the Maximization step).

Algorithm 1DNF(P, U)
1. Assume the word feature set be V = {w1,…, wn}, wi ∈U ∪ P;
2. Let positive feature set PF ← ∅;
3. for each wi ∈ V do // freq(wi, P): number of times
4. if (freq(wi, P) / |P| > freq(wi, U) / |U|) then // that wi appears in P
5. PF ← PF ∪ {wi};
6. endif
7. endfor;
8. RN ← U;
9. for each document d ∈ U do
10. if ∃wj freq(wj, d) > 0 and wj ∈ PF then
11. RN ← RN – {d}
12. endif
13. endfor

Fig. 5.9. The 1DNF technique for step 1

1. Assign each document in P the class label 1;
2. Assign each document in U the class label −1;
3. Build a NB classifier using P and U;
4. Use the classifier to classify U. Those documents in U that are classified as

negative form the reliable negative set RN.

Fig. 5.10. The NB method for Step 1

174 5 Partially Supervised Learning

The class probability given to each document in U−RN takes the value in
[0, 1] instead of {0, 1}. The algorithm is given in Fig. 5.11.

The EM algorithm here makes the same mixture model assumptions as
in LU learning. Thus, it has the same problem of model mismatch. See the
discussions in Sect. 5.1.1.

Iterative SVM: In this method, SVM is run iteratively using P, RN and Q
(= U−RN). The algorithm, called I-SVM, is given in Fig. 5.12. The basic
idea is as follows: In each iteration, a new SVM classifier f is constructed
from P and RN (line 4). Here RN is regarded as the set of negative exam-
ples (line 2). The classifier f is then applied to classify the documents in Q
(line 5). The set W of documents in Q that are classified as negative (line

Algorithm EM(P, U, RN)
1. Each document in P is assigned the class label 1;
2. Each document in RN is assigned the class label −1;
3. Learn an initial NB classifier f from P and RN (using Equations (27) and

(28) in Chap. 3);
4 repeat
 // E-Step
5 for each example di in U−RN do
6 Using the current classifier f to compute Pr(cj|di) using Equation (29)

in Chap. 3.
7 end
 // M-Step
8 learn a new NB classifier f from P, RN and U−RN by computing Pr(cj)

and Pr(wt|cj) (using Equations (27) and (28) in Chap. 3).
9 until the classifier parameters stabilize
10. Return the classifier f from the last iteration.

Fig. 5.11. EM algorithm with the NB classifier

Algorithm I-SVM(P, RN, Q)
1. Every document in P is assigned the class label 1;
2. Every document in RN is assigned the class label –1;
3. loop
4. Use P and RN to train a SVM classifier f;
5. Classify Q using f;
6. Let W be the set of documents in Q that is classified as negative;
7. if W = ∅ then exit-loop // convergence
8. else Q ← Q – W;
9. RN ← RN ∪ W;
10. endif;

Fig. 5.12. Running SVM iteratively

5.2 Learning from Positive and Unlabeled Examples 175

6) is removed from Q (line 8) and added to RN (line 9). The iteration stops
when no document in Q is classified as negative, i.e., W = ∅ (line 7). The
final classifier is the result. This method is used in [321, 582, 583].

Finally, we note again that if the first step is able to identify a large
number of reliable negative documents from U, running SVM once in step
2 is sufficient. Iterative approaches may not be necessary, which are also
less efficient. The Spy, NB and Rocchio methods for step 1 are often able
to identify a large number of reliable negative documents. See [340] for an
evaluation of various methods based on two benchmark text collections.

Classifier Selection

The iterative methods discussed above produce a new classifier at each it-
eration. However, the classifier at the convergence may not be the best
classifier. In general, each iteration of the algorithm gives a classifier that
may potentially be a better classifier than the classifier produced at con-
vergence. This is true for both EM and SVM.

The main problem with EM is that classes and topics may not have one-
to-one correspondence. This is the same problem as in LU learning. SVM
may also produce poor classifiers at the convergence because SVM is sen-
sitive to noise. If the RN set is not chosen well or in an iteration some posi-
tive documents are classified as negative, then the subsequent iterations
may produce very poor results. In such cases, it is often better to stop at an
earlier iteration. One simple method is to apply the theory directly. That is,
each classifier is applied to classify a positive validation set, Pv. If many
documents from Pv (e.g., > 5%) are classified as negative, the algorithm
should stop (that is a recall of 95%). If the set P is small, the method can
also be applied to P directly. A principled method is given in the next sub-
section, i.e., Equation (14).

5.2.4 Building Classifiers: Direct Approach

We now present a direct approach, called biased-SVM. This approach
modifies the SVM formulation slightly so that it is suitable for PU learn-
ing. Let the set of training examples be {(x1, y1), (x2, y2), …, (xn, yn)},
where xi is an input vector and yi is its class label, yi ∈ {1, −1}. Assume
that the first k−1 examples are positive examples P (labeled 1), while the
rest are unlabeled examples U, which are treated as negative and labeled
−1. Thus, the negative set has errors, i.e., containing positive documents.
We consider two cases.

176 5 Partially Supervised Learning

1. Noiseless case: There is no error in the positive examples but only in
unlabeled examples. The theoretical result in Sect. 5.2.2 states that if the
sample size is large enough, minimizing the number of unlabeled exam-
ples classified as positive while constraining the positive examples to be
correctly classified will give a good classifier. Following the theory, in
this noiseless case, we have this following SVM formulation

nkki
nkkib

kib

C

i

ii

i

n

ki
i

 ..., 1, , ,0
 ..., 1, , ,1)(1

1,...,2,1 ,1 :Subject to
2

 :Minimize

+=≥
+=−≥+〉⋅〈−

−=≥+〉⋅〈

+
〉⋅〈 ∑

=

ξ
ξ

ξ

xw
xw

ww

(12)

In this formulation, we do not allow any error in the positive set P,
which is the first constraint, but allow errors for the negative set (the
original unlabeled set), which is the second constraint. Clearly, the for-
mulation follows the theory exactly due to the second term in the objec-
tive function. The subscript in the second term starts from k, which is
the index of the first unlabeled example. To distinguish this formulation
from the classic SVM, we call it the biased-SVM [340].

2. Noisy case: In practice, the positive set may also contain some errors.
Thus, if we allow noise (or error) in positive examples, we have the fol-
lowing soft margin version of the biased-SVM which uses two parame-
ters C+ and C− to weigh positive errors and negative errors differently.

ni
niby

CC

i

iii

n

ki
i

k

i
i

 ..., ,2 ,1 ,0
,...,2,1 ,1)(:Subject to

2
 :Minimize

1

1

=≥
=−≥+〉⋅〈

++
〉⋅〈 ∑∑

=
−

−

=
+

ξ
ξ

ξξ

xw

ww

(13)

We can vary C+ and C− to achieve our objective. Intuitively, we give a
bigger value for C+ and a smaller value for C− because the unlabeled set,
which is assumed to be negative, contains positive data.

We now focus on Equation (13) as it is more realistic in practice. We need
to choose values for C+ and C−. The common practice is to try a range of
values for both C+ and C− and use a separate validation set to verify the
performance of the resulting classifier. The C+ and C− values that give the
best classification results on the validation set are selected as the final pa-
rameter values for them. Cross-validation is another possible technique for
the purpose. Since the need to learn from positive and unlabeled examples

5.2 Learning from Positive and Unlabeled Examples 177

often arises in retrieval situations (retrieving positive documents from the
unlabeled set), we employ the commonly used F-score as the performance
measure, F = 2pr/(p+r), where p is the precision and r is the recall.

Unfortunately it is not clear how to estimate the F-score without labeled
negative examples. In [309], Lee and Liu proposed an alternative perform-
ance measure to compare different classifiers. It behaves similarly to the F-
score but can be estimated directly from the validation set without the need
of labeled negative examples. The measure is

,
)1)(Pr(

2

=xf
r (14)

where f is the classifier and Pr(f(x)=1) is the probability that a document is
classified as positive. It is not easy to see why Equation (14) behaves simi-
larly to the F-score, but we can show that r2/Pr(f(x)=1) = pr/Pr(y=1), where
Pr(y=1) is the probability of positive documents. pr/Pr(y=1) behaves simi-
larly to the F-score in the sense that it is large when both p and r are large
and is small when either p or r is small.

We first write recall (r) and precision (p) in terms of probability:

r = Pr(f(x)=1| y=1) (15)

p = Pr(y=1| f(x)=1). (16)

According to probability theory, we have

Pr(f(x)=1|y=1)Pr(y=1) = Pr(y=1| f(x)=1)Pr(f(x)=1), (17)

which can be written as

)1Pr()1)(Pr(=
=

= y
p

f
r
x

. (18)

Multiplying both sides by r, we obtain the result:

)1Pr()1)(Pr(

2

=
=

= y
pr

f
r
x

. (19)

The quantity r2/Pr(f(x)=1) can be estimated based on the validation set,
which contains both positive and unlabeled documents. r can be estimated
using the positive examples in the validation set and Pr(f(x) = 1) can be es-
timated from the whole validation set.

This criterion in fact reflects the theory in Sect. 5.2.2 very well. The
quantity is large when r is large and Pr(f(x) = 1) is small, which means that
the number of unlabeled examples labeled as positive should be small. In
[340], it is shown that biased-SVM works better than two-step techniques.

178 5 Partially Supervised Learning

5.2.5 Discussion

Does PU Learning Always Work? Theoretical results show that it should
if the positive set and the unlabeled set are sufficiently large [348]. This
has been confirmed by many experimental studies. Interested readers can
find the detailed results in [340, 348], which we summarize below:
1. PU learning can achieve about the same classification results as fully

supervised learning (i.e., both labeled positive and negative examples
are available for training) when the positive set and the unlabeled set are
sufficiently large. This implies that labeled negative examples do not
provide much information for learning. When the positive set is very
small, PU learning is poorer than fully supervised learning.

2. For the two-step approaches, using SVM for the second step performs
better than EM. SVM needs to be run only once if step 1 can extract a
large number of reliable negative documents. Both Spy and Rocchio
(and to some extent NB as well) are able to do that. Thus, the iterative
method in step 2 is not necessary.
 The generative model of naïve Bayes with EM in the second step can
perform very well if the mixture model assumptions hold [348]. How-
ever, if the mixture model assumptions do not hold, the classification re-
sults can be very poor [340]. Note that SVM is usually called a dis-
criminative model (or classifier) because it does not make any model
assumptions. It simply finds a hyperplane to separate positive and nega-
tive examples in the training data.

3. Biased-SVM performs slightly better than the 2-step approaches. How-
ever, it is very slow in training because SVM needs to be run a large
number of times in order to select the best values for C+ and C−.

Evaluation: Unlike LU learning, here we do not even have labeled nega-
tive examples, which makes the evaluation difficult. Although Equation
(14) and other heuristics allow a system to choose a “better” classifier
among a set of classifiers, it is unable to give the actual accuracy, precision
or recall of each classifier. Evaluation is an open problem. The results re-
ported in [340, 348] assume that a set of labeled positive and negative test
examples is available, which, of source, is unrealistic in practice because
the PU learning model states that no labeled negative example is available.

In some cases, the evaluation can be done with some confidence. For
example, if the user needs to extract positive documents from many unla-
beled sets as in the example of identifying printer pages from multiple
Web sites, a PU learning algorithm can be applied to one site and then the
user manually checks the classification result to see whether it is satisfac-
tory. If the result is satisfactory, the algorithm can be applied to the rest of
the sites without further manual evaluation.

Appendix: Derivation of EM for Naïve Bayesian Classification 179

Appendix: Derivation of EM for Naïve Bayesian Classification

EM is a method for performing a classical statistical estimation technique
called maximum likelihood estimation. In maximum likelihood estima-
tion, the aim is to find the model parameter Θ̂ that maximizes the likeli-
hood function Pr(Do; Θ) for observed data Do. In other words, maximum
likelihood estimation aims to select the model that is most likely to have
generated the observed data. In many cases, such as in the naïve Bayesian
classification model, the maximum likelihood estimator is easy to find and
has a closed form solution when all components of the data D are ob-
served. However, the problem becomes difficult when the data D actually
consists of an observed component Do and an unobserved component Du.
In such cases, iterative methods that converge only to a local maximum,
such as the EM method, are usually used.

Maximizing the log likelihood function logPr(Do; Θ) produces the same
solution as maximizing the likelihood function and is easier to handle
mathematically. In the presence of unobserved data Du, the log likelihood
function becomes).;,Pr(log);Pr(log Θ=Θ ∑ uoDo DDD

u
 Instead of maxi-

mizing the log likelihood ∑ Θ
uD uo DD);,Pr(log directly, at each iteration

T, the EM algorithm finds the value Θ that maximizes the expected com-
plete log likelihood

),;,Pr(log);|(1 ΘΘ∑ −
uoD

T
ou DDDDE

u
 (20)

where ΘT−1 is the parameter that was produced in iteration T−1. In many
cases, such as in the naïve Bayesian model, the expected log likelihood is
easy to maximize and has a closed form solution. It can be shown (see
[127]) that the log likelihood increases monotonically with each iteration
of the EM algorithm.

We now derive the EM update for the naïve Bayesian model. We first
consider the complete log likelihood, that is, the log likelihood when all
variables are observed. The conditional probability of a document given its
class is (see Sect. 3.7.2 in Chap. 3)

∏
=

Θ
=Θ

||

1 !
);|Pr(|!||)Pr(|);|Pr(

V

t

N

ti

ti
jt

iiji

N
cwddcd (21)

Each document and its class label are assumed to have been sampled
independently. Let c(i) be the class label of document i. The likelihood
function can hence be written as

180 5 Partially Supervised Learning

.);Pr(
!

);|Pr(|!||)Pr(|);Pr();|Pr(
||

1

||

1

||

1

)(
)(

)()(∏ ∏ ∏
= = =

Θ
Θ

=ΘΘ
D

i

D

i

V

t

N

i

ti

ti
it

iiiii c
N
cwddccd (22)

Taking logs, we have the complete log likelihood function

,);Pr(log);|Pr(log
||

1

||

1

||

1
)()(φ+Θ+Θ ∑∑∑

== =

D

i

D

i

V

t
ti iit ccwN (23)

where φ is a constant containing the terms unaffected by Θ. To facilitate
the process of taking expectation when some of the class labels are not ob-
served, we introduce indicator variables, hik, that take the value 1 when
document i takes the label k and the value 0 otherwise. The complete log
likelihood can be written in the following equivalent form

.);Pr(log);|Pr(log
||

1

||

1

||

1

||

1

||

1
φ+Θ+Θ ∑∑∑∑∑

= == = =

D

i
k

C

k
ikk

D

i

V

t
ti

C

k
ik chcwNh t (24)

When some of the labels are not observed, we take the conditional expec-
tation for the unobserved variables hik with respect to ΘT−1 to get the ex-
pected complete log likelihood

,);Pr(log);|Pr(

);|Pr(log);|Pr(

||

1

||

1

1

||

1

||

1

||

1

1

φ+ΘΘ+

ΘΘ

∑∑

∑∑∑

= =

−

= = =

−

D

i
k

C

k

T
ik

k

D

i

V

t
ti

C

k

T
ik

cdc

cwNdc t

 (25)

where, for the observed labels c(i), we use the convention that Pr(ck|di;ΘT−1)
takes the value one for ck = c(i) and zero otherwise. We maximize the ex-
pected complete log likelihood subject to the coefficients summing to one
using the Lagrange multiplier method. The Lagrangian is

.);|Pr(1);Pr(1

);Pr(log);|Pr(

);|Pr(log);|Pr(

||

1

||

1

||

1

||

1

||

1

||

1

1

||

1

||

1

||

1

1

φλλ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ−+

ΘΘ+

ΘΘ

∑∑ ∑∑

∑∑

∑∑∑

= = ==

= =

−

= = =

−

V

t

C

k

V

t
kttk

C

k
k

D

i
k

C

k

T
ik

k

D

i

V

t
ti

C

k

T
ik

cwc

cdc

cwNdc t

 (26)

Differentiating the Lagrangian with respect to λ, we get .1);Pr(
||

1
=Θ∑ =

C

k kc

Differentiating with respect to Pr(ck; Θ), we get

Bibliographic Notes 181

.||,...,1);Pr();|Pr(
||

1

1 Ckforcdc k

D

i

T
ik =Θ=Θ∑

=

− λ (27)

Summing the left and right-hand side over k and using ,1);Pr(
||

1
=Θ∑ =

C

k kc

we get .||);|Pr(
||

1

||

1

1∑∑
= =

− =Θ=
D

i

C

k

T
ik Ddcλ Substituting back, we obtain the up-

date equation

.
||

);|Pr(
);Pr(

||

1
1

D
dc

c
D

i
T

T ij

j
∑ =

−Θ
=Θ (28)

Working similarly, we can get the update equation for Pr(wt|cj; ΘT),

.
);|Pr(

);|Pr(
);|Pr(||

1

||

1
1

||

1
1

∑ ∑
∑
= =

−

=
−

Θ

Θ
=Θ V

s

D

i
T

ijsi

D

i
T

ijtiT
jt

dcN

dcN
cw (29)

To handle the 0 count problem (see Sect. 3.7.2 in Chap. 3), we can use
Lidstone smoothing (Equation (27) in Chap. 3).

Bibliographic Notes

Learning with labeled and unlabeled examples (LU learning) using naïve
Bayes and EM was proposed by Nigam et al. [413]. They also noted the
problem of having mixtures of subclasses in the classes and proposed to
identify and use such subclasses as a possible solution. A hierarchical clus-
tering technique was also proposed by Cong et al. [111] for handling the
mixture of subclasses problem. Castelli and Cover [83] presented a theo-
retical study of LU learning using mixture models.

Co-training was introduced by Blum and Mitchell [55]. Follow-on
works include those by Collins and Singer [109], Goldman and Zhou
[201], etc. Generalization error bounds within the Probably Approximately
Correct (PAC) framework was given in [121] by Dasgupta et al. Nigam
and Ghani [411] examined the importance of feature division in co-training
and compared it to the EM algorithm and self-training.

Transduction was proposed by Vapnik [526] as learning when the test
instances are known. Joachims described a heuristic algorithm and built a
system for performing transduction using SVM [259]. The transductive
SVM given in [259] can also be used for induction, i.e. classifying future
unseen instances. In contrast, most graph-based methods are more suited

182 5 Partially Supervised Learning

for transduction, i.e. classifying test instances that are known during train-
ing. The graph-based mincut algorithm was introduced by Blum and
Chalwa [54]. The graph-based Gaussian field method was proposed by
Zhu et al. [619] while the spectral graph transducer was proposed by
Joachims [261]. The edited book by Chapelle et al. [93] gives a compre-
hensive coverage of various LU learning algorithms.

On learning from positive and unlabeled examples (or PU learning),
Denis [129] reported a theoretical study of PAC learning in this setting un-
der the statistical query model [272], which basically assumes that the pro-
portion of positive instances in the unlabeled set is known. Letouzey et al.
[315] presented a learning algorithm based on a modified decision tree
method in this model. PU learning is also studied theoretically by Muggle-
ton [398] from the Bayesian framework where the distribution of functions
and examples are assumed known. Liu et al. [348] gives another theoreti-
cal study, in which both the noiseless case and the noisy case are consid-
ered. It was concluded that a reasonable generalization (learning) can be
achieved if the problem is posed as a constrained optimization problem
(see Sect. 5.2.2). Most existing algorithms for solving the problem are
based on this constrained optimization model.

Over the years, several practical algorithms were proposed. The first
class of algorithms deals with the problem in two steps. These algorithms
include S-EM [348], PEBL [582, 583], and Roc-SVM [321], which have
been studied in this chapter. The second class of algorithm follows the
theoretical result directly. Lee and Liu [309] described a weighted logistic
regression technique. Liu et al. [340] described a biased-SVM technique.
They both require a performance criterion to determine the quality of the
classifier. The criterion is given in [309], which has been presented in Sect.
5.2.4. Liu et al. reported a comprehensive comparison of various tech-
niques in [340]. It was shown that biased-SVM performed better than other
techniques. Some other works on PU learning include those of Agichtein
[6], Barbara et al. [35], Deng et al. [128], Denise et al. [130], Fung, et al.
[188], Li and Liu [322], Zhang and Lee [603], etc.

A closely related work to PU learning is one-class SVM, which uses
only positive examples to build a classifier. This method was proposed by
Scholkopf et al. [478]. Manevitz and Yousef [360] studied text classifica-
tion using one-class SVM. Li and Liu [321] showed that its accuracy re-
sults were poorer than PU learning for text classification. Unlabeled data
does help classification significantly.

6 Information Retrieval and Web Search

Web search needs no introduction. Due to its convenience and the richness
of information on the Web, searching the Web is increasingly becoming
the dominant information seeking method. People make fewer and fewer
trips to libraries, but more and more searches on the Web. In fact, without
effective search engines and rich Web contents, writing this book would
have been much harder.

Web search has its root in information retrieval (or IR for short), a
field of study that helps the user find needed information from a large col-
lection of text documents. Traditional IR assumes that the basic informa-
tion unit is a document, and a large collection of documents is available to
form the text database. On the Web, the documents are Web pages.

Retrieving information simply means finding a set of documents that is
relevant to the user query. A ranking of the set of documents is usually
also performed according to their relevance scores to the query. The most
commonly used query format is a list of keywords, which are also called
terms. IR is different from data retrieval in databases using SQL queries
because the data in databases are highly structured and stored in relational
tables, while information in text is unstructured. There is no structured
query language like SQL for text retrieval.

It is safe to say that Web search is the single most important application
of IR. To a great extent, Web search also helped IR. Indeed, the tremen-
dous success of search engines has pushed IR to the center stage. Search is,
however, not simply a straightforward application of traditional IR models.
It uses some IR results, but it also has its unique techniques and presents
many new problems for IR research.

First of all, efficiency is a paramount issue for Web search, but is only
secondary in traditional IR systems mainly due to the fact that document
collections in most IR systems are not very large. However, the number of
pages on the Web is huge. For example, Google indexed more than 8 bil-
lion pages when this book was written. Web users also demand very fast
responses. No matter how effective an algorithm is, if the retrieval cannot
be done efficiently, few people will use it.

Web pages are also quite different from conventional text documents
used in traditional IR systems. First, Web pages have hyperlinks and an-

184 6 Information Retrieval and Web Search

chor texts, which do not exist in traditional documents (except citations in
research publications). Hyperlinks are extremely important for search and
play a central role in search ranking algorithms as we will see in the next
chapter. Anchor texts associated with hyperlinks too are crucial because a
piece of anchor text is often a more accurate description of the page that its
hyperlink points to. Second, Web pages are semi-structured. A Web page
is not simply a few paragraphs of text like in a traditional document. A
Web page has different fields, e.g., title, metadata, body, etc. The informa-
tion contained in certain fields (e.g., the title field) is more important than
in others. Furthermore, the content in a page is typically organized and
presented in several structured blocks (of rectangular shapes). Some blocks
are important and some are not (e.g., advertisements, privacy policy, copy-
right notices, etc). Effectively detecting the main content block(s) of a
Web page is useful to Web search because terms appearing in such blocks
are more important.

Finally, spamming is a major issue on the Web, but not a concern for
traditional IR. This is so because the rank position of a page returned by a
search engine is extremely important. If a page is relevant to a query but is
ranked very low (e.g., below top 30), then the user is unlikely to look at the
page. If the page sells a product, then this is bad for the business. In order
to improve the ranking of some target pages, “illegitimate” means, called
spamming, are often used to boost their rank positions. Detecting and
fighting Web spam is a critical issue as it can push low quality (even ir-
relevant) pages to the top of the search rank, which harms the quality of
the search results and the user’s search experience.

In this chapter, we first study some information retrieval models and
methods that are closely related to Web search. We then dive into some
Web search specific issues.

6.1 Basic Concepts of Information Retrieval

Information retrieval (IR) is the study of helping users to find information
that matches their information needs. Technically, IR studies the acquisi-
tion, organization, storage, retrieval, and distribution of information. His-
torically, IR is about document retrieval, emphasizing document as the ba-
sic unit. Fig. 6.1 gives a general architecture of an IR system.

In Figure 6.1, the user with information need issues a query (user
query) to the retrieval system through the query operations module. The
retrieval module uses the document index to retrieve those documents that
contain some query terms (such documents are likely to be relevant to the
query), compute relevance scores for them, and then rank the retrieved

6.1 Basic Concepts of Information Retrieval 185

documents according to the scores. The ranked documents are then pre-
sented to the user. The document collection is also called the text data-
base, which is indexed by the indexer for efficient retrieval.

Fig. 6.1. A general IR system architecture

A user query represents the user’s information needs, which is in one of
the following forms:

1. Keyword queries: The user expresses his/her information needs with a
list of (at least one) keywords (or terms) aiming to find documents that
contain some (at least one) or all the query terms. The terms in the list
are assumed to be connected with a “soft” version of the logical AND.
For example, if one is interested in finding information about Web min-
ing, one may issue the query ‘Web mining’ to an IR or search engine
system. ‘Web mining’ is retreated as ‘Web AND mining’. The retrieval
system then finds those likely relevant documents and ranks them suita-
bly to present to the user. Note that a retrieved document does not have
to contain all the terms in the query. In some IR systems, the ordering of
the words is also significant and will affect the retrieval results.

2. Boolean queries: The user can use Boolean operators, AND, OR, and
NOT to construct complex queries. Thus, such queries consist of terms
and Boolean operators. For example, ‘data OR Web’ is a Boolean
query, which requests documents that contain the word ‘data’ or ‘Web.
A page is returned for a Boolean query if the query is logically true in
the page (i.e., exact match). Although one can write complex Boolean
queries using the three operators, users seldom write such queries.
Search engines usually support a restricted version of Boolean queries.

3. Phrase queries: Such a query consists of a sequence of words that
makes up a phrase. Each returned document must contain at least one

User
query

Document
collection

The user

Query
operations

Retrieval
system Ranked

documents

Executable
query

user
feedback indexer

Document
index

186 6 Information Retrieval and Web Search

instance of the phrase. In a search engine, a phrase query is normally
enclosed with double quotes. For example, one can issue the following
phrase query (including the double quotes), “Web mining techniques
and applications” to find documents that contain the exact phrase.

4. Proximity queries: The proximity query is a relaxed version of the
phrase query and can be a combination of terms and phrases. Proximity
queries seek the query terms within close proximity to each other. The
closeness is used as a factor in ranking the returned documents or pages.
For example, a document that contains all query terms close together is
considered more relevant than a page in which the query terms are far
apart. Some systems allow the user to specify the maximum allowed
distance between the query terms. Most search engines consider both
term proximity and term ordering in retrieval.

5. Full document queries: When the query is a full document, the user
wants to find other documents that are similar to the query document.
Some search engines (e.g., Google) allow the user to issue such a query
by providing the URL of a query page. Additionally, in the returned re-
sults of a search engine, each snippet may have a link called “more like
this” or “similar pages.” When the user clicks on the link, a set of pages
similar to the page in the snippet is returned.

6. Natural language questions: This is the most complex case, and also
the ideal case. The user expresses his/her information need as a natural
language question. The system then finds the answer. However, such
queries are still hard to handle due to the difficulty of natural language
understanding. Nevertheless, this is an active research area, called ques-
tion answering. Some search systems are starting to provide question
answering services on some specific types of questions, e.g., definition
questions, which ask for definitions of technical terms. Definition ques-
tions are usually easier to answer because there are strong linguistic pat-
terns indicating definition sentences, e.g., “defined as”, “refers to”, etc.
Definitions can usually be extracted offline [339, 280].

The query operations module can range from very simple to very com-
plex. In the simplest case, it does nothing but just pass the query to the re-
trieval engine after some simple pre-processing, e.g., removal of stop-
words (words that occur very frequently in text but have little meaning,
e.g., “the”, “a”, “in”, etc). We will discuss text pre-processing in Sect. 6.5.
In more complex cases, it needs to transform natural language queries into
executable queries. It may also accept user feedback and use it to expand
and refine the original queries. This is usually called relevance feedback,
which will be discussed in Sect. 6.3.

The indexer is the module that indexes the original raw documents in
some data structures to enable efficient retrieval. The result is the docu-

6.2 Information Retrieval Models 187

ment index. In Sect. 6.6, we study a particular type of indexing scheme,
called the inverted index, which is used in search engines and most IR
systems. An inverted index is easy to build and very efficient to search.

The retrieval system computes a relevance score for each indexed
document to the query. According to their relevance scores, the documents
are ranked and presented to the user. Note that it usually does not compare
the user query with every document in the collection, which is too ineffi-
cient. Instead, only a small subset of the documents that contains at least
one query term is first found from the index and relevance scores with the
user query are then computed only for this subset of documents.

6.2 Information Retrieval Models

An IR model governs how a document and a query are represented and
how the relevance of a document to a user query is defined. There are four
main IR models: Boolean model, vector space model, language model and
probabilistic model. The most commonly used models in IR systems and
on the Web are the first three models, which we study in this section.

Although these three models represent documents and queries differ-
ently, they used the same framework. They all treat each document or
query as a “bag” of words or terms. Term sequence and position in a sen-
tence or a document are ignored. That is, a document is described by a set
of distinctive terms. A term is simply a word whose semantics helps re-
member the document’s main themes. We should note that the term here
may not be a natural language word in a dictionary. Each term is associ-
ated with a weight. Given a collection of documents D, let V = {t1, t2, ...,
t|V|} be the set of distinctive terms in the collection, where ti is a term. The
set V is usually called the vocabulary of the collection, and |V| is its size,
i.e., the number of terms in V. A weight wij > 0 is associated with each
term ti of a document dj ∈ D. For a term that does not appear in document
dj, wij = 0. Each document dj is thus represented with a term vector,

dj = (w1j, w2j, ..., w|V|j),

where each weight wij corresponds to the term ti ∈ V, and quantifies the
level of importance of ti in document dj. The sequence of the components
(or terms) in the vector is not significant. Note that following the conven-
tion of this book, a bold lower case letter is used to represent a vector.

With this vector representation, a collection of documents is simply rep-
resented as a relational table (or a matrix). Each term is an attribute, and
each weight is an attribute value. In different retrieval models, wij is com-
puted differently.

188 6 Information Retrieval and Web Search

6.2.1 Boolean Model

The Boolean model is one of the earliest and simplest information retrieval
models. It uses the notion of exact matching to match documents to the
user query. Both the query and the retrieval are based on Boolean algebra.

Document Representation: In the Boolean model, documents and queries
are represented as sets of terms. That is, each term is only considered pre-
sent or absent in a document. Using the vector representation of the docu-
ment above, the weight wij (∈ {0, 1}) of term ti in document dj is 1 if ti ap-
pears in document dj, and 0 otherwise, i.e.,

⎩
⎨
⎧

=
.otherwise0

in appears if1 ji
ij

t
w

d (1)

Boolean Queries: As we mentioned in Sect. 6.1, query terms are com-
bined logically using the Boolean operators AND, OR, and NOT, which
have their usual semantics in logic. Thus, a Boolean query has a precise
semantics. For instance, the query, ((x AND y) AND (NOT z)) says that a
retrieved document must contain both the terms x and y but not z. As an-
other example, the query expression (x OR y) means that at least one of
these terms must be in each retrieved document. Here, we assume that x, y
and z are terms. In general, they can be Boolean expressions themselves.

Document Retrieval: Given a Boolean query, the system retrieves every
document that makes the query logically true. Thus, the retrieval is based
on the binary decision criterion, i.e., a document is either relevant or ir-
relevant. Intuitively, this is called exact match. There is no notion of par-
tial match or ranking of the retrieved documents. This is one of the major
disadvantages of the Boolean model, which often leads to poor retrieval re-
sults. It is quite clear that the frequency of terms and their proximity con-
tribute significantly to the relevance of a document.

Due to this problem, the Boolean model is seldom used alone in prac-
tice. Most search engines support some limited forms of Boolean retrieval
using explicit inclusion and exclusion operators. For example, the fol-
lowing query can be issued to Google, ‘mining –data +“equipment price”’,
where + (inclusion) and – (exclusion) are similar to Boolean operators
AND and NOT respectively. The operator OR may be supported as well.

6.2.2 Vector Space Model

This model is perhaps the best known and most widely used IR model.

6.2 Information Retrieval Models 189

Document Representation

A document in the vector space model is represented as a weight vector, in
which each component weight is computed based on some variation of TF
or TF-IDF scheme. The weight wij of term ti in document dj is no longer in
{0, 1} as in the Boolean model, but can be any number.

Term Frequency (TF) Scheme: In this method, the weight of a term ti in
document dj is the number of times that ti appears in document dj, denoted
by fij. Normalization may also be applied (see Equation (2)).

The shortcoming of the TF scheme is that it does not consider the situa-
tion where a term appears in many documents of the collection. Such a
term may not be discriminative.

TF-IDF Scheme: This is the most well known weighting scheme, where
TF still stands for the term frequency and IDF the inverse document
frequency. There are several variations of this scheme. Here we only give
the most basic one.

Let N be the total number of documents in the system or the collection
and dfi be the number of documents in which term ti appears at least once.
Let fij be the raw frequency count of term ti in document dj. Then, the
normalized term frequency (denoted by tfij) of ti in dj is given by

,
},...,,max{ ||21 jVjj

ij
ij fff

f
tf = (2)

where the maximum is computed over all terms that appear in document
dj. If term ti does not appear in dj then tfij = 0. Recall that |V| is the vocabu-
lary size of the collection.

The inverse document frequency (denoted by idfi) of term ti is given by:

.log
i

i df
Nidf = (3)

The intuition here is that if a term appears in a large number of documents
in the collection, it is probably not important or not discriminative. The fi-
nal TF-IDF term weight is given by:

.iijij idftfw ×= (4)

Queries

A query q is represented in exactly the same way as a document in the
document collection. The term weight wiq of each term ti in q can also be

190 6 Information Retrieval and Web Search

computed in the same way as in a normal document, or slightly differently.
For example, Salton and Buckley [470] suggested the following:

.log
},...,,max{

5.0
5.0

||21 iqVqq

iq
qi df

N
fff

f
w ×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= (5)

Document Retrieval and Relevance Ranking

It is often difficult to make a binary decision on whether a document is
relevant to a given query. Unlike the Boolean model, the vector space
model does not make such a decision. Instead, the documents are ranked
according to their degrees of relevance to the query. One way to compute
the degree of relevance is to calculate the similarity of the query q to each
document dj in the document collection D. There are many similarity
measures. The most well known one is the cosine similarity, which is the
cosine of the angle between the query vector q and the document vector dj,

.
||||||||

),(
||

1
2||

1
2

||

1

∑∑
∑

==

=

×

×
=

×

〉•〈
=

V

i iq
V

i ij

V

i iqij

j

j
j

ww

ww
cosine

qd
qd

qd (6)

Cosine similarity is also widely used in text/document clustering.
The dot product of the two vectors is another similarity measure,

.),(〉•〈= qdqd jjsim (7)

Ranking of the documents is done using their similarity values. The top
ranked documents are regarded as more relevant to the query.

Another way to assess the degree of relevance is to directly compute a
relevance score for each document to the query. The Okapi method and its
variations are popular techniques in this setting. The Okapi retrieval for-
mula given here is based on that in [465, 493]. It has been shown that
Okapi variations are more effective than cosine for short query retrieval.

Since it is easier to present the formula directly using the “bag” of
words notation of documents than vectors, document dj will be denoted by
dj and query q will be denoted by q. Additional notations are as follows:

ti is a term
fij is the raw frequency count of term ti in document dj
fiq is the raw frequency count of term ti in query q
N is the total number of documents in the collection
dfi is the number of documents that contain the term ti
dlj is the document length (in bytes) of dj
avdl is the average document length of the collection

6.2 Information Retrieval Models 191

The Okapi relevance score of a document dj for a query q is:

,
)1(

)1(

)1(
5.0

5.0ln),(
2

2

1

1

, iq

iq

ij
j

ij

dqt i

i
j fk

fk

f
avdl
dl

bbk

fk
df

dfNqdokapi
ji

+

+
×

++−

+
×

+
+−

= ∑
∈

(8)

where k1 (between 1.0-2.0), b (usually 0.75) and k2 (between 1-1000) are
parameters.

Yet another score function is the pivoted normalization weighting
score function, denoted by pnw [493]:

i
iq

dqt j

ij
j df

Nf

avdl
dl

ss

f
qdpnw

ji

1ln
)1(

))ln(1ln(1
),(

,

+
××

+−

++
= ∑

∈

,
(9)

where s is a parameter (usually set to 0.2). Note that these are empirical
functions based on intuitions and experimental evaluations. There are
many variations of these functions used in practice.

6.2.3 Statistical Language Model

Statistical language models (or simply language models) are based on
probability and have foundations in statistical theory. The basic idea of this
approach to retrieval is simple. It first estimates a language model for each
document, and then ranks documents by the likelihood of the query given
the language model. Similar ideas have previously been used in natural
language processing and speech recognition. The formulation and discus-
sion in this section is based on those in [595, 596]. Information retrieval
using language models was first proposed by Ponte and Croft [448].

Let the query q be a sequence of terms, q = q1q2…qm and the document
collection D be a set of documents, D = {d1, d2, …, dN}. In the language
modeling approach, we consider the probability of a query q as being
“generated” by a probabilistic model based on a document dj, i.e., Pr(q|dj).
To rank documents in retrieval, we are interested in estimating the poste-
rior probability Pr(dj|q). Using the Bayes rule, we have

)Pr(
)Pr()|Pr(

)|Pr(
q

ddq
qd jj

j = (10)

For ranking, Pr(q) is not needed as it is the same for every document.
Pr(dj) is usually considered uniform and thus will not affect ranking. We
only need to compute Pr(q|dj).

The language model used in most existing work is based on unigram,

192 6 Information Retrieval and Web Search

i.e., only individual terms (words) are considered. That is, the model as-
sumes that each term (word) is generated independently, which is essen-
tially a multinomial distribution over words. The general case is the n-
gram model, where the nth term is conditioned on the previous n-1 terms.

Based on the multinomial distribution and the unigram model, we have

∏∏
==

===
||

11
21 ,)|Pr()|Pr()|...Pr(

V

i

f
ji

m

i
jijm

iqdtdqdqqqq (11)

where fiq is the number of times that term ti occurs in q, and
∑ =

=
||

1
1)|Pr(V

i ji dt . The retrieval problem is reduced to estimating Pr(ti|dj),

which can be the relative frequency,

.
||

)|Pr(
j

ij
ji d

f
dt = (12)

Recall that fij is the number of times that term ti occurs in document dj. |dj|
denotes the total number of words in dj.

However, one problem with this estimation is that a term that does not
appear in dj has the probability of 0, which underestimates the probability
of the unseen term in the document. This situation is similar to text classi-
fication using the naïve Bayesian model (see Sect. 3.7). A non-zero prob-
ability is typically assigned to each unseen term in the document, which is
called smoothing. Smoothing adjusts the estimates of probabilities to pro-
duce more accurate probabilities. The name smoothing comes from the
fact that these techniques tend to make distributions more uniform, by ad-
justing low probabilities such as zero probabilities upward, and high prob-
abilities downward. Not only do smoothing methods aim to prevent zero
probabilities, but they also attempt to improve the accuracy of the model as
a whole. Traditional additive smoothing is

.
||||

)|(Pr
j

ij
jiadd dV

f
dt

+
+

=
λ

λ (13)

When λ = 1, it is the Laplace smoothing and when 0 < λ < 1, it is the Lid-
stone smoothing. Many other more sophisticated smoothing methods can
be found in [97, 596].

6.3 Relevance Feedback

To improve the retrieval effectiveness, researchers have proposed many
techniques. Relevance feedback is one of the effective ones. It is a process

6.3 Relevance Feedback 193

where the user identifies some relevant and irrelevant documents in the ini-
tial list of retrieved documents, and the system then creates an expanded
query by extracting some additional terms from the sample relevant and ir-
relevant documents for a second round of retrieval. The system may also
produce a classification model using the user-identified relevant and ir-
relevant documents to classify the documents in the document collection
into relevant and irrelevant documents. The relevance feedback process
may be repeated until the user is satisfied with the retrieved result.

The Rocchio Method

This is one of the early and effective relevance feedback algorithms. It is
based on the first approach above. That is, it uses the user-identified rele-
vant and irrelevant documents to expand the original query. The new (or
expanded) query is then used to perform retrieval again.

Let the original query vector be q, the set of relevant documents selected
by the user be Dr, and the set of irrelevant documents be Dir. The expanded
query qe is computed as follows,

∑∑
∈∈

−+=
irirrr D

ir
irD

r
r

e DD dd

d
||

d
||

qq ,γβα (14)

where α, β and γ are parameters. Equation (14) simply augments the origi-
nal query vector q with additional terms from relevant documents. The
original query q is still needed because it directly reflects the user’s infor-
mation need. Relevant documents are considered more important than ir-
relevant documents. The subtraction is used to reduce the influence of
those terms that are not discriminative (i.e., they appear in both relevant
and irrelevant documents), and those terms that appear in irrelevant docu-
ments only. The three parameters are set empirically. Note that a slight
variation of the algorithm is one without the normalization of |Dr| and |Dir|.
Both these methods are simple and efficient to compute, and usually pro-
duce good results.

Machine Learning Methods

Since we have a set of relevant and irrelevant documents, we can construct
a classification model from them. Then the relevance feedback problem
becomes a learning problem. Any supervised learning method may be
used, e.g., naïve Bayesian classification and SVM. Similarity comparison
with the original query is no longer needed.

In fact, a variation of the Rocchio method above, called the Rocchio
classification method, can be used for this purpose too. Building a Roc-

194 6 Information Retrieval and Web Search

chio classifier is done by constructing a prototype vector ci for each class i,
which is either relevant or irrelevant in this case (negative elements or
components of the vector ci are usually set to 0):

∑∑
−∈∈ −

−=
ii DDiDi

i DDD dd d
d

||d
d

||
c

||||||||
βα , (15)

where Di is the set of documents of class i, and α and β are parameters.
Using the TF-IDF term weighting scheme, α = 16 and β = 4 usually work
quite well.

In classification, cosine similarity is applied. That is, each test document
dt is compared with every prototype ci based on cosine similarity. dt is as-
signed to the class with the highest similarity value (Fig. 6.2).

Algorithm
1 for each class i do
2 construct its prototype vector ci using Equation (15)
3 endfor
4 for each test document dt do
5 the class of dt is),(maxarg iti cosine cd
6 endfor

Fig. 6.2. Training and testing of a Rocchio classifier

Apart from the above classic methods, the following learning techniques
are also applicable:
Learning from Labeled and Unlabeled Examples (LU Learning): Since
the number of user-selected relevant and irrelevant documents may be
small, it can be difficult to build an accurate classifier. However, unlabeled
examples, i.e., those documents that are not selected by the user, can be
utilized to improve learning to produce a more accurate classifier. This fits
the LU learning model exactly (see Sect. 5.1). The user-selected relevant
and irrelevant documents form the small labeled training set.
Learning from Positive and Unlabeled Examples (PU Learning): The
two learning models mentioned above assume that the user can confidently
identify both relevant and irrelevant documents. However, in some cases,
the user only selects (or clicks) documents that he/she feels relevant based
on the title or summary information (e.g., snippets in Web search), which
are most likely to be true relevant documents, but does not indicate irrele-
vant documents. Those documents that are not selected by the user may
not be treated as irrelevant because he/she has not seen them. Thus, they
can only be regarded as unlabeled documents. This is called implicit feed-
back. In order to learn in this case, we can use PU learning, i.e., learning

6.4 Evaluation Measures 195

from positive and unlabeled examples (see Sect. 5.2). We regard the user-
selected documents as positive examples, and unselected documents as
unlabeled examples. Researchers have experimented with this approach in
the Web search context and obtained good results [128].

Using Ranking SVM and Language Models: In the implicit feedback
setting, a technique called ranking SVM is proposed in [260] to rank the
unselected documents based on the selected documents. A language model
based approach is also proposed in [487].

Pseudo-Relevance Feedback

Pseudo-relevance feedback is another technique used to improve retrieval
effectiveness. Its basic idea is to extract some terms (usually frequent
terms) from the top-ranked documents and add them to the original query
to form a new query for a second round of retrieval. Again, the process can
be repeated until the user is satisfied with the final results. The main dif-
ference between this method and the relevance feedback method is that in
this method, the user is not involved in the process. The approach simply
assumes that the top-ranked documents are likely to be relevant. Through
query expansion, some relevant documents missed in the initial round can
be retrieved to improve the overall performance. Clearly, the effectiveness
of this method relies on the quality of the selected expansion terms.

6.4 Evaluation Measures

Precision and recall measures have been described in Chap. 3 on super-
vised learning, where each document is classified to a specific class. In IR
and Web search, usually no decision is made on whether a document is
relevant or irrelevant to a query. Instead, a ranking of the documents is
produced for the user. This section studies how to evaluate such rankings.

Again, let the collection of documents in the database be D, and the total
number of documents in D be N. Given a user query q, the retrieval algo-
rithm first computes relevance scores for all documents in D and then pro-
duce a ranking Rq of the documents based on the relevance scores, i.e.,

,,...,, : 21 >< q
N

qq
qR ddd (16)

where d1
q ∈ D is the most relevant document to query q and dq

N ∈ D is the
most irrelevant document to query q.

Let Dq (⊆ D) be the set of actual relevant documents of query q in D.
We can compute the precision and recall values at each di

q in the ranking.

196 6 Information Retrieval and Web Search

Recall at rank position i or document di
q (denoted by r(i)) is the fraction of

relevant documents from d1
q to di

q in Rq. Let the number of relevant docu-
ments from d1

q to di
q in Rq be si (≤ |Dq|) (|Dq| is the size of Dq). Then,

.
||

)(
q

i

D
sir = (17)

Precision at rank position i or document di
q (denoted by p(i)) is the frac-

tion of documents from d1
q to di

q in Rq that are relevant:

i
sip i=)((18)

Example 1: We have a document collection D with 20 documents. Given
a query q, we know that eight documents are relevant to q. A retrieval al-
gorithm produces the ranking (of all documents in D) shown in Fig. 6.3.

Rank i +/− p(i) r(i)
1 + 1/1 = 100% 1/8 = 13%
2 + 2/2 = 100% 2/8 = 25%
3 + 3/3 = 100% 3/8 = 38%
4 − 3/4 = 75% 3/8 = 38%
5 + 4/5 = 80% 4/8 = 50%
6 − 4/6 = 67% 4/8 = 50%
7 + 5/7 = 71% 5/8 = 63%
8 − 5/8 = 63% 5/8 = 63%
9 + 6/9 = 67% 6/8 = 75%

10 + 7/10 = 70% 7/8 = 88%
11 − 7/11 = 63% 7/8 = 88%
12 − 7/12 = 58% 7/8 = 88%
13 + 8/13 = 62% 8/8 = 100%
14 − 8/14 = 57% 8/8 = 100%
15 − 8/15 = 53% 8/8 = 100%
16 − 8/16 = 50% 8/8 = 100%
17 − 8/17 = 53% 8/8 = 100%
18 − 8/18 = 44% 8/8 = 100%
19 − 8/19 = 42% 8/8 = 100%
20 − 8/20 = 40% 8/8 = 100%

Fig. 6.3. Precision and recall values at each rank position

In column 1 of Fig. 6.3, 1 represents the highest rank and 20 represents
the lowest rank. “+” and “−” in column 2 indicate a relevant document and
an irrelevant document respectively. The precision (p(i)) and recall (r(i))
values at each position i are given in columns 3 and 4. ▀

6.4 Evaluation Measures 197

Average Precision: Sometimes we want a single precision to compare dif-
ferent retrieval algorithms on a query q. An average precision (pavg) can be
computed based on the precision at each relevant document in the ranking,

||

)(

q

Dd
avg D

ip
p q

q
i

∑ ∈= . (19)

For the ranking in Fig. 6.3 of Example 1, the average precision is 81%:

%.81
8

%62%70%67%71%80%100%100%100
=

+++++++
=avgp (20)

Precision–Recall Curve: Based on the precision and recall values at each
rank position, we can draw a precision–recall curve where the x-axis is the
recall and the y-axis is the precision. Instead of using the precision and re-
call at each rank position, the curve is commonly plotted using 11 standard
recall levels, 0%, 10%, 20%, …, 100%.

Since we may not obtain exactly these recall levels in the ranking, inter-
polation is needed to obtain the precisions at these recall levels, which is
done as follows: Let ri be a recall level, i ∈ {0, 1, 2, …, 10}, and p(ri) be
the precision at the recall level ri. p(ri) is computed with

)(max)(
10

rprp rrri i ≤≤= . (21)

That is, to interpolate precision at a particular recall level ri, we take the
maximum precision of all recalls between level ri and level r10.

Example 2: Following Example 1, we obtain the interpolated precisions at
all 11 recall levels in the table of Fig. 6.4. The precision-recall curve is
shown on the right.

i p(ri) ri
0 100% 0%
1 100% 10%
2 100% 20%
3 100% 30%
4 80% 40%
5 80% 50%
6 71% 60%
7 70% 70%
8 70% 80%
9 62% 90%

10 62% 100%

Fig. 6.4. The precision-recall curve ▀

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

Pr
ec

is
io

n

198 6 Information Retrieval and Web Search

Comparing Different Algorithms: Frequently, we need to compare the
retrieval results of different algorithms. We can draw their precision-recall
curves together in the same figure for comparison. Figure 6.5 shows the
curves of two algorithms on the same query and the same document collec-
tion. We observe that the precisions of one algorithm are better than those
of the other at low recall levels, but are worse at high recall levels.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Recall

Pr
ec

is
io

n

Fig. 6.5. Comparison of two retrieval algorithms based on their precision-recall
curves

Evaluation Using Multiple Queries: In most retrieval evaluations, we are
interested in the performance of an algorithm on a large number of queries.
The overall precision (denoted by)(irp) at each recall level ri is computed
as the average of individual precisions at that recall level, i.e.,

),(
||

1)(
||

1
i

Q

j
ji rp

Q
rp ∑

=

= (22)

where Q is the set of all queries and pj(ri) is the precision of query j at the
recall level ri. Using the average precision at each recall level, we can also
draw a precision-recall curve.

Although in theory precision and recall do not depend on each other, in
practice a high recall is almost always achieved at the expense of preci-
sion, and a high precision is achieved at the expense of recall. Thus, preci-
sion and recall has a trade-off. Depending on the application, one may
want a high precision or a high recall.

One problem with precision and recall measures is that, in many appli-
cations, it can be very hard to determine the set of relevant documents Dq
for each query q. For example, on the Web, Dq is almost impossible to de-
termine because there are simply too many pages to manually inspect.
Without Dq, the recall value cannot be computed. In fact, recall does not
make much sense for Web search because the user seldom looks at pages

6.5 Text and Web Page Pre-Processing 199

ranked below 30. However, precision is critical, and it can be estimated for
top ranked documents. Manual inspection of only the top 30 pages is rea-
sonable. The following precision computation is commonly used.

Rank Precision: We compute the precision values at some selected rank
positions. For a Web search engine, we usually compute precisions for the
top 5, 10, 15, 20, 25 and 30 returned pages (as the user seldom looks at
more than 30 pages). We assume that the number of relevant pages is more
than 30. Following Example 1, we have p(5) = 80%, p(10) = 70%, p(15) =
53%, and p(20) = 40%.

We should note that precision is not the only measure for evaluating
search ranking, reputation or quality of the top ranked pages are also very
important as we will see later in this chapter and also in Chap. 7.

F-score: Another often used evaluation measure is the F-score, which we
have used in Chap. 3. Here we can compute the F-score at each rank posi-
tion i. Recall that F-score is the harmonic mean of precision and recall:

.
)()(
)()(2

)(
1

)(
1

2)(
irip
irip

ipir

iF
+

=
+

=
(23)

Finally, the precision and recall breakeven point is also a commonly
used measure, which we have discussed in Sect. 3.3.2 in Chap. 3.

6.5 Text and Web Page Pre-Processing

Before the documents in a collection are used for retrieval, some pre-
processing tasks are usually performed. For traditional text documents (no
HTML tags), the tasks are stopword removal, stemming, and handling of
digits, hyphens, punctuations, and cases of letters. For Web pages, addi-
tional tasks such as HTML tag removal and identification of main content
blocks also require careful considerations. We discuss them in this section.

6.5.1 Stopword Removal

Stopwords are frequently occurring and insignificant words in a language
that help construct sentences but do not represent any content of the docu-
ments. Articles, prepositions and conjunctions and some pronouns are
natural candidates. Common stopwords in English include:

a, about, an, are, as, at, be, by, for, from, how, in, is, of, on, or,
that, the, these, this, to, was, what, when, where, who, will, with

200 6 Information Retrieval and Web Search

Such words should be removed before documents are indexed and stored.
Stopwords in the query are also removed before retrieval is performed.

6.5.2 Stemming

In many languages, a word has various syntactical forms depending on the
contexts that it is used. For example, in English, nouns have plural forms,
verbs have gerund forms (by adding “ing”), and verbs used in the past
tense are different from the present tense. These are considered as syntactic
variations of the same root form. Such variations cause low recall for a re-
trieval system because a relevant document may contain a variation of a
query word but not the exact word itself. This problem can be partially
dealt with by stemming.

Stemming refers to the process of reducing words to their stems or roots.
A stem is the portion of a word that is left after removing its prefixes and
suffixes. In English, most variants of a word are generated by the introduc-
tion of suffixes (rather than prefixes). Thus, stemming in English usually
means suffix removal, or stripping. For example, “computer”, “comput-
ing”, and “compute” are reduced to “comput”. “walks”, “walking” and
“walker” are reduced to “walk”. Stemming enables different variations of
the word to be considered in retrieval, which improves the recall. There are
several stemming algorithms, also known as stemmers. In English, the
most popular stemmer is perhaps the Martin Porter's stemming algorithm
[449], which uses a set of rules for stemming.

Over the years, many researchers evaluated the advantages and disad-
vantages of using stemming. Clearly, stemming increases the recall and re-
duces the size of the indexing structure. However, it can hurt precision be-
cause many irrelevant documents may be considered relevant. For
example, both “cop” and “cope” are reduced to the stem “cop”. However,
if one is looking for documents about police, a document that contains
only “cope” is unlikely to be relevant. Although many experiments have
been conducted by researchers, there is still no conclusive evidence one
way or the other. In practice, one should experiment with the document
collection at hand to see whether stemming helps.

6.5.3 Other Pre-Processing Tasks for Text

Digits: Numbers and terms that contain digits are removed in traditional
IR systems except some specific types, e.g., dates, times, and other pre-
specified types expressed with regular expressions. However, in search en-
gines, they are usually indexed.

6.5 Text and Web Page Pre-Processing 201

Hyphens: Breaking hyphens are usually applied to deal with inconsistency
of usage. For example, some people use “state-of-the-art”, but others use
“state of the art”. If the hyphens in the first case are removed, we eliminate
the inconsistency problem. However, some words may have a hyphen as
an integral part of the word, e.g., “Y-21”. Thus, in general, the system can
follow a general rule (e.g., removing all hyphens) and also have some ex-
ceptions. Note that there are two types of removal, i.e., (1) each hyphen is
replaced with a space and (2) each hyphen is simply removed without leav-
ing a space so that “state-of-the-art” may be replaced with “state of the
art” or “stateoftheart”. In some systems both forms are indexed as it is
hard to determine which is correct, e.g., if “pre-processing” is converted to
“pre processing”, then some relevant pages will not be found if the query
term is “preprocessing”.

Punctuation Marks: Punctuation can be dealt with similarly as hyphens.

Case of Letters: All the letters are usually converted to either the upper or
lower case.

6.5.4 Web Page Pre-Processing

We have indicated at the beginning of the section that Web pages are dif-
ferent from traditional text documents. Thus, additional pre-processing is
needed. We describe some important ones below.

1. Identifying different text fields: In HTML, there are different text
fields, e.g., title, metadata, and body. Identifying them allows the re-
trieval system to treat terms in different fields differently. For example,
in search engines terms that appear in the title field of a page are re-
garded as more important than terms that appear in other fields and are
assigned higher weights because the title is usually a concise description
of the page. In the body text, those emphasized terms (e.g., under header
tags <h1>, <h2>, …, bold tag , etc.) are also given higher weights.

2. Identifying anchor text: Anchor text associated with a hyperlink is
treated specially in search engines because the anchor text often repre-
sents a more accurate description of the information contained in the
page pointed to by its link. In the case that the hyperlink points to an ex-
ternal page (not in the same site), it is especially valuable because it is a
summary description of the page given by other people rather than the
author/owner of the page, and is thus more trustworthy.

3. Removing HTML tags: The removal of HTML tags can be dealt with
similarly to punctuation. One issue needs careful consideration, which
affects proximity queries and phrase queries. HTML is inherently a vis-

202 6 Information Retrieval and Web Search

ual presentation language. In a typical commercial page, information is
presented in many rectangular blocks (see Fig. 6.6). Simply removing
HTML tags may cause problems by joining text that should not be
joined. For example, in Fig. 6.6, “cite this article” at the bottom of the
left column will join “Main Page” on the right, but they should not be
joined. They will cause problems for phrase queries and proximity que-
ries. This problem had not been dealt with satisfactorily by search en-
gines at the time when this book was written.

4. Identifying main content blocks: A typical Web page, especially a
commercial page, contains a large amount of information that is not part
of the main content of the page. For example, it may contain banner ads,
navigation bars, copyright notices, etc., which can lead to poor results
for search and mining. In Fig. 6.6, the main content block of the page is
the block containing “Today’s featured article.” It is not desirable to in-
dex anchor texts of the navigation links as a part of the content of this
page. Several researchers have studied the problem of identifying main
content blocks. They showed that search and data mining results can be

Fig. 6.6. An example of a Web page from Wikipedia

6.5 Text and Web Page Pre-Processing 203

improved significantly if only the main content blocks are used. We
briefly discuss two techniques for finding such blocks in Web pages.

 Partitioning based on visual cues: This method uses visual information
to help find main content blocks in a page. Visual or rendering informa-
tion of each HTML element in a page can be obtained from the Web
browser. For example, Internet Explorer provides an API that can output
the X and Y coordinates of each element. A machine learning model can
then be built based on the location and appearance features for identify-
ing main content blocks of pages. Of course, a large number of training
examples need to be manually labeled (see [77, 495] for details).

 Tree matching: This method is based on the observation that in most
commercial Web sites pages are generated by using some fixed tem-
plates. The method thus aims to find such hidden templates. Since
HTML has a nested structure, it is thus easy to build a tag tree for each
page. Tree matching of multiple pages from the same site can be per-
formed to find such templates. In Chap. 9, we will describe a tree
matching algorithm for this purpose. Once a template is found, we can
identify which blocks are likely to be the main content blocks based on
the following observation: the text in main content blocks are usually
quite different across different pages of the same template, but the non-
main content blocks are often quite similar in different pages. To deter-
mine the text similarity of corresponding blocks (which are sub-trees),
the shingle method described in the next section can be used.

6.5.5 Duplicate Detection

Duplicate documents or pages are not a problem in traditional IR. How-
ever, in the context of the Web, it is a significant issue. There are different
types of duplication of pages and contents on the Web.

Copying a page is usually called duplication or replication, and copy-
ing an entire site is called mirroring. Duplicate pages and mirror sites
are often used to improve efficiency of browsing and file downloading
worldwide due to limited bandwidth across different geographic regions
and poor or unpredictable network performances. Of course, some dupli-
cate pages are the results of plagiarism. Detecting such pages and sites can
reduce the index size and improve search results.

Several methods can be used to find duplicate information. The simplest
method is to hash the whole document, e.g., using the MD5 algorithm, or
computing an aggregated number (e.g., checksum). However, these meth-
ods are only useful for detecting exact duplicates. On the Web, one seldom

204 6 Information Retrieval and Web Search

finds exact duplicates. For example, even different mirror sites may have
different URLs, different Web masters, different contact information, dif-
ferent advertisements to suit local needs, etc.

One efficient duplicate detection technique is based on n-grams (also
called shingles). An n-gram is simply a consecutive sequence of words of
a fixed window size n. For example, the sentence, “John went to school
with his brother,” can be represented with five 3-gram phrases “John went
to”, “went to school”, “to school with”, “school with his”, and “with his
brother”. Note that 1-gram is simply the individual words.

Let Sn(d) be the set of distinctive n-grams (or shingles) contained in
document d. Each n-gram may be coded with a number or a MD5 hash
(which is usually a 32-digit hexadecimal number). Given the n-gram repre-
sentations of the two documents d1 and d2, Sn(d1) and Sn(d2), the Jaccard
coefficient can be used to compute the similarity of the two documents,

|)()(|
|)()(|),(

21

21
21 dSdS

dSdSddsim
nn

nn

∪
∩

= . (24)

A threshold is used to determine whether d1 and d2 are likely to be dupli-
cates of each other. For a particular application, the window size n and the
similarity threshold are chosen through experiments.

6.6 Inverted Index and Its Compression

The basic method of Web search and traditional IR is to find documents
that contain the terms in the user query. Given a user query, one option is
to scan the document database sequentially to find the documents that con-
tain the query terms. However, this method is obviously impractical for a
large collection, such as the Web. Another option is to build some data
structures (called indices) from the document collection to speed up re-
trieval or search. There are many index schemes for text [31]. The in-
verted index, which has been shown superior to most other indexing
schemes, is a popular one. It is perhaps the most important index method
used in search engines. This indexing scheme not only allows efficient re-
trieval of documents that contain query terms, but also very fast to build.

6.6.1 Inverted Index

In its simplest form, the inverted index of a document collection is basi-
cally a data structure that attaches each distinctive term with a list of all
documents that contains the term. Thus, in retrieval, it takes constant time

6.6 Inverted Index and Its Compression 205

to find the documents that contains a query term. Finding documents con-
taining multiple query terms is also easy as we will see later.

Given a set of documents, D = {d1, d2, …, dN}, and each document has a
unique identifier (ID). An inverted index consists of two parts: a vocabu-
lary V, containing all the distinct terms in the document set, and for each
distinct term ti an inverted list of postings. Each posting stores the ID
(denoted by idj) of the document dj that contains term ti and other pieces of
information about term ti in document dj. Depending on the need of the re-
trieval or ranking algorithm, different pieces of information may be in-
cluded. For example, to support phrase and proximity search, a posting for
a term ti usually consists of the following,

<idj, fij, [o1, o2, …, o| fij|]>

where idj is the ID of document dj that contains the term ti, fij is the fre-
quency count of ti in dj, and ok are the offsets (or positions) of term ti in dj.
Postings of a term are sorted in increasing order based on the idj’s and so
are the offsets in each posting (see Example 3). This facilitates compres-
sion of the inverted index as we will see in Sect. 6.6.4.

Example 3: We have three documents of id1, id2, and id3:

 id1: Web mining is useful.
 1 2 3 4
 id2: Usage mining applications.
 1 2 3

 id3: Web structure mining studies the Web hyperlink structure.
 1 2 3 4 5 6 7 8

The numbers below each document are the offset position of each word.
The vocabulary is the set:

{Web, mining, useful, applications, usage, structure, studies, hyperlink}

Stopwords “is” and “the” have been removed, but no stemming is applied.
Figure 6.7 shows two inverted indices.

Applications: id2 Applications: <id2, 1, [3]>
Hyperlink: id3 Hyperlink: <id3, 1, [7]>
Mining: id1, id2, id3 Mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>
Structure: id3 Structure: <id3, 2, [2, 8]>
Studies: id3 Studies: <id3, 1, [4]>
Usage: id2 Usage: <id2, 1, [1]>
Useful: id1 Useful: <id1, 1, [4]>
Web: id1, id3 Web: <id1, 1, [1]>, <id3, 2, [1, 6]>

(A) (B)

Fig. 6.7. Two inverted indices: a simple version and a more complex version

206 6 Information Retrieval and Web Search

Figure 6.7(A) is a simple version, where each term is attached with only an
inverted list of IDs of the documents that contain the term. Each inverted
list in Fig. 6.7(B) is more complex as it contains additional information,
i.e., the frequency count of the term and its positions in each document.
Note that we use idi as the document IDs to distinguish them from offsets.
In an actual implementation, they may also be positive integers. Note also
that a posting can contain other types of information depending on the
need of the retrieval or search algorithm (see Sect. 6.8). ▀

6.6.2 Search Using an Inverted Index

Queries are evaluated by first fetching the inverted lists of the query terms,
and then processing them to find the documents that contain all (or some)
terms. Specifically, given the query terms, searching for relevant docu-
ments in the inverted index consists of three main steps:

Step 1 (vocabulary search): This step finds each query term in the vo-
cabulary, which gives the inverted list of each term. To speed up the
search, the vocabulary usually resides in the main memory. Various in-
dexing methods, e.g., hashing, tries or B-tree, can be used to speed up
the search. Lexicographical ordering may also be employed due to its
space efficiency. Then the binary search method can be applied. The
complexity is O(log|V|), where |V| is the vocabulary size.

If the query contains only a single term, this step gives all the relevant
documents and the algorithm then goes to step 3. If the query contains
multiple terms, the algorithm proceeds to step 2.

Step 2 (results merging): After the inverted list of each term is found,
merging of the lists is performed to find their intersection, i.e., the set of
documents containing all query terms. Merging simply traverses all the
lists in synchronization to check whether each document contains all
query terms. One main heuristic is to use the shortest list as the base to
merge with the other longer lists. For each posting in the shortest list, a
binary search may be applied to find it in each longer list. Note that par-
tial match (i.e., documents containing only some of the query terms) can
be achieved as well in a similar way, which is more useful in practice.

Usually, the whole inverted index cannot fit in memory, so part of it
is cached in memory for efficiency. Determining which part to cache in-
volves analysis of query logs to find frequent query terms. The inverted
lists of these frequent query terms can be cached in memory.

Step 3 (Rank score computation): This step computes a rank (or rele-
vance) score for each document based on a relevance function (e.g.,

6.6 Inverted Index and Its Compression 207

okapi or cosine), which may also consider the phrase and term prox-
imity information. The score is then used in the final ranking.

Example 4: Using the inverted index built in Fig. 6.7(B), we want to
search for “web mining” (the query). In step 1, two inverted lists are found:

Mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>
Web: <id1, 1, [1]>, <id3, 2, [1, 6]>

In step 2, the algorithm traverses the two lists and finds documents con-
taining both words (documents id1 and id3). The word positions are also re-
trieved. In step 3, we compute the rank scores. Considering the proximity
and the sequence of words, we give id1 a higher rank (or relevance) score
than id3 as “web” and “mining” are next to each other in id1 and in the same
sequence as that in the query. Different search engines may use different
algorithms to combine these factors. ▀

6.6.3 Index Construction

The construction of an inverted index is quite simple and can be done effi-
ciently using a trie data structure among many others. The time complexity
of the index construction is O(T), where T is the number of all terms (in-
cluding duplicates) in the document collection (after pre-processing).

For each document, the algorithm scans it sequentially and for each
term, it finds the term in the trie. If it is found, the document ID and other
information (e.g., the offset of the term) are added to the inverted list of the
term. If the term is not found, a new leaf is created to represent the term.

Example 5: Let us build an inverted index for the three documents in Ex-
ample 3, which are reproduced below for easy reference. Figure 6.8 shows
the vocabulary trie and the inverted lists for all terms.
 id1: Web mining is useful.
 1 2 3 4
 id2: Usage mining applications.
 1 2 3

 id3: Web structure mining studies the Web hyperlink structure ▀
 1 2 3 4 5 6 7 8

To build the index efficiently, the trie is usually stored in memory.
However, in the context of the Web, the whole index will not fit in the
main memory. The following technique can be applied.

We follow the above algorithm to build the index until the memory is
full. The partial index I1 obtained so far is written on the disk. Then, we
process the subsequent documents and build the partial index I2 in memory,
and so on. After all documents have been processed, we have k partial in-

208 6 Information Retrieval and Web Search

dices, I1, I2, …, Ik, on disk. We then merge the partial indices in a hierar-
chical manner. That is, we first perform pair-wise merges of I1 and I2, I3
and I4, and so on. This gives us larger indices I1-2, I3-4 and so on. After the
first level merging is complete, we proceed to the second level merging,
i.e., we merge I1-2 and I3-4, I5-6 and I7-8 and so on. This process continues
until all the partial indices are merged into a single index. Each merge is
fairly straightforward because the vocabulary in each partial index is sorted
by the trie construction. The complexity of each merge is thus linear in the
number of terms in both partial indices. Since each level needs a linear
process of the whole index, the complete merging process takes O(klog k)
time. To reduce the disk space requirement, whenever a new partial index
is generated, we can merge it with a previously merged index. That is,
when we have I1 and I2, we can merge them immediately to produce I1-2,
and when I3 is produced, it is merged with I1-2 to produce I1-2-3 and so on.

Fig. 6.8. The vocabulary trie and the inverted lists

Instead of using a trie, an alternative method is to use an in-memory
hash table (or other data structures) for terms. The algorithm is quite
straightforward and will not be discussed further.

On the Web, an important issue is that pages are constantly added,
modified or deleted. It may be quite inefficient to modify the main index
because a single page change can require updates to a large number of re-
cords of the index. One simple solution is to construct two additional indi-
ces, one for added pages and one for deleted pages. Modification can be
regarded as a deletion and then an addition. Given a user query, it is
searched in the main index and also in the two auxiliary indices. Let the
pages returned from the search in the main index be D0, the pages returned
from the search in the index of added pages be D+ and the pages returned
from the search in the index of deleted pages be D–. Then, the final results
returned to the user is (D0 ∪ D+) – D. When the two auxiliary indices be-
come too large, they can be merged into the main index.

structure: <id3, 2, [2, 8]>

useful: <id1, 1, [4]>

hyperlink: <id3, 1, [7]>

mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>

usage: <id2, 1, [2]>

web: <id1, 1, [1]>, <id3, 2, [1, 6]>

applications: <id2, 1, [3]>

studies: <id3, 1, [4]>

‘a’

‘s’
‘m’
‘h’

‘u’
‘u’

‘r’
‘t’

‘s’
‘e’

‘w’
‘a’

6.6 Inverted Index and Its Compression 209

6.6.4 Index Compression

An inverted index can be very large. In order to speed up the search, it
should reside in memory as much as possible to avoid disk I/O. Because of
this, reducing the index size becomes an important issue. A natural solu-
tion to this is index compression, which aims to represent the same infor-
mation with fewer bits or bytes. Using compression, the size of an inverted
index can be reduced dramatically. In the lossless compression, the origi-
nal index can also be reconstructed exactly using the compressed version.
Lossless compression methods are the focus of this section.

The inverted index is quite amiable to compression. Since the main
space used by an inverted index is for the storage of document IDs and off-
sets of each term, we thus want to reduce this space requirement. Since all
the information is represented with positive integers, we only discuss inte-
ger compression techniques in this section.

Without compression, on most architectures an integer has a fixed-size
representation of four bytes (32 bits). However, few integers need 4 bytes
to represent, so a more compact representation (compression) is clearly
possible. There are generally two classes of compression schemes for in-
verted lists: the variable-bit scheme and the variable-byte scheme.

In the variable-bit (also called bitwise) scheme, an integer is represented
with an integral number of bits. Well known bitwise methods include
unary coding, Elias gamma coding and delta coding [161], and Golomb
coding [202]. In the variable-byte scheme, an integer is stored in an inte-
gral number of bytes, where each byte has 8 bits. A simple bytewise
scheme is the variable-byte coding [547]. These coding schemes basically
map integers onto self-delimiting binary codewords (bits), i.e., the start bit
and the end bit of each integer can be detected with no additional delimit-
ers or markers.

An interesting feature of the inverted index makes compression even
more effective. Since document IDs in each inverted list are sorted in in-
creasing order, we can store the difference between any two adjacent
document IDs, idi and idi+1, where idi+1> idi, instead of the actual IDs. This
difference is called the gap between idi and idi+1. The gap is a smaller
number than idi+1 and thus requires fewer bits. In search, if the algorithm
linearly traverses each inverted list, document IDs can be recovered easily.
Since offsets in each posting are also sorted, they can be stored similarly.

For example, the sorted document IDs are: 4, 10, 300, and 305. They
can be represented with gaps, 4, 6, 290 and 5. Given the gap list 4, 6, 290
and 5, it is easy to recover the original document IDs, 4, 10, 300, and 305.
We note that for frequent terms (which appear in a large number of docu-
ments) the gaps are small and can be encoded with short codes (fewer

210 6 Information Retrieval and Web Search

bits). For infrequent or rare terms, the gaps can be large, but they do not
use up much space due to the fact that only a small number of documents
contain them. Storing gaps can significantly reduce the index size.

We now discuss each of the coding schemes in detail. Each scheme in-
cludes a method for coding (or compression) and a method for decoding
(decompression).

Unary Coding

Unary coding is simple. It represents a number x with x−1 bits of zeros
followed by a bit of one. For example, 5 is represented as 00001. The one
bit is simply the delimitor. Decoding is also straightforward. This scheme
is effective for very small numbers, but wasteful for large numbers. It is
thus seldom used alone in practice.

Table 6.1 shows example codes of different coding schemes for 10
decimal integers. Column 2 shows the unary code for each integer.

Table 6.1: Example codes for integers of different coding schemes: Spacing in the
Elias, Golomb, and variable-byte codes separates the prefix of the code from the suffix.

 Elias Elias Golomb Golomb Variable
Decimal Unary Gamma Delta (b = 3) (b = 10) byte
1 1 1 1 1 10 1 001 0000001 0
2 01 0 10 0 100 1 11 1 010 0000010 0
3 001 0 11 0 101 01 0 1 011 0000011 0
4 0001 00 100 0 1100 01 10 1 100 0000100 0
5 00001 00 101 0 1101 01 11 1 101 0000101 0
6 000001 00 110 0 1110 001 0 1 1100 0000110 0
7 0000001 00 111 0 1111 001 10 1 1101 0000111 0
8 00000001 000 1000 00 100000 001 11 1 1110 0001000 0
9 000000001 000 1001 00 100001 0001 0 1 1111 0001001 0
10 0000000001 000 1010 00 100010 0001 10 01 000 0001010 0

Elias Gamma Coding

Coding: In the Elias gamma coding, a positive integer x is represented by:
1+⎣log2x⎦ in unary (i.e., ⎣log2x⎦ 0-bits followed by a 1-bit), followed by the
binary representation of x without its most significant bit. Note that
1+⎣log2x⎦ is simply the number of bits of x in binary. The coding can also
be described with the following two steps:

1. Write x in binary.
2. Subtract 1 from the number of bits written in step 1 and prepend that

many zeros.

6.6 Inverted Index and Its Compression 211

Example 6: The number 9 is represented by 0001001, since 1+⎣log29⎦ = 4,
or 0001 in unary, and 9 is 001 in binary with the most significant bit re-
moved. Alternatively, we first write 9 in binary, which is 1001 with 4 bits,
and then prepend three zeros. In this way, 1 is represented by 1 (in one bit),
and 2 is represented by 010. Additional examples are shown in column 3
of Table 6.1. ▀

Decoding: We decode an Elias gamma-coded integer in two steps:

1. Read and count zeroes from the stream until we reach the first one. Call
this count of zeroes K.

2. Consider the one that was reached to be the first digit of the integer,
with a value of 2K, read the remaining K bits of the integer.

Example 7: To decompress 0001001, we first read all zero bits from the
beginning until we see a bit of 1. We have K = 3 zero bits. We then include
the 1 bit with the following 3 bits, which give us 1001 (binary for 9). ▀

 Gamma coding is efficient for small integers but is not suited to large in-
tegers for which the parameterized Golomb code or the Elias delta code is
more suitable.

Elias Delta Coding

Elias delta codes are somewhat longer than gamma codes for small inte-
gers, but for larger integers such as document numbers in an index of Web
pages, the situation is reversed.

Coding: In the Elias delta coding, a positive integer x is stored with the
gamma code representation of 1+⎣log2x⎦, followed by the binary represen-
tation of x less the most significant bit.

Example 8: Let us code the number 9. Since 1+⎣log2x⎦ = 4, we have its
gamma code 00100 for 4. Since 9’s binary representation less the most
significant bit is 001, we have the delta code of 00100001 for 9. Additional
examples are shown in column 4 of Table 6.1. ▀

Decoding: To decode an Elias delta-coded integer x, we first decode the
gamma-code part 1+⎣log2x⎦ as the magnitude M (the number of bits of x in
binary), and then retrieve the binary representation of x less the most sig-
nificant bit. Specifically, we use the following steps:

1. Read and count zeroes from the stream until you reach the first one. Call
this count of zeroes L.

2. Considering the one that was reached to be the first bit of an integer,
with a value of 2L, read the remaining L digits of the integer. This is the

212 6 Information Retrieval and Web Search

integer M.
3. Put a one in the first place of our final output, representing the value 2M.

Read and append the following M-1 bits.

Example 9: We want to decode 00100001. We can see that L = 2 after step
1, and after step 2, we have read and consumed 5 bits. We also obtain M =
4 (100 in binary). Finally, we prepend 1 to the M-1 bits (which is 001) to
give 1001, which is 9 in binary. ▀

While Elias codes yield acceptable compression and fast decoding, a
better performance in both aspects is possible with the Golomb coding.

Golomb Coding

The Golomb coding is a form of parameterized coding in which integers to
be coded are stored as values relative to a constant b. Several variations of
the original Golomb scheme exist, which save some bits in coding com-
pared to the original scheme. We describe one version here.

Coding: A positive integer x is represented in two parts:
1. The first part is a unary representation of q+1, where q is the quotient
⎣(x/b)⎦, and

2. The second part is a special binary representation of the remainder r =
x−qb. Note that there are b possible remainders. For example, if b = 3,
the possible remainders will be 0, 1, and 2.

The binary representation of a remainder requires ⎣log2b⎦ or ⎡log2b⎤ bits.
Clearly, it is not possible to write every remainder in ⎣log2b⎦ bits in binary.
To save space, we want to write the first few remainders using ⎣log2b⎦ bits
and the rest using ⎡log2b⎤ bits. We must do so such that the decoder knows
when ⎣log2b⎦ bits are used and when ⎡log2b⎤ bits are used. Let i = ⎣log2b⎦.
We code the first d remainders using i bits,

d = 2i+1 – b. (25)

It is worth noting that these d remainders are all less than d. The rest of
the remainders are coded with ⎡log2b⎤ bits and are all greater than or equal
to d. They are coded using a special binary code (also called a fixed prefix
code) with ⎡log2b⎤ (or i+1) bits.

Example 10: For b = 3, to code x = 9, we have the quotient q = ⎣9/3⎦ = 3.
For remainder, we have i = ⎣log2 3⎦ = 1 and d = 1. Note that for b = 3, there
are three remainders, i.e., 0, 1, and 2, which are coded as 0, 10, and 11 re-
spectively. The remainder for 9 is r = 9 − 3 × 3 = 0. The final code for 9 is
00010. Additional examples for b = 3 are shown in column 5 of Table 6.1.

6.6 Inverted Index and Its Compression 213

For b = 10, to code x = 9, we have the quotient q = ⎣9/10⎦ = 0. For re-
mainder, we have i = ⎣log2 10⎦ = 3 and d = 6. Note that for b = 10, there are
10 remainders, i.e., 0, 1, 2, …, 10, which are coded as 000, 001, 010, 011,
100, 101, 1100, 1101, 1110, 1111 respectively. The remainder of 9 is r = 9
− 0 × 5 = 9. The final code for 9 is 11111. Additional examples for b = 10
are shown in column 6 of Table 6.1. ▀

We can see that the first d remainders are standard binary codes, but the
rest are not. They are generated using a tree instead. Figure 6.9 shows an
example based on b = 5. The leaves are the five remainders. The first three
remainders (0, 1, 2) are in the standard binary code, and the rest (3 and 4)
have an additional bit. It is important to note that the first 2 bits (i = 2) of
the remainder 3 (the first remainder coded in i+1 bits) is 11, which is 3
(i.e., d) in binary. This information is crucial for decoding because it en-
ables the algorithm to know when i+1 bits are used. We also notice that d
is completely determined by b, which helps decoding.

Fig. 6.9. The coding tree for b = 5

If b is a power of 2 (called Golomb–Rice coding), i.e., b = 2k for integer
k ≥ 0, every remainder is coded with the same number of bits because
⎣log2b⎦ = ⎡log2b⎤. This is also easy to see from Equation (25), i.e., d = 2k.

Decoding: To decode a Golomb-coded integer x, we use the following
steps:
1. Decode unary-coded quotient q (the relevant bits are comsumed).
2. Compute i = ⎣log2 b⎦ and d = 2i+1 – b.
3. Retrieve the next i bits and assign it to r.
4. If r ≥ d then
 retrieve one more bit and append it to r at the end;
 r = r – d.
5. Return x = qb + r.

Some explanation is in order for step 4. As we discussed above, if r ≥ d
we need i+1 bits to code the remainder. The first line of step 4 retrieves the
additional bit and appends it to r. The second line obtains the true value of

1

0 1

0 1 0

1 0 1 0

3

2

4

214 6 Information Retrieval and Web Search

the remainder r.

Example 11: We want to decode 11111 for b = 10. We see that q = 0 be-
cause there is no zero at the beginning. The first bit is consumed. We know
that i = ⎣log2 10⎦ = 3 and d = 6. We then retrieve the next three bits, 111,
which is 7 in decimal, and assign it to r (= 111). Since 7 > 6 (which is d),
we retrieve one more bit, which is 1, and r is now 1111 (15 in decimal).
The new r = r – d = 15 – 6 = 9. Finally, x = qb + r = 0 + 9 = 9. ▀

Now we discuss the selection of b for each term. For gap compression,
Witten et al. [551] reported that a suitable b is

,69.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

tn
Nb

(26)

where N is the total number of documents and nt is the number of docu-
ments that contain term t.

Variable-Byte Coding

Coding: In this method, seven bits in each byte are used to code an inte-
ger, with the least significant bit set to 0 in the last byte, or to 1 if further
bytes follow. In this way, small integers are represented efficiently. For
example, 135 is represented in two bytes, since it lies in the range 27 and
214, as 00000011 00001110. Additional examples are shown in column 6
of Table 6.1.

Decoding: Decoding is performed in two steps:

1. Read all bytes until a byte with the zero last bit is seen.
2. Remove the least significant bit from each byte read so far and concate-

nate the remaining bits.

For example, 00000011 00001110 is decoded to 00000010000111, which
is 135.

Finally, experimental results in [547] show that non-parameterized Elias
coding is generally not as space-efficient or as fast as parameterized
Golomb coding for retrieval. Gamma coding does not work well. Variable-
byte integers are often faster than variable-bit integers, despite having
higher storage costs, because fewer CPU operations are required to decode
variable-byte integers and they are byte-aligned on disk. A suitable com-
pression technique can allow retrieval to be up to twice as fast than without
compression, while the space requirement averages 20% – 25% of the cost
of storing uncompressed integers.

6.7 Latent Semantic Indexing 215

6.7 Latent Semantic Indexing

The retrieval models discussed so far are based on keyword or term match-
ing, i.e., matching terms in the user query with those in the documents.
However, many concepts or objects can be described in multiple ways (us-
ing different words) due to the context and people’s language habits. If a
user query uses different words from the words used in a document, the
document will not be retrieved although it may be relevant because the
document uses some symonyms of the words in the user query. This
causes low recall. For example, “picture”, “image” and “photo” are syno-
nyms in the context of digital cameras. If the user query only has the word
“picture”, relevant documents that contain “image” or “photo” but not
“picture” will not be retrieved.

Latent semantic indexing (LSI), proposed by Deerwester et al. [125],
aims to deal with this problem through the identification of statistical asso-
ciations of terms. It is assumed that there is some underlying latent seman-
tic structure in the data that is partially obscured by the randomness of
word choice. It then uses a statistical technique, called singular value de-
composition (SVD) [203], to estimate this latent structure, and to remove
the “noise”. The results of this decomposition are descriptions of terms and
documents based on the latent semantic structure derived from SVD. This
structure is also called the hidden “concept” space, which associates syn-
tactically different but semantically similar terms and documents. These
transformed terms and documents in the “concept” space are then used in
retrieval, not the original terms or documents. Furthermore, the query is
also transformed into the “concept” space before retrieval.

Let D be the text collection, the number of distinctive words in D be m
and the number of documents in D be n. LSI starts with an m×n term-
document matrix A. Each row of A represents a term and each column
represents a document. The matrix may be computed in various ways, e.g.,
using term frequency or TF-IDF values. We use term frequency as an ex-
ample in this section. Thus, each entry or cell of the matrix A, denoted by
Aij, is the number of times that term i occurs in document j.

6.7.1 Singular Value Decomposition

What SVD does is to factor matrix A (a m×n matrix) into the product of
three matrices, i.e.,

,TVUΣA = (27)

216 6 Information Retrieval and Web Search

where
U is a m×r matrix and its columns, called right singular vectors, are ei-

genvectors associated with the r non-zero eigenvalues of AAT. Fur-
thermore, the columns of U are unit orthogonal vectors, i.e., UTU = I
(identity matrix).

V is an n×r matrix and its columns, called right singular vectors, are
eigenvectors associated with the r non-zero eigenvalues of ATA. The
columns of V are also unit orthogonal vectors, i.e., VTV = I.

Σ is a r×r diagonal matrix, Σ = diag(σ1, σ2, …, σr), σi > 0. σ1, σ2, …,
and σr, called singular values, are the non-negative square roots of
the r (non-zero) eigenvalues of AAT. They are arranged in decreasing
order, i.e., σ1 ≥ σ2 ≥ … ≥ σr > 0.

We note that initially U is in fact an m×m matrix and V an n×n ma-
trix and Σ an m×n diagonal matrix. Σ ’s diagonal consists of nonnega-
tive eigenvalues of AAT or ATA. However, due to zero eigenvalues, Σ
has zero-valued rows and columns. Matrix multiplication tells us that
those zero-valued rows and columns from Σ can be dropped. Then,
the last m−r columns in U and the last n−r columns in V can also be
dropped.

m is the number of row (terms) in A, representing the number of terms.
n is the number of columns in A, representing the number of documents.
r is the rank of A, r ≤ min(m, n).

The singular value decomposition of A always exists and is unique up to

1. allowable permutations of columns of U and V and elements of Σ leav-
ing it still diagonal; that is, columns i and j of Σ may be interchanged iff
row i and j of Σ are interchanged, and columns i and j of U and V are in-
terchanged.

2. sign (+/−) flip in U and V.

An important feature of SVD is that we can delete some insignificant
dimensions in the transformed (or “concept”) space to optimally (in the
least square sense) approximate matrix A. The significance of the dimen-
sions is indicated by the magnitudes of the singular values in Σ, which are
already sorted. In the context of information retrieval, the insignificant di-
mensions may represent “noise” in the data, and should be removed. Let us
use only the k largest singular values in Σ and set the remaining small ones
to zero. The approximated matrix of A is denoted by Ak. We can also re-
duce the size of the matrices Σ, U and V by deleting the last r−k rows and
columns from Σ, the last r−k columns in U and the last r−k columns in V.
We then obtain

6.7 Latent Semantic Indexing 217

,T
kkkk VΣUA = (28)

which means that we use the k-largest singular triplets to approximate the
original (and somewhat “noisy”) term-document matrix A. The new space
is called the k-concept space. Figure 6.10 shows the original matrices and
the reduced matrices schematically.

Fig. 6.10. The schematic representation of A and Ak

It is critical that the LSI method does not re-construct the original term-
document matrix A perfectly. The truncated SVD captures most of the im-
portant underlying structures in the association of terms and documents,
yet at the same time removes the noise or variability in word usage that
plagues keyword matching retrieval methods.

Intuitive Idea of LSI: The intuition of LSI is that SVD rotates the axes of
m-dimensional space of A such that the first axis runs along the largest
variation (variance) among the documents, the second axis runs along the
second largest variation (variance) and so on. Figure 6.11 shows an exam-
ple.

The original x-y space is mapped to the x′-y′ space generated by SVD.
We can see that x and y are clearly correlated. In our retrieval context, each
data point represents a document and each axis (x or y) in the original
space represents a term. Hence, the two terms are correlated or co-occur
frequently. In the SVD, the direction of x′ in which the data has the largest
variation is represented by the first column vector of U, and the direction
of y′ is represented by the second column vector of U. ΣVT represents the
documents in the transformed “concept” space. The singular values in Σ
are simply scaling factors.

We observe that y′ direction is insignificant, and may represent some
“noise”, so we can remove it. Then, every data point (document) is pro-

=

Term vectors

k

k

k

k

Terms

Documents

VT

Document
vectors

m×n r×nm×r

Σ

r×r

U A/Ak Uk

Vk
T

Σk

218 6 Information Retrieval and Web Search

jected to x′. We have an outlier document di that contains term x, but not
term y. However, if it is projected to x′, it becomes closer to other points.

Let us see what happens if we have a query q represented with a star in
Fig. 6.11, which contains only a single term “y”. Using the traditional ex-
act term matching, di is not relevant because “y” does not appear in di.
However, in the new space after projection, they are quite close or similar.

Fig. 6.11. Intuition of the LSI.

6.7.2 Query and Retrieval

Given a user query q (represented by a column vector as those in A), it is
first converted into a document in the k-concept space, denoted by qk. This
transformation is necessary because SVD has transformed the original
documents into the k-concept space and stored them in Vk. The idea is that
q is treated as a new document in the original space represented as a col-
umn in A, and then mapped to qk (a row vector) as an additional document
(or column) in Vk

T. From Equation (28), it is easy to see that

 .T
kkk qq ΣU= (29)

Since the columns in U are unit orthogonal vectors, Uk
TUk = I. Thus,

 .T
kk

T
k qq ΣU = (30)

As the inverse of a diagonal matrix is still a diagonal matrix, and each
entry on the diagonal is 1/σi (1 ≤ i ≤ k), if it is multiplied on both sides of
Equation (30), we obtain,

.1 T
k

T
k

-
k qq =UΣ (31)

Finally, we get the following (notice that the transpose of a diagonal
matrix is itself),

.1-
kk

T
k ΣUqq = (32)

x

x'
y’

y

di

q

6.7 Latent Semantic Indexing 219

For retrieval, we simply compare qk with each document (row) in Vk us-
ing a similarity measure, e.g., the cosine similarity. Recall that each row of
Vk (or each column of Vk

T) corresponds to a document (column) in A. This
method has been used traditionally.

Alternatively, since ΣkVk
T (not Vk

T) represents the documents in the
transformed k-concept space, we can compare the similarity of the query
document in the transformed space, which is Σkqk

T, and each transformed
document in ΣkVk

T for retrieval. The difference between the two methods is
obvious. This latter method considers scaling effects of the singular values
in Σk, but the former does not. However, it is not clear which method per-
forms better as I know of no reported study on this alternative method.

6.7.3 An Example

Example 12: We will use the example in [125] to illustrate the process.
The document collection has the following nine documents. The first five
documents are related to human computer interaction, and the last four
documents are related to graphs. To reduce the size of the problem, only
the underlined terms are used in our computation.

c1: Human machine interface for Lab ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user-perceived response time to error measurement
m1: The generation of random, binary, unordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

The term-document matrix A is given below, which is a 9×12 matrix.
 c1 c2 c3 c4 c5 m1 m2 m3 m4
 1 0 0 1 0 0 0 0 0 human
 1 0 1 0 0 0 0 0 0 interface
 1 1 0 0 0 0 0 0 0 computer
 0 1 1 0 1 0 0 0 0 user
 0 1 1 2 0 0 0 0 0 system
 A = 0 1 0 0 1 0 0 0 0 response
 0 1 0 0 1 0 0 0 0 time
 0 0 1 1 0 0 0 0 0 EPS
 0 1 0 0 0 0 0 0 1 survey
 0 0 0 0 0 1 1 1 0 trees
 0 0 0 0 0 0 1 1 1 graph
 0 0 0 0 0 0 0 1 1 minors

220 6 Information Retrieval and Web Search

After performing SVD, we obtain three matrices, U, Σ and VT, which are
given below. Singular values on the diagonal of Σ are in decreasing order.
 0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41
 0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11
 0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49
 0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01
 0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27
 U = 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05
 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05
 0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17
 0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58
 0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23
 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23
 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18

 3.34 0 0 0 0 0 0 0 0
 0 2.54 0 0 0 0 0 0 0

 0 0 2.35 0 0 0 0 0 0
 0 0 0 1.64 0 0 0 0 0

Σ = 0 0 0 0 1.50 0 0 0 0
 0 0 0 0 0 1.31 0 0 0
 0 0 0 0 0 0 0.85 0 0

 0 0 0 0 0 0 0 0.56 0
 0 0 0 0 0 0 0 0 0.36

 0.20 -0.06 0.11 -0.95 0.05 -0.08 0.18 -0.01 -0.06
 0.61 0.17 -0.50 -0.03 -0.21 -0.26 -0.43 0.05 0.24
 0.46 -0.13 0.21 0.04 0.38 0.72 -0.24 0.01 0.02
 0.54 -0.23 0.57 0.27 -0.21 -0.37 0.26 -0.02 -0.08
 VT = 0.28 0.11 -0.51 0.15 0.33 0.03 0.67 -0.06 -0.26
 0.00 0.19 0.10 0.02 0.39 -0.30 -0.34 0.45 -0.62
 0.01 0.44 0.19 0.02 0.35 -0.21 -0.15 -0.76 0.02
 0.02 0.62 0.25 0.01 0.15 0.00 0.25 0.45 0.52
 0.08 0.53 0.08 -0.03 -0.60 0.36 0.04 -0.07 -0.45

Now let us choose only two largest singular values from Σ, i.e., k = 2.
Thus, the concept space has only two dimensions. The other two matrices
are also truncated accordingly. We obtain the 3 matrix Uk, Σk and Vk

T:

 Uk Σk Vk
 T

 0.22 -0.11 3.34 0 0.20 0.61 0.46 0.54 0.28 0.00 0.02 0.02 0.08
 0.20 -0.07 0 2.54 -0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53
 0.24 0.04
 0.40 0.06
 0.64 -0.17
Ak = 0.27 0.11
 0.27 0.11
 0.30 -0.14
 0.21 0.27
 0.01 0.49
 0.04 0.62
 0.03 0.45

6.7 Latent Semantic Indexing 221

Now we issue a search query q, “user interface”, to find relevant docu-
ments. The transformed query document qk of query q in the k-concept
space is computed below using Equation (32), which is (0.179 -0.004).
 0 T 0.22 -0.11
 1 0.20 -0.07
 0 0.24 0.04
 1 0.40 0.06
 0 0.64 -0.17

 0 0.27 0.11 3.34 0 -1
 0 0.27 0.11 0 2.54
 0 0.30 -0.14
 0 0.21 0.27
 0 0.01 0.49
 0 0.04 0.62
 0 0.03 0.45

qk is then compared with every document vector in Vk using the cosine
similarity. The similarity values are as follows:

c1: 0.964
c2: 0.957
c3: 0.968
c4: 0.928
c5: 0.922
m1: −0.022
m2: 0.023
m3: 0.010
m4: 0.127

We obtain the final ranking of (c3, c1, c2, c4, c5, m4, m2, m3, m1). ▀

6.7.4 Discussion

LSI has been shown to perform better than traditional keywords based
methods. The main drawback is the time complexity of the SVD, which is
O(m2n). It is thus difficult to use for a large document collection such as
the Web. Another drawback is that the concept space is not interpretable as
its description consists of all numbers with little semantic meaning.

Determining the optimal number of dimensions k of the concept space is
also a major difficulty. There is no general consensus for an optimal num-
ber of dimensions. The original paper [125] of LSI suggests 50–350 di-
mensions. In practice, the value of k needs to be determined based on the
specific document collection via trial and error, which is a very time con-
suming process due to the high time complexity of the SVD.

To close this section, one can imagine that association rules may be able
to approximate the results of LSI and avoid its shortcomings. Association

= (0.179 −0.004) qk =

222 6 Information Retrieval and Web Search

rules represent term correlations or co-occurrences. Association rule min-
ing has two advantages. First, its mining algorithm is very efficient. Since
we may only need rules with 2-3 terms, which are sufficient for practical
purposes, the mining algorithm only needs to scan the document collection
2-3 times. Second, rules are easy to understand. However, little research
has been done in this direction so far.

6.8 Web Search

We now put it all together and describe the working of a search engine.
Since it is difficult to know the internal details of a commercial search en-
gine, most contents in this section are based on research papers, especially
the early Google paper [68]. Due to the efficiency problem, latent semantic
indexing is probably not used in Web search yet. Current search algorithms
are still mainly based on the vector space model and term matching.

A search engine starts with the crawling of pages on the Web. The
crawled pages are then parsed, indexed, and stored. At the query time, the
index is used for efficient retrieval. We will not discuss crawling here. Its
details can be found in Chap. 8. The subsequent operations of a search en-
gine are described below:

Parsing: A parser is used to parse the input HTML page, which produces a
stream of tokens or terms to be indexed. The parser can be constructed us-
ing a lexical analyzer generator such as YACC and Flex (which is from the
GNU project). Some pre-processing tasks described in Sect. 6.5 may also
be performed before or after parsing.

Indexing: This step produces an inverted index, which can be done using
any of the methods described in Sect. 6.6. For retrieval efficiency, a search
engine may build multiple inverted indices. For example, since the titles
and anchor texts are often very accurate descriptions of the pages, a small
inverted index may be constructed based on the terms appeared in them
alone. Note that here the anchor text is for indexing the page that its link
points to, not the page containing it. A full index is then built based on all
the text in each page, including anchor texts (a piece of anchor text is in-
dexed both for the page that contains it, and for the page that its link points
to). In searching, the algorithm may search in the small index first and then
the full index. If a sufficient number of relevant pages are found in the
small index, the system may not search in the full index.

Searching and Ranking: Given a user query, searching involves the fol-
lowing steps:

6.8 Web Search 223

1. pre-processing the query terms using some of the methods described in
Sect. 6.5, e.g., stopword removal and stemming;

2. finding pages that contain all (or most of) the query terms in the inverted
index;

3. ranking the pages and returning them to the user.

The ranking algorithm is the heart of a search engine. However, little is
known about the algorithms used in commercial search engines. We give a
general description based on the algorithm in the early Google system.

As we discussed earlier, traditional IR uses cosine similarity values or
any other related measures to rank documents. These measures only con-
sider the content of each document. For the Web, such content based
methods are not sufficient. The problem is that on the Web there are too
many relevant documents for almost any query. For example, using “web
mining” as the query, the search engine Google estimated that there were
46,500,000 relevant pages. Clearly, there is no way that any user will look
at this huge number of pages. Therefore, the issue is how to rank the pages
and present the user the “best” pages at the top.

An important ranking factor on the Web is the quality of the pages,
which was hardly studied in traditional IR because most documents used in
IR evaluations are from reliable sources. However, on the Web, anyone
can publish almost anything, so there is no quality control. Although a
page may be 100% relevant, it may not be a quality page due to several
reasons. For example, the author may not be an expert of the query topic,
the information given in the page may be unreliable or biased, etc.

However, the Web does have an important mechanism, the hyperlinks
(links), that can be used to assess the quality of each page to some extent.
A link from page x to page y is an implicit conveyance of authority of page
x to page y. That is, the author of page x believes that page y contains qual-
ity or authoritative information. One can also regard the fact that page x
points to page y as a vote of page x for page y. This democratic nature of
the Web can be exploited to assess the quality of each page. In general, the
more votes a page receives, the more likely it is a quality page. The actual
algorithms are more involved than simply counting the number of votes or
links pointing to a page (called in-links). We will describe the algorithms
in the next chapter. PageRank is the most well known such algorithm (see
Sect. 7.3). It makes use of the link structure of Web pages to compute a
quality or reputation score for each page. Thus, a Web page can be evalu-
ated based on both its content factors and its reputation. Content-based
evaluation depends on two kinds of information:

Occurrence Type: There are several types of occurrences of query terms
in a page:

224 6 Information Retrieval and Web Search

Title: a query term occurs in the title field of the page.
Anchor text: a query term occurs in the anchor text of a page pointing

to the current page being evaluated.
URL: a query term occurs in the URL of the page. Many URL ad-

dresses contain some descriptions of the page. For example, a page
on Web mining may have the URL http://www.domain.edu/Web-
mining.html.

Body: a query term occurs in the body field of the page. In this case, the
prominence of each term is considered. Prominence means whether
the term is emphasized in the text with a large font, or bold and/or
italic tags. Different prominence levels can be used in a system. Note
that anchor texts in the page can be treated as plain texts for the
evaluation of the page.

Count: The number of occurrences of a term of each type. For example, a
query term may appear in the title field of the page 2 times. Then, the ti-
tle count for the term is 2.

Position: This is the position of each term in each type of occurrence. The
information is used in proximity evaluation involving multiple query
terms. Query terms that are near to each other are better than those that
are far apart. Furthermore, query terms appearing in the page in the
same sequence as they are in the query are also better.

For the computation of the content based score (also called the IR score),
each occurrence type is given an associated weight. All type weights form
a fixed vector. Each raw term count is converted to a count weight, and all
count weights also form a vector.

The quality or reputation of a page is usually computed based on the
link structure of Web pages, which we will study in Chap. 7. Here, we as-
sume that a reputation score has been computed for each page.

Let us now look at two kinds of queries, single word queries and
multi-word queries. A single word query is the simplest case with only a
single term. After obtaining the pages containing the term from the in-
verted index, we compute the dot product of the type weight vector and
the count weight vector of each page, which gives us the IR score of the
page. The IR score of each page is then combined with its reputation
score to produce the final score of the page.

For a multi-word query, the situation is similar, but more complex since
there is now the issue of considering term proximity and ordering. Let us
simplify the problem by ignoring the term ordering in the page. Clearly,
terms that occur close to each other in a page should be weighted higher
than those that occur far apart. Thus multiple occurrences of terms need to
be matched so that nearby terms are identified. For every matched set, a

6.9 Meta-Search and Combining Multiple Rankings 225

proximity value is calculated, which is based on how far apart the terms
are in the page. Counts are also computed for every type and proximity.
Each type and proximity pair has a type-proximity-weight. The counts are
converted into count-weights. The dot product of the count-weights and
the type-proximity-weights gives an IR score to the page. Term ordering
can be considered similarly and included in the IR score, which is then
combined with the page reputation score to produce the final rank score.

6.9 Meta-Search and Combining Multiple Rankings

In the last section, we described how an individual search engine works.
We now discuss how several search engines can be used together to pro-
duce a meta-search engine, which is a search system that does not have its
own database of Web pages. Instead, it answers the user query by combin-
ing the results of some other search engines which normally have their da-
tabases of Web pages. Figure 6.12 shows a meta-search architecture.

After receiving a query from the user through the search interface, the
meta-search engine submits the query to the underlying search engines
(called its component search engines). The returned results from all these
search engines are then combined (fused or merged) and sent to the user.

A meta-search engine has some intuitive appeals. First of all, it increases
the search coverage of the Web. The Web is a huge information source,
and each individual search engine may only cover a small portion of it. If
we use only one search engine, we will never see those relevant pages that
are not covered by the search engine.

Fig. 6.12. A meta-search architecture

Meta-search may also improve the search effectiveness. Each compo-
nent search engine has its ranking algorithm to rank relevant pages, which
is often biased, i.e., it works well for certain types of pages or queries but

Search interface

Metasearch
engine

Search
engine 1

Search
engine 2

Search
engine n ⋅⋅⋅⋅⋅⋅

226 6 Information Retrieval and Web Search

not for others. By combining the results from multiple search engines, their
biases can be reduced and thus the search precision can be improved.

The key operation in meta-search is to combine the ranked results from
the component search engines to produce a single ranking. The first task is
to identify whether two pages from different search engines are the same,
which facilitates combination and duplicate removal. Without download-
ing the full pages (which is too time consuming), this process is not simple
due to aliases, symbolic links, redirections, etc. Typically, several heuris-
tics are used for the purpose, e.g., comparing domain names of URLs, ti-
tles of the pages, etc.

The second task is to combine the ranked results from individual search
engines to produce a single ranking, i.e., to fuse individual rankings. There
are two main classes of meta-search combination (or fusion) algorithms:
ones that use similarity scores returned by each component system and
ones that do not. Some search engines return a similarity score (with the
query) for each returned page, which can be used to produce a better com-
bined ranking. We discuss these two classes of algorithms below.

It is worth noting that the first class of algorithms can also be used to
combine scores from different similarity functions in a single IR system or
in a single search engine. Indeed, the algorithms below were originally
proposed for this purpose. It is likely that search engines already use some
such techniques (or their variations) within their ranking mechanisms be-
cause a ranking algorithm needs to consider multiple factors.

6.9.1 Combination Using Similarity Scores

Let the set of candidate documents to be ranked be D = {d1, d2, …, dN}.
There are k underlying systems (component search engines or ranking
techniques). The ranking from system or technique i gives document dj the
similarity score, sij. Some popular and simple combination methods are de-
fined by Fox and Shaw in [184].

CombMIN: The combined similarity score for each document dj is the
minimum of the similarities from all underlying search engine systems:

CombMIN(dj) = min(s1j, s2j, …, skj). (33)

CombMAX: The combined similarity score for each document dj is the
maximum of the similarities from all underlying search engine systems:

CombMAX(dj) = max(s1j, s2j, …, skj). (34)

CombSUM: The combined similarity score for each document dj is the
sum of the similarities from all underlying search engine systems.

6.9 Meta-Search and Combining Multiple Rankings 227

.)(CombSUM
1∑ =

=
k

i ijj sd (35)

CombANZ: It is defined as

,
)(CombSUM

)(CombANZ
j

j
j r

d
d = (36)

where rj is the number of non-zero similarities, or the number of sys-
tems that retrieved dj.

CombMNZ: It is defined as

jjj rdd ×=)(CombSUM)(CombMNZ (37)

where rj is the number of non-zero similarities, or the number of sys-
tems that retrieved dj.

It is a common practice to normalize the similarity scores from each
ranking using the maximum score before combination. Researchers have
shown that, in general, CombSUM and CombMNZ perform better.
CombMNZ outperforms CombSUM slightly in most cases.

6.9.2 Combination Using Rank Positions

We now discuss some popular rank combination methods that use only
rank positions of each search engine. In fact, there is a field of study called
the social choice theory [273] that studies voting algorithms as techniques
to make group or social decisions (choices). The algorithms discussed be-
low are based on voting in elections.

In 1770 Jean-Charles de Borda proposed “election by order of merit”.
Each voter announces a (linear) preference order on the candidates. For
each voter, the top candidate receives n points (if there are n candidates in
the election), the second candidate receives n−1 points, and so on. The
points from all voters are summed up to give the final points for each can-
didate. If there are candidates left unranked by a voter, the remaining
points are divided evenly among the unranked candidates. The candidate
with the most points wins. This method is called the Borda ranking.

An alternative method was proposed by Marquis de Condorcet in 1785.
The Condorcet ranking algorithm is a majoritarian method where the
winner of the election is the candidate(s) that beats each of the other can-
didates in a pair-wise comparison. If a candidate is not ranked by a voter,
the candidate loses to all other ranked candidates. All unranked candidates
tie with one another.

228 6 Information Retrieval and Web Search

Yet another simple method, called the reciprocal ranking, sums one
over the rank of each candidate across all voters. For each voter, the top
candidate has the score of 1, the second ranked candidate has the score of
1/2, and the third ranked candidate has the score of 1/3 and so on. If a can-
didate is not ranked by a voter, it is skipped in the computation for this
voter. The candidates are then ranked according to their final total scores.
This rank strategy gives much higher weight than Borda ranking to candi-
dates that are near the top of a list.

Example 13: We use an example in the context of meta-search to illustrate
the working of these methods. Consider a meta-search system with five
underlying search engine systems, which have ranked four candidate
documents or pages, a, b, c, and d as follows:

system 1: a, b, c, d
system 2: b, a, d, c
system 3: c, b, a, d
system 4: c, b, d
system 5: c, b

Let us denote the score of each candidate x by Score(x).

Borda Ranking: The score for each page is as follows:
Score(a) = 4 + 3 + 2 + 1 + 1.5 = 11.5
Score(b) = 3 + 4 + 3 + 3 + 3 = 16
Score(c) = 2 + 1 + 4 + 4 + 4 = 15
Score(d) = 1 + 2 + 1 + 2 + 1.5 = 7.5

Thus the final ranking is: b, c, a, d.

Condorcet Ranking: We first build an n×n matrix for all pair-wise com-
parisons, where n is the number of pages. Each non-diagonal entry (i, j) of
the matrix shows the number of wins, loses, and ties of page i over page j,
respectively. For our example, the matrix is as follows:

 a b c d
a - 1:4:0 2:3:0 3:1:1
b 4:1:0 - 2:3:0 5:0:0
c 3:2:0 3:2:0 - 4:1:0
d 1:3:1 0:5:0 1:4:0 -

Fig. 6.13. The pair-wise comparison matrix for the four candidate pages

After the matrix is constructed, pair-wise winners are determined, which
produces a win, lose and tie table. Each pair in Fig. 6.13 is compared, and
the winner receives one point in its “win” column and the loser receives

6.10 Web Spamming 229

one point in its “lose” column. For a pair-wise tie, both receive one point
in the “tie” column. For example, for page a, it only beats d because a is
ranked ahead of d three times out of 5 ranks (Fig. 6.13). The win, lose and
tie table for Fig. 6.13 is given in Fig. 6.14 below.

 win lose tie
a 1 2 0
b 2 1 0
c 3 0 0
d 0 3 0

Fig. 6.14. The win, lose and tie table for the comparison matrix in Fig. 6.13

To rank the pages, we use their win and lose values. If the number of
wins that a page i has is higher than another page j, then i wins over j. If
their win property is equal, we consider their lose scores, and the page
which has a lower lose score wins. If both their win and lose scores are the
same, then the pages are tied. The final ranks of the tied pages are random-
ly assigned. Clearly c is the Condorcet winner in our example. The final
ranking is: c, b, a, d.

Reciprocal Ranking:

Score(a) = 1 + 1/2 + 1/3 = 1.83
Score(b) = 1/2 + 1 + 1/2 + 1/2 + 1/2 = 3
Score(c) = 1/3 + 1/4 + 1 + 1 + 1 = 3.55
Score(d) = 1/4 + 1/3 + 1/4 + 1/3= 1.17

The final ranking is: c, b, a, d. ▀

6.10 Web Spamming

Web search has become very important in the information age. Increased
exposure of pages on the Web can result in significant financial gains
and/or fames for organizations and individuals. The rank positions of Web
pages in search are perhaps the single most important indicator of such ex-
posures of pages. If a user searches for information that is relevant to your
pages but your pages are ranked low by search engines, then the user may
not see the pages because one seldom clicks a large number of returned
pages. This is not acceptable for businesses, organizations, and even indi-
viduals. Thus, it has become very important to understand search engine
ranking algorithms and to present the information in one’s pages in such a
way that the pages will be ranked high when terms related to the contents

230 6 Information Retrieval and Web Search

of the pages are searched. Unfortunately, this also results in spamming,
which refers to human activities that deliberately mislead search engines to
rank some pages higher than they deserve.

There is a gray area between spamming and legitimate page optimiza-
tion. It is difficult to define precisely what are justifiable and unjustifiable
actions aimed at boosting the importance and consequently the rank posi-
tions of one’s pages.

Assume that, given a user query, each page on the Web can be assigned
an information value. All the pages are then ranked according to their in-
formation values. Spamming refers to actions that do not increase the in-
formation value of a page, but dramatically increase its rank position by
misleading search algorithms to rank it high. Due to the fact that search
engine algorithms do not understand the content of each page, they use
syntactic or surface features to assess the information value of the page.
Spammers exploit this weakness to boost the ranks of their pages.

Spamming is annoying for users because it makes it harder to find truly
useful information and leads to frustrating search experiences. Spamming
is also bad for search engines because spam pages consume crawling
bandwidth, pollute the Web, and distort search ranking.

There are in fact many companies that are in the business of helping
others improve their page ranking. These companies are called Search
Engine Optimization (SEO) companies, and their businesses are thriving.
Some SEO activities are ethical and some, which generate spam, are not.

As we mentioned earlier, search algorithms consider both content based
factors and reputation based factors in scoring each page. In this section,
we briefly describe some spam methods that exploit these factors. The sec-
tion is mainly based on [214] by Gyongyi and Garcia-Molina.

6.10.1 Content Spamming

Most search engines use variations of TF-IDF based measures to assess the
relevance of a page to a user query. Content-based spamming methods ba-
sically tailor the contents of the text fields in HTML pages to make spam
pages more relevant to some queries. Since TF-IDF is computed based on
terms, content spamming is also called term spamming. Term spamming
can be placed in any text field:

Title: Since search engines usually give higher weights to terms in the
title of a page due to the importance of the title to a page, it is thus com-
mon to spam the title.

Meta-Tags: The HTML meta-tags in the page header enable the owner
to include some meta information of the page, e.g., author, abstract, key-

6.10 Web Spamming 231

words, content language, etc. However, meta-tags are very heavily
spammed. Search engines now give terms within these tags very low
weights or completely ignore their contents.

Body: Clearly spam terms can be placed within the page body to boost
the page ranking.

Anchor Text: As we discussed in Sect. 6.8, the anchor text of a hyper-
link is considered very important by search engines. It is indexed for the
page containing it and also for the page that it points to, so anchor text
spam affects the ranking of both pages.

URL: Some search engines break down the URL of a page into terms
and consider them in ranking. Thus, spammers can include spam terms in
the URL. For example, a URL may be http://www.xxx.com/cheap-MP3-
player-case-battery.html

There are two main term spam techniques, which simply create syn-
thetic contents containing spam terms.

1. Repeating some important terms: This method increases the TF
scores of the repeated terms in a document and thus increases the rele-
vance of the document to these terms. Since plain repetition can be eas-
ily detected by search engines, the spam terms can be weaven into some
sentences, which may be copied from some other sources. That is, the
spam terms are randomly placed in these sentences. For example, if a
spammer wants to repeat the word “mining”, it may add it randomly in
an unrelated (or related) sentence, e.g., “the picture mining quality of
this camera mining is amazing,” instead of repeating it many times con-
secutively (next to each other), which is easy to detect.

2. Dumping of many unrelated terms: This method is used to make the
page relevant to a large number of queries. In order to create the spam
content quickly, the spammer may simply copy sentences from related
pages on the Web and glue them together.

Advertisers may also take advantage of some frequently searched
terms on the Web and put them in the target pages so that when users
search for the frequently search terms, the target pages become relevant.
For example, to advertise cruise liners or cruise holiday packages,
spammers put “Tom Cruise” in their advertising pages as “Tom Cruise”
is a popular film actor in USA and is searched very frequently.

6.10.2 Link Spamming

Since hyperlinks play an important role in determining the reputation score
of a page, spammers also spam on hyperlinks.

232 6 Information Retrieval and Web Search

Out-Link Spamming: It is quite easy to add out-links in one’s pages
pointing to some authoritative pages to boost the hub cores of one’s
pages. A page is a hub page if it points to many authoritative (or quality)
pages. The concepts of authority and hub will be formally studied in the
next chapter (Sect. 7.4). To create massive out-links, spammers may use a
technique called directory cloning. There are many directories, e.g., Ya-
hoo!, DMOZ Open Directory, on the Web which contain a large number of
links to other Web pages that are organized according to some pre-
specified topic hierarchies. Spammers simply replicate a large portion of a
directory in the spam page to create a massive out-link structure quickly.

In-Link Spamming: In-link spamming is harder to achieve because it is
not easy to add hyperlinks on the Web pages of others. Spammers typically
use one or more of the following techniques.

1. Creating a honey pot: If a page wants to have a high reputation/quality
score, it needs quality pages pointing to it (see Sect. 7.3 in the next
chapter). This method basically tries to create some important pages that
contain links to target spam pages. For example, the spammer can create
a set of pages that contains some very useful information, e.g., glossary
of Web mining terms, or Java FAQ and help pages. The honey pots at-
tract people pointing to them because they contain useful information,
and consequently have high reputation scores (high quality pages). Such
honey pots contain (hidden) links to target spam pages that the spam-
mers want to promote. This strategy can significantly boost the spam
pages.

2. Adding links to Web directories: Many Web directories allow the user to
submit URLs. Spammers can submit the URLs of spam pages at multi-
ple directory sites. Since directory pages often have high quality (or au-
thority) and hub scores, they can boost reputation scores of spam pages
significantly.

3. Posting links to the user-generated content (reviews, forum discussions,
blogs, etc): There are numerous sites on the Web that allow the user to
freely post messages, which are called the user-generated content.
Spammers can add links pointing to their pages to the seemly innocent
messages that they post.

4. Participating in link exchange: In this case, many spammers form a
group and set up a link exchange scheme so that their sites point to each
other in order to promote the pages of all the sites.

5. Creating own spam farm: In this case, the spammer needs to control a
large number of sites. Then, any link structure can be created to boost
the ranking of target spam pages.

6.10 Web Spamming 233

6.10.3 Hiding Techniques

In most situations, spammer wants to conceal or to hide the spamming sen-
tences, terms and links so that the Web users do not see them. They can
use a number of techniques.

Content Hiding: Spam items are made invisible. One simple method is to
make the spam terms the same color as the background color. For example,
one may use the following for hiding,

<body background = white>
 spam items
 …
 </body>

To hide a hyperlink, one can also use a very small image and a blank
image. For example, one may use

A spammer can also use scripts to hide some of the visual elements on
the page, for instance, by setting the visible HTML style attribute to false.

Cloaking: Spam Web servers return a HTML document to the user and a
different document to a Web crawler. In this way, the spammer can present
the Web user with the intended content and send a spam page to the search
engine for indexing.

Spam Web servers can identify Web crawlers in one of the two ways:

1. It maintains a list of IP addresses of search engines and identifies search
engine crawlers by matching IP addresses.

2. It identifies Web browsers based on the user–agent field in the HTTP
request message. For instance, the user–agent name of the following
HTTP request message is the one used by the Microsoft Internet Ex-
plorer 6 browser:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.org
User–Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

User–agent names are not standard, so it is up to the requesting application
what to include in the corresponding message field. However, search en-
gine crawlers usually identify themselves by names distinct from normal
Web browsers in order to allow well-intended, and legitimate optimization.
For example, some sites serve search engines a version of their pages that
is free of navigation links and advertisements.

234 6 Information Retrieval and Web Search

Redirection: Spammers can also hide a spammed page by automatically
redirecting the browser to another URL as soon as the page is loaded.
Thus, the spammed page is given to the search engine for indexing (which
the user will never see), and the target page is presented to the Web user
through redirection. One way to achieve redirection is to use the “refresh”
meta-tag, and set the refresh time to zero. Another way is to use scripts.

6.10.4 Combating Spam

Some spamming activities, like redirection using refresh meta-tag, are easy
to detect. However, redirections by using scripts are hard to identify be-
cause search engine crawlers do not execute scripts. To prevent cloaking, a
search engine crawler may identify itself as a regular Web browser.

Using the terms of anchor texts of links that point to a page to index the
page is able to fight content spam to some extent because anchor texts
from other pages are more trustworthy. This method was originally pro-
posed to index pages that were not fetched by search engine crawlers
[364]. It is now a general technique used by search engines as we have
seen in Sect. 6.8, i.e., search engines give terms in such anchor texts higher
weights. In fact, the terms near a piece of anchor text also offer good edito-
rial judgment about the target page.

The PageRank algorithm [68] is able to combat content spam to a cer-
tain degree as it is based on links that point to the target pages, and the
pages that point to the target pages need to be reputable or with high Pag-
eRank scores as well (see Chap. 7). However, it does not deal with the in-
link based spamming methods discussed above.

Instead of combating each individual type of spam, a method (called
TrustRank) is proposed in [216] to combat all kinds of spamming methods
at the same time. It takes advantage of the approximate isolation of reputa-
ble and non-spam pages, i.e., reputable Web pages seldom pointing to
spam pages, and spam pages often link to many reputable pages (in an at-
tempt to improve their hub scores). Link analysis methods are used to
separate reputable pages and any form of spam without dealing with each
spam technique individually.

Combating spam can also be seen as a classification problem, i.e., pre-
dicting whether a page is a spam page or not. One can use any supervised
learning algorithm to train a spam classifier. The key issue is to design fea-
tures used in learning. The following are some example features used in
[417] to detect content spam.

1. Number of words in the page: A spam page tends to contain more words
than a non-spam page so as to cover a large number of popular words.

Bibliographic Notes 235

2. Average word length: The mean word length for English prose is about
5 letters. Average word length of synthetic content is often different.

3. Number of words in the page title: Since search engines usually give ex-
tra weights to terms appearing in page titles, spammers often put many
keywords in the titles of the spam pages.

4. Fraction of visible content: Spam pages often hide spam terms by mak-
ing them invisible to the user.

Other features used include the amount of anchor text, compressibility,
fraction of page drawn from globally popular words, independent n-gram
likelihoods, conditional n-gram likelihoods, etc. Details can be found in
[417]. Its spam detection classifier gave very good results. Testing on 2364
spam pages and 14806 non-spam pages (17170 pages in total), the classi-
fier was able to correctly identify 2,037 (86.2%) of the 2364 spam pages,
while misidentifying only 526 spam and non-spam pages.

Another interesting technique for fighting spam is to partition each Web
page into different blocks using techniques discussed in Sect. 6.5. Each
block is given an importance level automatically. To combat link spam,
links in less important blocks are given lower transition probabilities to be
used in the PageRank computation. The original PageRank algorithm as-
signs every link in a page an equal transition probability (see Sect. 7.3).
The non-uniform probability assignment results in lower PageRank scores
for pages pointed to by links in less important blocks. This method is ef-
fective because in the link exchange scheme and the honey pot scheme, the
spam links are usually placed in unimportant blocks of the page, e.g., at the
bottom of the page. The technique may also be used to fight term spam in a
similar way, i.e., giving terms in less important blocks much lower weights
in rank score computation. This method is proposed in [78].

However, sophisticated spam is still hard to detect. Combating spam is
an on-going process. Once search engines are able to detect certain types
of spam, spammers invent more sophisticated spamming methods.

Bibliographic Notes

Information retrieval (IR) is a major research field. This chapter only gives
a brief introduction to some commonly used models and techniques. There
are several text books that have a comprehensive coverage of the field,
e.g., those by Baeza-Yates and Ribeiro-Neto [31], Grossman and Frieder
[209], Salton and McGill [471], van Rijsbergen (an online book at
http://www.dcs.gla.ac.uk/Keith/Preface.html), Witten et al. [551], and Yu
and Meng [581].

236 6 Information Retrieval and Web Search

A similar chapter in the book by Chakrabarti [85] also discusses many
Web specific issues and has influenced the writing of this chapter. Below,
we discuss some further readings related to Web search and mining.

On index compression, Elias coding was introduced by Elias [161] and
Golomb coding was introduced by Golomb [202]. Their applications to in-
dex compression was studied by several researchers, e.g., Witten et al.
[551], Bell et al. [45], Moffat et al. [392], and Williams and Zobel [547].
Wikipedia is a great source of information on this topic as well.

Latent semantic index (LSI) was introduced by Deerwester et al. [125],
which uses the singular value decomposition technique (SVD) [203]. Ad-
ditional information about LSI and/or SVD can be found in [48, 581, 288].
Telcordia Technologies, where LSI was developed, maintains a LSI page at
http://lsi.research.telcordia.com/ with more references.

On Web page pre-processing, the focus has been on identifying the main
content blocks of each page because a typical Web page contains a large
amount of noise, which can adversely affect the search or mining accuracy.
Several researchers have attempted the task, e.g., Bar-Yossef et al. [38],
Debnath et al. [124], Gibson, et al. [199], Li et al. [324], Lin and Ho [336],
Ma et al. [355], Ramaswamy et al. [456], Song et al. [495], Yi et al. [576],
Yin and Lee [579], etc.

Although search is probably the biggest application on the Web, little is
known about the actual implementation of a search engine except some
principal ideas. Sect. 6.8 is largely based on the Google paper by Brin and
Page [68], and bits and pieces in various other sources. Over the years, a
large number of researchers have studied Web search. More recent studies
on various aspects of search can be found in [37, 79, 89, 262, 289, 297,
451, 460, 508, 567, 569, 611].

For metasearch, the combination methods in Sect. 6.9.1 were proposed
by Fox and Shaw [184]. Aslam and Montague [28], Montague and Aslam
[394], and Nuray and Can [418] provide good descriptions of Borda rank-
ing and Condorcet ranking. In addition to ranking, Meng et al. [378] dis-
cussed many other metasearch issues.

On Web spam, Gyongyi and Garcia-Molina gave an excellent taxonomy
of different types of spam [214]. The TrustRank algorithm is also due to
them [216]. An improvement to TrustRank was proposed by Wu et al.
[557]. General link spam detection was studied by Adali et al. [1], Amitay
et al. [19], Baeza-Yates et al. [30], Gyongyi and Garcia-Molina [215], Wu
and Davison [555], Zhang et al. [604], etc. Content spam detection was
studied by Fetterly et al. [176, 177], and Ntoulas et al. [417]. A cloaking
detection algorithm is reported in [556].

7 Link Analysis

Early search engines retrieved relevant pages for the user based primarily
on the content similarity of the user query and the indexed pages of the
search engines. The retrieval and ranking algorithms were simply direct
implementation of those from information retrieval. Starting from 1996, it
became clear that content similarity alone was no longer sufficient for
search due to two reasons. First, the number of Web pages grew rapidly
during the middle to late 1990s. Given any query, the number of relevant
pages can be huge. For example, given the search query “classification
technique”, the Google search engine estimates that there are about 10 mil-
lion relevant pages. This abundance of information causes a major problem
for ranking, i.e., how to choose only 30–40 pages and rank them suitably
to present to the user. Second, content similarity methods are easily
spammed. A page owner can repeat some important words and add many
remotely related words in his/her pages to boost the rankings of the pages
and/or to make the pages relevant to a large number of possible queries.

Starting from around 1996, researchers in academia and search engine
companies began to work on the problem. They resort to hyperlinks.
Unlike text documents used in traditional information retrieval, which are
often considered independent of one another (i.e., with no explicit relation-
ships or links among them except in citation analysis), Web pages are con-
nected through hyperlinks, which carry important information. Some hy-
perlinks are used to organize a large amount of information at the same
Web site, and thus only point to pages in the same site. Other hyperlinks
point to pages in other Web sites. Such out-going hyperlinks often indicate
an implicit conveyance of authority to the pages being pointed to. There-
fore, those pages that are pointed to by many other pages are likely to con-
tain authoritative or quality information. Such linkages should obviously be
used in page evaluation and ranking in search engines.

During the period of 1997-1998, two most influential hyperlink based
search algorithms PageRank [68, 422] and HITS [281] were designed.
PageRank is the algorithm that powers the successful search engine Google.
Both PageRank and HITS were originated from social network analysis
[540]. They both exploit the hyperlink structure of the Web to rank pages
according to their levels of “prestige” or “authority”. We will study these

238 7 Link Analysis

algorithms in this chapter. We should also note that hyperlink-based page
evaluation and ranking is not the only method used by search engines. As
we discussed in Chap. 6, contents and many other factors are also consid-
ered in producing the final ranking presented to the user.

Apart from search ranking, hyperlinks are also useful for finding Web
communities. A Web community is a cluster of densely linked pages rep-
resenting a group of people with a common interest. Beyond explicit hy-
perlinks on the Web, links in other contexts are useful too, e.g., for discov-
ering communities of named entities (e.g., people and organizations) in
free text documents, and for analyzing social phenomena in emails. This
chapter will introduce some of the current algorithms.

7.1 Social Network Analysis

Social network is the study of social entities (people in an organization,
called actors), and their interactions and relationships. The interactions
and relationships can be represented with a network or graph, where each
vertex (or node) represents an actor and each link represents a relationship.
From the network we can study the properties of its structure, and the role,
position and prestige of each social actor. We can also find various kinds
of sub-graphs, e.g., communities formed by groups of actors.

Social network analysis is useful for the Web because the Web is essen-
tially a virtual society, and thus a virtual social network, where each page
can be regarded as a social actor and each hyperlink as a relationship.
Many of the results from social networks can be adapted and extended for
use in the Web context. The ideas from social network analysis are indeed
instrumental to the success of Web search engines.

In this section, we introduce two types of social network analysis, cen-
trality and prestige, which are closely related to hyperlink analysis and
search on the Web. Both centrality and prestige are measures of degree of
prominence of an actor in a social network. We introduce them below. For
a more complete treatment of the topics, please refer to the authoritative
text by Wasserman and Faust [540].

7.1.1 Centrality

Important or prominent actors are those that are linked or involved with
other actors extensively. In the context of an organization, a person with
extensive contacts (links) or communications with many other people in
the organization is considered more important than a person with relatively

7.1 Social Network Analysis 239

fewer contacts. The links can also be called ties. A central actor is one in-
volved in many ties. Fig. 7.1 shows a simple example using an undirected
graph. Each node in the social network is an actor and each link indicates
that the actors on the two ends of the link communicate with each other.
Intuitively, we see that the actor i is the most central actor because he/she
can communicate with most other actors.

Fig. 7.1. An example of a social network

There are different types of links or involvements between actors. Thus,
several types of centrality are defined on undirected and directed graphs.
We discuss three popular types below.

Degree Centrality

Central actors are the most active actors that have most links or ties with
other actors. Let the total number of actors in the network be n.

Undirected Graph: In an undirected graph, the degree centrality of an
actor i (denoted by CD(i)) is simply the node degree (the number of edges)
of the actor node, denoted by d(i), normalized with the maximum degree,
n−1.

.
1
)()(

−
=

n
idiCD (1)

The value of this measure ranges between 0 and 1 as n−1 is the maximum
value of d(i).

Directed Graph: In this case, we need to distinguish in-links of actor i
(links pointing to i), and out-links (links pointing out from i). The degree
centrality is defined based on only the out-degree (the number of out-links
or edges), do(i).

.
1
)()('

−
=

n
idiC o

D (2)

i

240 7 Link Analysis

Closeness Centrality

This view of centrality is based on the closeness or distance. The basic idea
is that an actor xi is central if it can easily interact with all other actors.
That is, its distance to all other actors is short. Thus, we can use the short-
est distance to compute this measure. Let the shortest distance from actor i
to actor j be d(i, j) (measured as the number of links in a shortest path).

Undirected Graph: The closeness centrality CC(i) of actor i is defined as

.
),(

1)(
1∑ =

−
= n

j

C
jid

niC (3)

The value of this measure also ranges between 0 and 1 as n−1 is the mini-
mum value of the denominator, which is the sum of the shortest distances
from i to all other actors. Note that this equation is only meaningful for a
connected graph.

Directed Graph: The same equation can be used for a directed graph. The
distance computation needs to consider directions of links or edges.

Betweenness Centrality

If two non-adjacent actors j and k want to interact and actor i is on the path
between j and k, then i may have some control over their interactions. Be-
tweenness measures this control of i over other pairs of actors. Thus, if i is
on the paths of many such interactions, then i is an important actor.

Undirected Graph: Let pjk be the number of shortest paths between actors
j and k. The betweenness of an actor i is defined as the number of shortest
paths that pass i (denoted by pjk(i), j ≠ i and k ≠ i) normalized by the total
number of shortest paths of all pairs of actors not including i:

.
)(

)(∑
<

=
kj jk

jk
B p

ip
iC (4)

Note that there may be multiple shortest paths between actor j and actor k.
Some pass i and some do not. We assume that all paths are equally likely
to be used. CB(i) has a minimum of 0, attained when i falls on no shortest
path. Its maximum is (n−1)(n−2)/2, which is the number of pairs of actors
not including i.

In the network of Fig. 7.2, actor 1 is the most central actor. It lies on all
15 shortest paths linking the other 6 actors. CB(1) has the maximum value
of 15, and CB(2) = CB(3) = CB(4) = CB(5) = CB(6) = CB(7) = 0.

7.1 Social Network Analysis 241

Fig. 7.2. An example of a network illustrating the betweenness centrality

If we are to ensure that the value range is between 0 and 1, we can normal-
ize it with (n−1)(n−2)/2, which is the maximum value of CB(i). The stan-
dardized betweenness of actor i is defined as

)2)(1(

)(
2

)('

−−
=

∑
<

nn
p

ip

iC kj jk

jk

B .
(5)

Unlike the closeness measure, the betweenness can be computed even if
the graph is not connected.

Directed Graph: The same equation can be used but must be multiplied
by 2 because there are now (n−1)(n−2) pairs considering a path from j to k
is different from a path from k to j. Likewise, pjk must consider paths from
both directions.

7.1.2 Prestige

Prestige is a more refined measure of prominence of an actor than central-
ity as we will see below. We need to distinguish between ties sent (out-
links) and ties received (in-links). A prestigious actor is defined as one
who is object of extensive ties as a recipient. In other words, to compute
the prestige of an actor, we only look at the ties (links) directed or pointed
to the actor (in-links). Hence, the prestige cannot be computed unless the
relation is directional or the graph is directed. The main difference between
the concepts of centrality and prestige is that centrality focuses on out-
links while prestige focuses on in-links. We define three prestige measures.
The third prestige measure (i.e., rank prestige) forms the basis of most
Web page link analysis algorithms, including PageRank and HITS.

6

2
7 3

4

1

5

242 7 Link Analysis

Degree Prestige

Based on the definition of the prestige, it is clear that an actor is prestig-
ious if it receives many in-links or nominations. Thus, the simplest meas-
ure of prestige of an actor i (denoted by PD(i)) is its in-degree.

,
1
)()(

−
=

n
idiP I

D (6)

where dI(i) is the in-degree of i (the number of in-links of i) and n is the to-
tal number of actors in the network. As in the degree centrality, dividing
by n – 1 standardizes the prestige value to the range from 0 and 1. The
maximum prestige value is 1 when every other actor links to or chooses
actor i.

Proximity Prestige

The degree index of prestige of an actor i only considers the actors that are
adjacent to i. The proximity prestige generalizes it by considering both the
actors directly and indirectly linked to actor i. That is, we consider every
actor j that can reach i, i.e., there is a directed path from j to i.

Let Ii be the set of actors that can reach actor i, which is also called the
influence domain of actor i. The proximity is defined as closeness or dis-
tance of other actors to i. Let d(j, i) denote the shortest path distance from
actor j to actor i. Each link has the unit distance. To compute the proximity
prestige, we use the average distance, which is

,
||

),(

i

Ij

I

ijd
i

∑
∈

(7)

where |Ii| is the size of the set Ii. If we look at the ratio or proportion of ac-
tors who can reach i to the average distance that these actors are from i, we
obtain the proximity prestige, which has the value range of [0, 1]:

,
||),(

)1(||)(
i

Ij

i
P Iijd

nIiP

i

∑
∈

−
=

(8)

where |Ii|/(n−1) is the proportion of actors that can reach actor i. In one ex-
treme, every actor can reach actor i, which gives |Ii|/(n−1) = 1. The de-
nominator is 1 if every actor is adjacent to i. Then, PP(i) = 1. On the other
extreme, no actor can reach actor i. Then |Ii| = 0, and PP(i) = 0.

7.2 Co-Citation and Bibliographic Coupling 243

Rank Prestige

The above two prestige measures are based on in-degrees and distances.
However, an important factor that has not been considered is the promi-
nence of individual actors who do the “voting” or “choosing.” In the real
world, a person i chosen by an important person is more prestigious than
chosen by a less important person. For example, a company CEO voting
for a person is much more important than a worker voting for the person. If
one’s circle of influence is full of prestigious actors, then one’s own pres-
tige is also high. Thus one’s prestige is affected by the ranks or statuses of
the involved actors. Based on this intuition, the rank prestige PR(i) is de-
fined as a linear combination of links that point to i:

),(...)2()1()(21 nPAPAPAiP RniRiRiR +++= (9)

where Aji = 1 if j points to i, and 0 otherwise. This equation says that an ac-
tor’s rank prestige is a function of the ranks of the actors who vote or
choose the actor, which makes perfect sense.

Since we have n equations for n actors, we can write them in the matrix
notation. We use P to represent the vector that contains all the rank pres-
tige values, i.e., P = (PR(1), PR(2), …, PR(n))T (T means matrix trans-
pose). P is represented as a column vector. We use matrix A (where Aij = 1
if i points to j, and 0 otherwise) to represent the adjacency matrix of the
network or graph. As a notational convention, we use bold italic letters to
represent matrices. We then have

PAP T= . (10)

This equation is precisely the characteristic equation used for finding the
eigensystem of the matrix AT. P is an eigenvector of AT.

This equation and the idea behind it turn out to be very useful in Web
search. Indeed, the most well known ranking algorithms for Web search,
PageRank and HITS, are directly related to this equation. Sect. 7.3 and 7.4
will focus on these two algorithms and describe how to solve the equation
to obtain the prestige value of each actor (or each page on the Web).

7.2 Co-Citation and Bibliographic Coupling

Another area of research concerned with links is the citation analysis of
scholarly publications. A scholarly publication usually cites related prior
work to acknowledge the origins of some ideas in the publication and to
compare the new proposal with existing work. Citation analysis is an area

244 7 Link Analysis

of bibliometric research, which studies citations to establish the relation-
ships between authors and their work.

When a publication (also called a paper) cites another publication, a re-
lationship is established between the publications. Citation analysis uses
these relationships (links) to perform various types of analysis. A citation
can represent many types of links, such as links between authors, publica-
tions, journals and conferences, and fields, or even between countries. We
will discuss two specific types of citation analysis, co-citation and biblio-
graphic coupling. The HITS algorithm of Sect. 7.4 is related to these two
types of analysis.

7.2.1 Co-Citation

Co-citation is used to measure the similarity of two documents. If papers i
and j are both cited by paper k, then they may be said to be related in some
sense to one another, even they do not directly cite each other. Figure 7.3
shows that papers i and j are co-cited by paper k. If papers i and j are cited
together by many papers, it means that i and j have a strong relationship or
similarity. The more papers they are cited by, the stronger their relation-
ship is.

Fig. 7.3. Paper i and paper j are co-cited by paper k

Let L be the citation matrix. Each cell of the matrix is defined as fol-
lows: Lij = 1 if paper i cites paper j, and 0 otherwise. Co-citation (denoted
by Cij) is a similarity measure defined as the number of papers that co-cite
i and j, and is computed with

,
1
∑
=

=
n

k
kjkiij LLC (11)

where n is the total number of papers. Cii is naturally the number of papers
that cite i. A square matrix C can be formed with Cij, and it is called the co-
citation matrix. Co-citation is symmetric, Cij = Cji, and is commonly used
as a similarity measure of two papers in clustering to group papers of simi-
lar topics together.

i k

j

7.3 PageRank 245

7.2.2 Bibliographic Coupling

Bibliographic coupling operates on a similar principle, but in a way it is
the mirror image of co-citation. Bibliographic coupling links papers that
cite the same articles so that if papers i and j both cite paper k, they may be
said to be related, even though they do not directly cite each other. The
more papers they both cite, the stronger their similarity is. Figure 7.4
shows both papers i and j citing (referencing) paper k.

Fig. 7.4. Both paper i and paper j cite paper k

We use Bij to represent the number of papers that are cited by both pa-
pers i and j:

.
1
∑
=

=
n

k
jkikij LLB (12)

Bii is naturally the number of references (in the reference list) of paper i. A
square matrix B can be formed with Bij, and it is called the bibliographic
coupling matrix. Bibliographic coupling is also symmetric and is regarded
as a similarity measure of two papers in clustering.

We will see later that two important types of pages on the Web, hubs
and authorities, found by the HITS algorithm are directly related to co-
citation and bibliographic coupling matrices.

7.3 PageRank

The year 1998 was an important year for Web link analysis and Web
search. Both the PageRank and the HITS algorithms were reported in that
year. HITS was presented by Jon Kleinberg in January, 1998 at the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. PageRank was
presented by Sergey Brin and Larry Page at the Seventh International
World Wide Web Conference (WWW7) in April, 1998. Based on the algo-
rithm, they built the search engine Google. The main ideas of PageRank
and HITS are really quite similar. However, it is their dissimilarity that

i k

j

246 7 Link Analysis

made a huge difference as we will see later. Since that year, PageRank has
emerged as the dominant link analysis model for Web search, partly due to
its query-independent evaluation of Web pages and its ability to combat
spamming, and partly due to Google’s business success. In this section, we
focus on PageRank. In the next section, we discuss HITS. A detailed study
of these algorithms can also be found in [304].

PageRank relies on the democratic nature of the Web by using its vast
link structure as an indicator of an individual page's quality. In essence,
PageRank interprets a hyperlink from page x to page y as a vote, by page x,
for page y. However, PageRank looks at more than just the sheer number
of votes, or links that a page receives. It also analyzes the page that casts
the vote. Votes casted by pages that are themselves “important” weigh
more heavily and help to make other pages more “important.” This is ex-
actly the idea of rank prestige in social networks (see Sect. 7.1.2).

7.3.1 PageRank Algorithm

PageRank is a static ranking of Web pages in the sense that a PageRank
value is computed for each page off-line and it does not depend on search
queries. Since PageRank is based on the measure of prestige in social net-
works, the PageRank value of each page can be regarded as its prestige.
We now derive the PageRank formula. Let us first state some main con-
cepts again in the Web context.

In-links of page i: These are the hyperlinks that point to page i from other
pages. Usually, hyperlinks from the same site are not considered.

Out-links of page i: These are the hyperlinks that point out to other pages
from page i. Usually, links to pages of the same site are not considered.

From the perspective of prestige, we use the following to derive the Pag-
eRank algorithm.

1. A hyperlink from a page pointing to another page is an implicit convey-
ance of authority to the target page. Thus, the more in-links that a page i
receives, the more prestige the page i has.

2. Pages that point to page i also have their own prestige scores. A page
with a higher prestige score pointing to i is more important than a page
with a lower prestige score pointing to i. In other words, a page is im-
portant if it is pointed to by other important pages.

According to rank prestige in social networks, the importance of page i (i’s
PageRank score) is determined by summing up the PageRank scores of all
pages that point to i. Since a page may point to many other pages, its pres-

7.3 PageRank 247

tige score should be shared among all the pages that it points to. Notice the
difference from rank prestige, where the prestige score is not shared.

To formulate the above ideas, we treat the Web as a directed graph G =
(V, E), where V is the set of vertices or nodes, i.e., the set of all pages, and
E is the set of directed edges in the graph, i.e., hyperlinks. Let the total
number of pages on the Web be n (i.e., n = |V|). The PageRank score of the
page i (denoted by P(i)) is defined by:

,)()(
),(
∑

∈

=
Eij jO

jPiP (13)

where Oj is the number of out-links of page j. Mathematically, we have a
system of n linear equations (13) with n unknowns. We can use a matrix to
represent all the equations. Let P be a n-dimensional column vector of
PageRank values, i.e.,

P = (P(1), P(2), …, P(n))T.

Let A be the adjacency matrix of our graph with

⎪⎩

⎪
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
OA

iij

(14)

We can write the system of n equations with (similar to Equation 10)

PAP T= . (15)

This is the characteristic equation of the eigensystem, where the solu-
tion to P is an eigenvector with the corresponding eigenvalue of 1. Since
this is a circular definition, an iterative algorithm is used to solve it. It turns
out that if some conditions are satisfied (which will be described shortly), 1
is the largest eigenvalue and the PageRank vector P is the principal ei-
genvector. A well known mathematical technique called power iteration
can be used to find P.

However, the problem is that Equation (15) does not quite suffice be-
cause the Web graph does not meet the conditions. To introduce these
conditions and the enhanced equation, let us derive the same Equation (15)
based on the Markov chain [207].

In the Markov chain model, each Web page or node in the Web graph is
regarded as a state. A hyperlink is a transition, which leads from one state
to another state with a probability. Thus, this framework models Web surf-
ing as a stochastic process. It models a Web surfer randomly surfing the
Web as a state transition in the Markov chain. Recall that we used Oi to

248 7 Link Analysis

denote the number of out-links of a node i. Each transition probability is
1/Oi if we assume the Web surfer will click the hyperlinks in the page i
uniformly at random, the “back” button on the browser is not used and the
surfer does not type in an URL. Let A be the state transition probability
matrix, a square matrix of the following format,

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

AAA

AAA
AAA

...
...
...
...

...

...

.

21

22221

11211

A

Aij represents the transition probability that the surfer in state i (page i)
will move to state j (page j). Aij is defined exactly as in Equation (14).

Given an initial probability distribution vector that a surfer is at each
state (or page) p0 = (p0(1), p0(2), …, p0(n))T (a column vector) and an n×n
transition probability matrix A, we have

∑
=

=
n

i

ip
1

0 1)((16)

∑
=

=
n

j
ijA

1
1. (17)

Equation (17) is not quite true for some Web pages because they have
no out-links. If the matrix A satisfies Equation (17), we say that A is the
stochastic matrix of a Markov chain. Let us assume A is a stochastic ma-
trix for the time being and deal with it not being that later.

In a Markov chain, a question of common interest is: Given the initial
probability distribution p0 at the beginning, what is the probability that m
steps/transitions later that the Markov chain will be at each state j? We can
determine the probability that the system (or the random surfer) is in state
j after 1 step (1 state transition) by using the following reasoning:

,)()1()(
1

01 ∑
=

=
n

i
ij ipAjp (18)

where Aij(1) is the probability of going from i to j after 1 transition, and
Aij(1) = Aij. We can write it with a matrix:

7.3 PageRank 249

0pAp T=1 . (19)

In general, the probability distribution after k steps/transitions is:

1-kk pAp T= . (20)

Equation (20) looks very similar to Equation (15). We are getting there.
By the Ergodic Theorem of Markov chains [207], a finite Markov chain

defined by the stochastic transition matrix A has a unique stationary
probability distribution if A is irreducible and aperiodic. These mathe-
matical terms will be defined as we go along.

The stationary probability distribution means that after a series of transi-
tions pk will converge to a steady-state probability vector π regardless of
the choice of the initial probability vector p0, i.e.,

πp =
∞→ kk

lim . (21)

When we reach the steady-state, we have pk = pk+1 =π, and thus π =ATπ.
π is the principal eigenvector of AT with eigenvalue of 1. In PageRank, π
is used as the PageRank vector P. Thus, we again obtain Equation (15),
which is re-produced here as Equation (22):

PAP T= . (22)

 Using the stationary probability distribution π as the PageRank vector is
reasonable and quite intuitive because it reflects the long-run probabilities
that a random surfer will visit the pages. A page has a high prestige if the
probability of visiting it is high.

Now let us come back to the real Web context and see whether the
above conditions are satisfied, i.e., whether A is a stochastic matrix and
whether it is irreducible and aperiodic. In fact, none of them is satisfied.
Hence, we need to extend the ideal-case Equation (22) to produce the “ac-
tual PageRank model”. Let us look at each condition below.

First of all, A is not a stochastic (transition) matrix. A stochastic ma-
trix is the transition matrix for a finite Markov chain whose entries in each
row are non-negative real numbers and sum to 1 (i.e., Equation 17). This
requires that every Web page must have at least one out-link. This is not
true on the Web because many pages have no out-links, which are
reflected in transition matrix A by some rows of complete 0’s. Such pages
are called the dangling pages (nodes).

Example 1: Figure 7.5 shows an example of a hyperlink graph.

250 7 Link Analysis

Fig. 7.5. An example of a hyperlink graph

If we assume that the Web surfer will click the hyperlinks in a page uni-
formly at random, we have the following transition probability matrix:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

02121000
000000
313103100

000010
00021021
00021210

A . (23)

For example A12 = A13 = 1/2 because node 1 has two out-links. We can see
that A is not a stochstic matrix because the fifth row is all 0’s, i.e., page 5
is a dangling page. ▀

We can fix this problem in several ways in order to convert A to a sto-
chastic transition matrix. We describe only two ways here:

1. Remove those pages with no out-links from the system during the Pag-
eRank computation as these pages do not affect the ranking of any other
page directly. Out-links from other pages pointing to these pages are
also removed. After PageRanks are computed, these pages and hyper-
links pointing to them can be added in. Their PageRanks are easy to cal-
culate based on Equation (22). Note that the transition probabilities of
those pages with removed links will be slightly affected but not signifi-
cantly. This method is suggested in [68].

2. Add a complete set of outgoing links from each such page i to all the
pages on the Web. Thus the transition probability of going from i to
every page is 1/n assuming uniform probability distribution. That is, we
replace each row containing all 0’s with e/n, where e is n-dimensional
vector of all 1’s.

If we use the second method to make A a stochastic matrix by adding a
link from page 5 to every page, we obtain

3 4

6

1

2

5

7.3 PageRank 251

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

02121000
616161616161
313103100

000010
00021021
00021210

A .

(24)

Below, we assume that either one of the above is done to make A a sto-
chastic matrix.

Second, A is not irreducible. Irreducible means that the Web graph G is
strongly connected.

Definition (strongly connected): A directed graph G = (V, E) is strongly
connected if and only if, for each pair of nodes u, v ∈ V, there is a path
from u to v.

 A general Web graph represented by A is not irreducible because for
some pair of nodes u and v, there is no path from u to v. For example, in
Fig. 7.5, there is no directed path from node 3 to node 4. The adjustment in
Equation (24) is not enough to ensure irreducibility. That is, in A , there is
still no directed path from node 3 to node 4. This problem and the next
problem can be dealt with using a single strategy (to be described shortly).

Finally, A is not aperiodic. A state i in a Markov chain being periodic
means that there exists a directed cycle that the chain has to traverse.

Definition (aperiodic): A state i is periodic with period k > 1 if k is the
smallest number such that all paths leading from state i back to state i
have a length that is a multiple of k. If a state is not periodic (i.e., k = 1),
it is aperiodic. A Markov chain is aperiodic if all states are aperiodic.

Example 2: Figure 7.6 shows a periodic Markov chain with k = 3. The
transition matrix is given on the left. Each state in this chain has a period
of 3. For example, if we start from state 1, to come back to state 1 the only
path is 1-2-3-1 for some number of times, say h. Thus any return to state 1
will take 3h transitions. In the Web, there could be many such cases. ▀

Fig. 7.6. A periodic Markov chain with k = 3.

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
100
010

A 1

1
2

1

3

252 7 Link Analysis

It is easy to deal with the above two problems with a single strategy.

• We add a link from each page to every page and give each link a small
transition probability controlled by a parameter d.

The augmented transition matrix becomes irreducible because it is clearly
strongly connected. It is also aperiodic because the situation in Fig. 7.6 no
longer exists as we now have paths of all possible lengths from state i back
to state i. That is, the random surfer does not have to traverse a fixed cycle
for any state. After this augmentation, we obtain an improved PageRank
model. In this model, at a page, the random surfer has two options:

1. With probability d, he randomly chooses an out-link to follow.
2. With probability 1−d, he jumps to a random page without a link.

Equation (25) gives the improved model,

PAEP ⎟
⎠
⎞

⎜
⎝
⎛ +−= Td

n
d)1((25)

where E is eeT (e is a column vector of all 1’s) and thus E is a n×n square
matrix of all 1’s. 1/n is the probability of jumping to a particular page. n is
the total number of nodes in the Web graph. Note that Equation (25) as-
sumes that A has already been made a stochastic matrix.

Example 3: If we follow our example in Fig. 7.5 and Equation (24) (we
use A for A here), the augmented transition matrix is

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=+−

061610619061061061
157610619061061061
15761061061061061
061610619061157157
061610611211061157
06161061061157061

)1(Td
n

d AE

(26)

▀

(1−d)E/n + dAT is a stochastic matrix (but transposed). It is also irre-
ducible and aperiodic as we discussed above. Here we use d = 0.9.

If we scale Equation (25) so that eTP = n, we obtain

PAeP Tdd +−=)1(. (27)

Before scaling, we have eTP = 1 (i.e., P(1) + P(2) + … + P(n) = 1 if we re-
call that P is the stationary probability vector π of the Markov chain). The
scaling is equivalent to multiplying n on both sides of Equation (25).

7.3 PageRank 253

This gives us the PageRank formula for each page i as follows:

∑
=

+−=
n

j
ji jPAddiP

1

),()1()((28)

which is equivalent to the formula given in the PageRank papers [68, 422]:

∑
∈

+−=
Eij jO

jPddiP
),(

)()1()(. (29)

The parameter d is called the damping factor which can be set to between
0 and 1. d = 0.85 is used in [68, 422].

The computation of PageRank values of the Web pages can be done us-
ing the well known power iteration method [203], which produces the
principal eigenvector with the eigenvalue of 1. The algorithm is simple,
and is given in Fig. 7.7. One can start with any initial assignments of Pag-
eRank values. The iteration ends when the PageRank values do not change
much or converge. In Fig. 7.7, the iteration ends after the 1-norm of the re-
sidual vector is less than a pre-specified threshold ε. Note that the 1-norm
for a vector is simply the sum of all the components.

PageRank-Iterate(G)
P0 ← e/n
k ← 1
repeat

;)1(1-k
T

k dd PAeP +−←
k ← k + 1;

until ||Pk – Pk-1||1 < ε
return Pk

Fig. 7.7. The power iteration method for PageRank

Since we are only interested in the ranking of the pages, the actual conver-
gence may not be necessary. Thus, fewer iterations are needed. In [68], it
is reported that on a database of 322 million links the algorithm converges
to an acceptable tolerance in roughly 52 iterations.

7.3.2 Strengths and Weaknesses of PageRank

The main advantage of PageRank is its ability to fight spam. A page is im-
portant if the pages pointing to it are important. Since it is not easy for
Web page owner to add in-links into his/her page from other important
pages, it is thus not easy to influence PageRank. Nevertheless, there are

254 7 Link Analysis

reported ways to influence PageRank. Recognizing and fighting spam is an
important issue in Web search.

Another major advantage of PageRank is that it is a global measure and
is query independent. That is, the PageRank values of all the pages on the
Web are computed and saved off-line rather than at the query time. At the
query time, only a lookup is needed to find the value to be integrated with
other strategies to rank the pages. It is thus very efficient at query time.
Both these two advantages contributed greatly to Google’s success.

The main criticism is also the query-independence nature of PageRank.
It could not distinguish between pages that are authoritative in general and
pages that are authoritative on the query topic. Google may have other
ways to deal with the problem, which we do not know due to the proprie-
tary nature of Google. Another criticism is that PageRank does not con-
sider time. Let us give some explanation to this.

7.3.3 Timed PageRank

The Web is a dynamic environment, and it changes constantly. Quality
pages in the past may not be quality pages now or in the future. Thus,
search has a temporal dimension. An algorithm called TimedPageRank
given in [326, 585] adds the temporal dimension to PageRank. The moti-
vations are:

1. Users are often interested in the latest information. Apart from pages
that contain well-established facts and classics which do not change sig-
nificantly over time, most contents on the Web change constantly. New
pages or contents are added, and ideally, outdated contents and pages
are deleted. However, in practice many outdated pages and links are not
deleted. This causes problems for Web search because such outdated
pages may still be ranked very high.

2. PageRank favors pages that have many in-links. To some extent, we can
say that it favors older pages because they have existed on the Web for a
long time and thus have accumulated many in-links. Then the problem
is that new pages which are of high quality and also give the up-to-date
information will not be assigned high scores and consequently will not
be ranked high because they have fewer or no in-links. It is thus difficult
for users to find the latest information on the Web based on PageRank.

The idea of TimedPageRank is simple. Instead of using a constant damp-
ing factor d as the parameter in PageRank, TimedPageRank uses a function
of time f(t) (0 ≤ f(t) ≤ 1), where t is the difference between the current time
and the time when the page was last updated. f(t) returns a probability that

7.4 HITS 255

the Web surfer will follow an actual link on the page. 1−f(t) returns the
probability that the surfer will jump to a random page. Thus, at a particular
page i, the Web surfer has two options:

1. With probability f(ti), he randomly chooses an out-going link to follow.
2. With probability 1−f(ti), he jumps to a random page without a link.

The intuition here is that if the page was last updated (or created) a long
time ago, the pages that it cites (points to) are even older and are probably
out of date. Then the 1−f(t) value for such a page should be large, which
means that the surfer will have a high probability of jumping to a random
page. If a page is new, then its 1−f(t) value should be small, which means
that the surfer will have a high probability to follow an out-link of the page
and a small probability of jumping to a random page.

For a complete new page in a Web site, which does not have any in-
links at all, the method given in [326] uses the average TimedPageRank
value of the past pages in the Web site.

Finally, we note again that the link-based ranking is not the only strat-
egy used in a search engine. Many other information retrieval methods,
heuristics and empirical parameters are also employed. However, their de-
tails are not published. We also note that PageRank is not the only link-
based static and global ranking algorithm. All major search engines, such
as Yahoo! and MSN, have their own algorithms but are unpublished.

7.4 HITS

HITS stands for Hypertext Induced Topic Search [281]. Unlike PageR-
ank which is a static ranking algorithm, HITS is search query dependent.
When the user issues a search query, HITS first expands the list of relevant
pages returned by a search engine and then produces two rankings of the
expanded set of pages, authority ranking and hub ranking.

An authority is a page with many in-links. The idea is that the page
may have good or authoritative content on some topic and thus many peo-
ple trust it and link to it. A hub is a page with many out-links. The page
serves as an organizer of the information on a particular topic and points to
many good authority pages on the topic. When a user comes to this hub
page, he/she will find many useful links which take him/her to good con-
tent pages on the topic. Figure 7.8 shows an authority page and a hub page.

The key idea of HITS is that a good hub points to many good authorities
and a good authority is pointed to by many good hubs. Thus, authorities
and hubs have a mutual reinforcement relationship. Figure 7.9 shows a

256 7 Link Analysis

set of densely linked authorities and hubs (a bipartite sub-graph).
Below, we first present the HITS algorithm, and also make a connection

between HITS and co-citation and bibliographic coupling in bibliometric
research. We then discuss the strengths and weaknesses of HITS, and de-
scribe some possible ways to deal with its weaknesses.

Fig. 7.8. An authority page and a hub page

Fig. 7.9. A densely linked set of authorities and hubs

7.4.1 HITS Algorithm

Before describing the HITS algorithm, let us first describe how HITS col-
lects pages to be ranked. Given a broad search query, q, HITS collects a set
of pages as follows:

1. It sends the query q to a search engine system. It then collects t (t = 200
is used in the HITS paper) highest ranked pages, which assume to be
highly relevant to the search query. This set is called the root set W.

2. It then grows W by including any page pointed to by a page in W and
any page that points to a page in W. This gives a larger set called S.
However, this set can be very large. The algorithm restricts its size by
allowing each page in W to bring at most k pages (k = 50 is used in the
HITS paper) pointing to it into S. The set S is called the base set.

An authority A hub

 Authorities Hubs

7.4 HITS 257

HITS then works on the pages in S, and assigns every page in S an author-
ity score and a hub score. Let the number of pages to be studied be n. We
again use G = (V, E) to denote the (directed) link graph of S. V is the set of
pages (or nodes) and E is the set of directed edges (or links). We use L to
denote the adjacency matrix of the graph.

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
Lij

(30)

Let the authority score of the page i be a(i), and the hub score of page i
be h(i). The mutual reinforcing relationship of the two scores is repre-
sented as follows:

∑
∈

=
Eij

jhia
),(

)()((31)

∑
∈

=
Eji

jaih
),(

)()((32)

Writing them in the matrix form, we use a to denote the column vector
with all the authority scores, a = (a(1), a(2), …, a(n))T, and use h to denote
the column vector with all the hub scores, h = (h(1), h(2), …, h(n))T,

a = LTh (33)

h = La (34)

The computation of authority scores and hub scores is basically the same
as the computation of the PageRank scores using the power iteration
method. If we use ak and hk to denote authority and hub scores at the kth it-
eration, the iterative processes for generating the final solutions are

ak = LTLak−1
 (35)

hk = LLThk−1 (36)

starting with

a0 = h0 = (1, 1, …, 1). (37)

Note that Equation (35) (or Equation 36) does not use the hub (or au-
thority) vector due to substitutions of Equation (33) and Equation (34).

After each iteration, the values are also normalized (to keep them small)
so that

258 7 Link Analysis

∑
=

=
n

i

ia
1

1)(

(38)

∑
=

=
n

i

ih
1

1)(

(39)

The power iteration algorithm for HITS is given in Fig. 7.10. The itera-
tion ends after the 1-norms of the residual vectors are less than some
thresholds εa and εh. Hence, the algorithm finds the principal eigenvectors
at “equilibrium” as in PageRank. The pages with large authority and hub
scores are better authorities and hubs respectively. HITS will select a few
top ranked pages as authorities and hubs, and return them to the user.

Although HITS will always converge, there is a problem with unique-
ness of limiting (converged) authority and hub vectors. It is shown that for
certain types of graphs, different initializations to the power method pro-
duce different final authority and hub vectors. Some results can be incon-
sistent or wrong. Farahat et al. [171] gave several examples. The heart of
the problem is that there are repeated dominant (principal) eigenvalues
(several eigenvalues are the same and are dominant eigenvalues), which
are caused by the problem that LTL (respectively LLT) is reducible [303].
The first PageRank solution (Equation 22) has the same problem. How-
ever, the PageRank inventors found a way to get around the problem. A
modification similar to PageRank may be applied to HITS.

HITS-Iterate(G)
a0 ← h0 ← (1, 1, …, 1);
k ← 1
Repeat

;1−← k
T

k LaLa
;1−← k

T
k hLLh

ak ← ak /||ak||1; // normalization
hk ← hk /||hk||1; // normalization
k ← k + 1;

until ||ak – ak-1||1 < εa and ||hk – hk-1||1 < εh;
return ak and hk

Fig. 7.10. The HITS algorithm based on power iteration

7.4 HITS 259

7.4.2 Finding Other Eigenvectors

The HITS algorithm given in Fig. 7.10 finds the principal eigenvectors,
which in a sense represent the most densely connected authorities and hubs
in the graph G defined by a query. However, in some cases, we may also
be interested in finding several densely linked collections of hubs and au-
thorities among the same base set of pages. Each of such collections could
potentially be relevant to the query topic, but they could be well-separated
from one another in the graph G for a variety of reasons. For example,

1. The query string may be ambiguous with several very different mean-
ings, e.g., “jaguar”, which could be a cat or a car.

2. The query string may represent a topic that may arise as a term in the
multiple communities, e.g. “classification”.

3. The query string may refer to a highly polarized issue, involving groups
that are not likely to link to one another, e.g. “abortion”.

In each of these examples, the relevant pages can be naturally grouped into
several clusters, also called communities. In general, the top ranked au-
thorities and hubs represent the major cluster (or community). The smaller
clusters (or communities), which are also represented by bipartite sub-
graphs as that in Fig. 7.9, can be found by computing non-principal eigen-
vectors. Non-principal eigenvectors are calculated in a similar way to
power iteration using methods such as orthogonal iteration and QR itera-
tion. We will not discuss the details of these methods. Interested readers
can refer to the book by Golub and Van Loan [203].

7.4.3 Relationships with Co-Citation and Bibliographic
Coupling

Authority pages and hub pages have their matches in the bibliometric cita-
tion context. An authority page is like an influential research paper (publi-
cation) which is cited by many subsequent papers. A hub page is like a
survey paper which cites many other papers (including those influential
papers). It is no surprise that there is a connection between authority and
hub, and co-citation and bibliographic coupling.

Recall that co-citation of pages i and j, denoted by Cij, is computed as

ij
T

n

k
kjkiij LLC)(

1

LL==∑
=

. (40)

This shows that the authority matrix (LTL) of HITS is in fact the co-
citation matrix C in the Web context. Likewise, recall that bibliographic

260 7 Link Analysis

coupling of two pages i and j, denoted by Bij, is computed as

,)(
1

ij
T

n

k
jkikij LLB LL==∑

=

 (41)

which shows that the hub matrix (LLT) of HITS is the bibliographic cou-
pling matrix B in the Web context.

7.4.4 Strengths and Weaknesses of HITS

The main strength of HITS [281] is its ability to rank pages according to
the query topic, which may be able to provide more relevant authority and
hub pages. The ranking may also be combined with information retrieval
based rankings. However, HITS has several disadvantages.

• First of all, it does not have the anti-spam capability of PageRank. It is
quite easy to influence HITS by adding out-links from one’s own page
to point to many good authorities. This boosts the hub score of the page.
Because hub and authority scores are interdependent, it in turn also in-
creases the authority score of the page.

• Another problem of HITS is topic drift. In expanding the root set, it can
easily collect many pages (including authority pages and hub pages)
which have nothing to do the search topic because out-links of a page
may not point to pages that are relevant to the topic and in-links to pages
in the root set may be irrelevant as well because people put hyperlinks
for all kinds of reasons, including spamming.

• The query time evaluation is also a major drawback. Getting the root
set, expanding it and then performing eigenvector computation are all
time consuming operations.
Over the years, many researchers tried to deal with these problems. We

briefly discuss some of them below.
It was reported by several researchers in [52, 310, 405] that small

changes to the Web graph topology can significantly change the final au-
thority and hub vectors. Minor perturbations have little effect on PageR-
ank, which is more stable than HITS. This is essentially due to the random
jump step of PageRank. Ng et al. [405] proposed a method by introducing
the same random jump step to HITS (by jumping to the base set uniformly
at random with probability d), and showed that it could improve the stabil-
ity of HITS significantly. Lempel and Moran [310] proposed SALSA, a
stochastic algorithm for link structure analysis. SALSA combines some
features of both PageRank and HITS to improve the authority and hub
computation. It casts the problem as two Markov chains, an authority

7.5 Community Discovery 261

Markov chain and a hub Markov chain. SALSA is less susceptible to spam
since the coupling between hub and authority scores is much less strict.

Bharat and Henzinger [52] proposed a simple method to fight two site
nepotistic links. That means that a set of pages on one host points to a sin-
gle page on a second host. This drives up the hub scores of the pages on
the first host and the authority score of the page on the second host. A
similar thing can be done for hubs. These links may be authored by the
same person and thus are regarded as “nepotistic” links to drive up the
ranking of the target pages. [52] suggests weighting the links to deal with
this problem. That is, if there are k edges from documents on a first host to
a single document on a second host we give each edge an authority
weight of 1/k. If there are l edges from a single page on a first host to a set
of pages on a second host, we give each edge a hub weight of 1/l. These
weights are used in the authority and hub computation. There are much
more sophisticated spam techniques now involving more than two sites.

Regarding the topic drifting of HITS, existing fixes are mainly based on
content similarity comparison during the expansion of the root set. In [88],
if an expanded page is too different from the pages in the root set in terms
of content similarity (based on cosine similarity), it is discarded. The re-
maining links are also weighted according to similarity. [88] proposes a
method that uses the similarity between the anchor text of a link and the
search topic to weight the link (instead of giving each link 1 as in HITS).
[84] goes further to segment the page based on the DOM (Document Ob-
ject Model) tree structure to identify the blocks or subtrees that are more
related to the query topic instead of regarding the whole page as relevant to
the search query. This is a good way to deal with multi-topic pages, which
are abundant on the Web. A recent work on this is block-based link analy-
sis [78], which segments each Web page into different blocks. Each block
is given a different importance value according to its location in the page
and other information. The importance value is then used to weight the
links in the HITS (and also PageRank) computation. This will reduce the
impact of unimportant links, which usually cause topic drifting and may
even be a link spam.

7.5 Community Discovery

Intuitively, a community is simply a group of entities (e.g., people or or-
ganizations) that shares a common interest or is involved in an activity or
event. In Sect. 7.4.2, we showed that the HITS algorithm can be used to
find communities. The communities are represented by dense bipartite sub-
graphs. We now describe several other community finding algorithms.

262 7 Link Analysis

Apart from the Web, communities also exist in emails and text documents.
This section describes two community finding algorithms for the Web, one
community finding algorithm for emails, and one community finding algo-
rithm for text documents.

There are many reasons for discovering communities. For example, in
the context of the Web, Kumar et al. [293] listed three reasons:

1. Communities provide valuable and possibly the most reliable, timely,
and up-to-date information resources for a user interested in them.

2. They represent the sociology of the Web: studying them gives insights
into the evolution of the Web.

3. They enable target advertising at a very precise level.

7.5.1 Problem Definition

Definition (community): Given a finite set of entities S = {s1, s2, …, sn}
of the same type, a community is a pair C = (T, G), where T is the
community theme and G ⊆ S is the set of all entities in S that shares the
theme T. If si ∈ G, si is said to be a member of the community C.

Some remarks about this definition are in order:

• A theme defines a community. That is, given a theme T, the set of
members of the community is uniquely determined. Thus, two commu-
nities are equal if they have the same theme.

• A theme can be defined arbitrarily. For example, it can be an event (e.g.,
a sport event or a scandal) or a concept (e.g., Web mining).

• An entity si in S can be in any number of communities. That is, commu-
nities may overlap, or multiple communities may share members.

• The entities in S are of the same type. For example, this definition does
not allow people and organizations to be in the same community.

• By no means does this definition cover every aspect of communities in
the real world. For example, it does not consider the temporal dimension
of communities. Usually a community exists within a specific period of
time. Similarly, an entity may belong to a community during some time
periods.

• This is a conceptual definition. In practice, different community mining
algorithms have their own operational definitions which usually depend
on how communities manifest themselves in the given data (which we
will discuss shortly). Furthermore, the algorithms may not be able to
discover all the members of a community or its precise theme.

Communities may also have hierarchical structures.

7.5 Community Discovery 263

Definition (sub-community, super-community, and sub-theme): A
community (T, G) may have a set of sub-communities {(T1, G1), …,
(Tm, Gm)}, where Ti is a sub-theme of T and Gi ⊆ G. (T, G) is also called
a super-community of (Ti, Gi). In the same way, each sub-community
(Ti, Gi) can be further decomposed, which gives us a community hier-
archy.

Community Manifestation in Data: Given a data set, which can be a set
of Web pages, a collection of emails, or a set of text documents, we want
to find communities of entities in the data. However, the data itself usually
does not explicitly give us the themes or the entities (community members)
associated with the themes. The system needs to discover the hidden com-
munity structures. Thus, the first issue that we need to know is how com-
munities manifest themselves. From such manifested evidences, the system
can discover possible communities. Different types of data may have dif-
ferent forms of manifestation. We give three examples.

Web Pages:

1. Hyperlinks: A group of content creators sharing a common interest is
usually inter-connected through hyperlinks. That is, members in a com-
munity are more likely to be connected among themselves than outside
the community.

2. Content words: Web pages of a community usually contain words that
are related to the community theme.

Emails:

1. Email exchange between entities: Members of a community are more
likely to communicate with one another.

2. Content words: Email contents of a community also contain words re-
lated to the theme of the community.

Text documents:

1. Co-occurrence of entities: Members of a community are more likely to
appear together in the same sentence and/or the same document.

2. Content words: Words in sentences indicate the community theme.

Clearly, the key form of manifestation of a community is that its members
are linked in some way. The associated text often contains words that are
indicative of the community theme.

Objective of Community Discovery: Given a data set containing entities,
we want to discover hidden communities of the entities. For each commu-
nity, we want to find the theme and its members. The theme is usually rep-
resented with a set of keywords.

264 7 Link Analysis

7.5.2 Bipartite Core Communities

HITS finds dense bipartite graph communities based on broad topic que-
ries. The question is whether it is possible to find all such communities ef-
ficiently from the crawl of the whole Web without using eigenvector com-
putation which is relatively inefficient. Kumar et al. [293] presented a
technique for finding bipartite cores, which are defined as follows.

Recall that the node set of a bipartite graph can be partitioned into two
subsets, which we denote as set F and set C. A bipartite core is a com-
plete bipartite sub-graph with at least i nodes in F and at least j nodes in C.
A complete bipartite graph on node sets F and C contains all possible
edges between the vertices of F and the vertices of C. Note that edges
within F or within C are allowed here to suit the Web context, which devi-
ate from the traditional definition of a complete bipartite graph. Intuitively,
the core is a small (i, j)-sized complete bipartite sub-graph of the commu-
nity, which contains some core members of the community but not all.

The cores that we seek are directed, i.e., there is a set of i pages all of
which link to a set of j pages, while no assumption is made of links out of
the latter set of j pages. Intuitively, the former is the set of pages created
by members of the community, pointing to what they believe are the most
valuable pages for that community. For this reason we will refer to the i
pages that contain the links as fans, and the j pages that are referenced as
centers (as in community centers). Fans are like specialized hubs, and cen-
ters are like authorities. Figure 7.11 shows an example of a bipartite core.

Fig. 7.11. A (4, 3) bipartite core

In Fig. 7.11, each fan page links to every center page. Since there are
four fans and three centers, this is called a (4, 3) bipartite core. Such a core
almost certainly represents a Web community, but a community may have
multiple bipartite cores.

Given a large number of pages crawled from the Web, which is repre-
sented as a graph, the procedure for finding bipartite cores consists of two
major steps: pruning and core generation.

 4 Fans 3 Centers

7.5 Community Discovery 265

Step 1: Pruning

We describe two types of pruning to remove those unqualified pages to be
fans or centers. There are also other pruning methods given in [293].

1. Pruning by in-degree: we can delete all pages that are very highly ref-
erenced (linked) on the Web, such as homepages of Web portals (e.g.,
Yahoo!, AOL, etc). These pages are referenced for a variety of reasons,
having little to do with any single emerging community, and they can be
safely deleted. That is, we delete pages with the number of in-links great
than k, which is determined empirically (k = 50 in [293]).

2. Iterative pruning of fans and centers: If we are interested in finding
(i, j) cores, clearly any potential fan with an out-degree smaller than j
can be pruned and the associated edges deleted from the graph. Simi-
larly, any potential center with an in-degree smaller than i can be pruned
and the corresponding edges deleted from the graph. This process can be
done iteratively: when a fan gets pruned, some of the centers that it
points to may have their in-degrees fall below the threshold i and qualify
for pruning as a result. Similarly, when a center gets pruned, a fan that
points to it could have its out-degree fall below its threshold of j and
qualify for pruning.

Step 2: Generating all (i, j) Cores

After pruning, the remaining pages are used to discover cores. The method
works as follows: Fixing j, we start with all (1, j) cores. This is simply the
set of all vertices with out-degree at least j. We then construct all (2, j)
cores by checking every fan which also points to any center in a (1, j) core.
All (3, j) cores can be found in the same fashion by checking every fan
which points to any center in a (2, j) core, and so on. The idea is similar to
the Apriori algorithm for association rule mining (see Chap. 2) as every
proper subset of the fans in any (i, j) core forms a core of smaller size.

Based on the algorithm, Kumar et al. found a large number of topic co-
herent cores from a crawl of the Web [293]. We note that this algorithm
only finds the core pages of the communities, not all members (pages). It
also does not find the themes of the communities or their hierarchical or-
ganizations.

7.5.3 Maximum Flow Communities

Bipartite cores are usually very small and do not represent full communi-
ties. In this section, we define and find maximum flow communities based
on the work of Flake et al. [180]. The algorithm requires the user to give a

266 7 Link Analysis

set of seed pages, which are examples of the community that the user
wishes to find.

Given a Web link graph G = (V, E), a maximum flow community is de-
fined as a collection C ⊂ V of Web pages such that each member page u ∈
C has more hyperlinks (in either direction) within the community C than
outside of the community V-C. Identifying such a community is intractable
in the general case because it can be mapped into a family of NP-complete
graph partition problems. Thus, we need to approximate and recast it into a
framework with less stringent conditions based on the network flow model
from operations research, specifically the maximum flow model.

The maximum flow model can be stated as follows: We are given a
graph G = (V, E), where each edge (u, v) is thought of as having a positive
capacity c(u, v) that limits the quantity of a product that may be shipped
through the edge. In such a situation, it is often desirable to have the
maximum amount of flow from a starting point s (called the source) and a
terminal point t (called the sink). Intuitively, the maximum flow of the
graph is determined by the bottleneck edges. For example, given the graph
in Fig. 7.12 with the source s and the sink t, if every edge has the unit ca-
pacity, the bottleneck edges are W-X and Y-Z.

Fig. 7.12. A simple flow network.

The Max Flow-Min Cut theorem of Ford and Fulkerson [181] proves that
the maximum flow of a network is identical to the minimum cut that sepa-
rates s and t. Many polynomial time algorithms exist for solving the s-t
maximum flow problem. If Fig. 7.12 is a Web link graph, it is natural to
cut the edges W-X and Y-Z to produce two Web communities.

The basic idea of the approach in [180] is as follows: It starts with a set
S of seed pages, which are example pages of the community that the user
wishes to find. The system then crawls the Web to find more pages using
the seed pages. A maximum flow algorithm is then applied to separate the
community C involving the seed pages and the other pages. These steps
may need to be repeated in order to find the desired community. Figure
7.13 gives the algorithm.

W X

Y Z s t

7.5 Community Discovery 267

The algorithm Find-Community is the control program. It takes a set S
of seed Web pages as input, and crawls to a fixed depth including in-links
as well as out-links (with in-links found by querying a search engine). It
then applies the procedure Max-Flow-Community to the induced graph G
from the crawl. After a community C is found, it ranks the pages in the
community by the number of edges that each has inside of the community.
Some highest ranked non-seed pages are added to the seed set. This is to
create a big seed set for the next iteration in order to crawl more pages.
The algorithm then iterates the procedure. Note that the first iteration may
only identify a very small community. However, when new seeds are
added, increasingly larger communities are identified. Heuristics are used
to decide when to stop.

The procedure Max-Flow-Community finds the actual community from
G. Since a Web graph has no source and sink, it first augments the web

Algorithm Find-Community (S)
while number of iteration is less than desired do
 build G = (V, E) by doing a fixed depth crawl starting from S;
 k = |S|;
 C = Max-Flow-Community(G, S, k);
 rank all v ∈ C by the number of edges in C;
 add the highest ranked non-seed vertices to S
end-while
return all v ∈ V still connected to the source s

Procedure Max-Flow-Community(G, S, k)
create artificial vertices, s and t and add to V; // V is the vertex set of G.
for all v ∈ S do
 add (s, v) to E with c(s, v) = ∞ // E is the edge set of G.
endfor
for all (u, v) ∈ E, u ≠ s do
 c(u, v) = k;
 if (v, u) ∉ E then

add (v, u) to E with c(v, u) = k
endif

endfor
for all v ∈ V, v ∉ S ∪ {s, t} do
 add (v, t) to E with c(v, t) = 1
endfor
Max-Flow(G, s, t);
return all v ∈ V still connected to s.

Fig. 7.13. The algorithm for mining maximum flow communities

268 7 Link Analysis

graph by adding an artificial source, s, with infinite capacity edges routed
to all seed vertices in S; making each pre-existing edge bidirectional and
assigning each edge a constant capacity k. It then adds an artificial sink t
and routes all vertices except the source, the sink, and the seed vertices to t
with unit capacity. After augmenting the web graph, a residual flow graph
is produced by a maximum flow procedure (Max-Flow()). All vertices ac-
cessible from s through non-zero positive edges form the desired result.
The value k is heuristically chosen to be the size of the set S to ensure that
after the artificial source and sink are added to the original graph, the same
cuts will be produced as the original graph (see the proof in [179]). Figure
7.14 shows the community finding process.

Finally, we note that this algorithm does not find the theme of the com-
munity or the community hierarchy (i.e., sub-communities and so on).

Fig. 7.14. Schematic representation of the community finding process

7.5.4 Email Communities Based on Betweenness

Email has become the predominant means of communication in the infor-
mation age. It has been established as an indicator of collaboration and
knowledge (or information) exchange. Email exchanges provide plenty of
data on personal communication for the discovery of shared interests and
relationships between people, which were hard to discover previously.

It is fairly straightforward to construct a graph based on email data.
People are the vertices and the edges are added between people who corre-
sponded through email. Usually, the edge between two people is added if a
minimum number of messages passed between them. The minimum num-
ber is controlled by a threshold, which can be tuned.

To analyze an email graph or network, one can make use of all the cen-
trality measures and prestige measures discussed in Sect. 7.1. We now fo-
cus on community finding only.

S

Community
Artificial
source

Cut set

Artificial
sink

Outside of the
community

7.5 Community Discovery 269

We are interested in people communities, which are subsets of vertices
that are related. One way to identify communities is by partitioning the
graph into discrete clusters such that there are few edges lying between the
clusters. This definition is similar to that of the maximum flow commu-
nity. Betweenness in social networks is a natural measure for identifying
those edges in between clusters or communities [523]. The idea is that in-
ter-community links, which are few, have high betweenness values, while
the intra-community edges have low betweenness values. However, the be-
tweenness discussed in Sect. 7.1 is evaluated on each person in the net-
work. Here, we need to evaluate the betweenness of each edge. The idea is
basically the same and Equation (4) can be used here without normaliza-
tion because we only find communities in a single graph. The betweenness
of an edge is simply the number of shortest paths that pass it.

If the graph is not connected, we identify communities from each con-
nected component. Given a connected graph, the method works iteratively
in two steps (Fig. 7.15):

repeat
Compute the betweenness of each edge in the remaining graph;
Remove the edge with the highest betweenness

until the graph is suitably partitioned.

Fig. 7.15. Community finding using the betweenness measure.

Since the removal of an edge can strongly affect the betweenness of many
other edges, we need to repeatedly re-compute the betweenness of all
edges. The idea of the method is very similar to the minimum-cut method
discussed in Sect. 7.5.3.

The stopping criteria can be designed according to applications. In gen-
eral, we consider that the smallest community is a triangle. The algorithm
should stop producing more unconnected components if there is no way to
generate triangle communities. A component of five or fewer vertices can-
not consist of two viable communities. The smallest such component is
six, which has two triangles connected by one edge, see Fig. 7.16. If any
discovered community does not have a triangle, it may not be considered
as a community. Clearly, other stopping criteria can be used.

Fig. 7.16. The smallest possible graph of two viable communities.

270 7 Link Analysis

7.5.5 Overlapping Communities of Named Entities

Most community discovery algorithms are based on graph partitioning,
which means that an entity can belong to only a single community. How-
ever, in real life, a person can be in multiple communities (see the defini-
tion in Sect. 7.5.1). For example, he/she can be in the community of his/her
family, the community of his/her colleagues and the community of his/her
friends. A heuristic technique is presented in [325] for finding overlapping
communities of entities in text documents.

In the Web or email context, there are explicit links connecting entities
and forming communities. In free text documents, no explicit links exist.
Then the question is: what constitutes a link between two entities in text
documents? As we indicated earlier, one simple technique is to regard two
entities as being linked if they co-occur in the same sentence. This method
is reasonable because if two people are mentioned in a sentence there is
usually a relationship between them.

The objective is to find entity communities from a text corpus, which
could be a set of given documents or the returned pages from a search en-
gine using a given entity as the search query. An entity here refers to the
name of a person or an organization.

The algorithm in [325] consists of four steps:

1. Building a link graph: The algorithm first parses each document. For
each sentence, it identifies named entities contained in the sentence. If a
sentence has more than one named entities, these entities are pair-wise
linked. The keywords in the sentence are attached to the linked pairs to
form their textual contents. All the other sentences are discarded.

2. Finding all triangles: The algorithm then finds all triangles, which are
the basic building blocks of communities. A triangle consists of three
entities bound together. The reason for using triangles is that it has been
observed by researchers that a community expands predominantly by
triangles sharing a common edge.

3. Finding community cores: It next finds community cores. A community
core is a group of tightly bound triangles, which are relaxed complete
sub-graphs (or cliques). Intuitively, a core consists of a set of tightly
connected members of a community.

4. Clustering around community cores: For those triangles and also entity
pairs that are not in any core, they are assigned to cores according to
their textual content similarities with the discovered cores.

It is clear that in this algorithm a single entity can appear in multiple com-
munities because an entity can appear in multiple triangles. To finish off,
the algorithm also ranks the entities in each community according to de-

Bibliographic Notes 271

gree centrality. Keywords associated with the edges of each community
are also ranked. The top keywords are assumed to represent the theme of
the community. The technique has been applied to find communities of po-
litical figures and celebrities from Web documents with promising results.

Bibliographic Notes

Social network analysis has a relative long history. A large number of in-
teresting problems and algorithms were studied in the past 60 years. The
book by Wasserman and Faust [540] is an authoritative text of the field.
Co-citation [494] and bibliographic coupling [275] are from bibliometrics,
which is a type of research method used in library and information science.
The book edited by Borgman [58] is a good source of information on both
the research and applications of bibliometrics.

The use of social network analysis in the Web context (also called link
analysis) started with the PageRank algorithm proposed by Brin and Page
[68] and Page et al. [422], and the HITS algorithm proposed by Kleinberg
[281]. PageRank is also the algorithm that powers the Google search en-
gine. Due to several weaknesses of HITS, many researchers have tried to
improve it. Various enhancements were reported by Lempel and Moran
[310], Bharat and Henzinger [52], Chakrabarti et al. [88], Cai et al. [78],
etc. The book by Langville and Meyer [304] contains in-depth analyses of
PageRank, HITS and many enhancements to HITS. Other works related to
Web link analysis include those in [98, 226, 266, 368] on improving the
PageRank computation, in [168] on searching workspace Web, in [103,
182, 183, 416] on the evolution of the Web and the search engine influence
on the Web, in [140, 142, 410, 516] on other link based models, in [34,
440, 370, 371] on Web graph and its characteristics, in [37, 51, 235] on
sampling of Web pages, and in [32, 425, 585] on the temporal dimension
of Web search.

On community discovery, HITS can find some communities by comput-
ing non-principal eigenvectors [198, 281]. Kumar et al. [293] proposed the
algorithm for finding bipartite cores. Flake et al. [179] introduced the
maximum flow community mining. Ino et al. [249] presented a more strict
definition of communities. Tyler et al. [523] gave the method for finding
email communities based on betweenness. The algorithm for finding over-
lapping communities of named entities from texts was given by Li et al.
[325]. More recent developments on communities and social networks on
the Web can be found in [16, 21, 137, 158, 200, 518, 519, 561, 618].

8 Web Crawling

Web crawlers, also known as spiders or robots, are programs that auto-
matically download Web pages. Since information on the Web is scattered
among billions of pages served by millions of servers around the globe,
users who browse the Web can follow hyperlinks to access information,
virtually moving from one page to the next. A crawler can visit many sites
to collect information that can be analyzed and mined in a central location,
either online (as it is downloaded) or off-line (after it is stored).

Were the Web a static collection of pages, we would have little long
term use for crawling. Once all the pages are fetched and saved in a reposi-
tory, we are done. However, the Web is a dynamic entity evolving at rapid
rates. Hence there is a continuous need for crawlers to help applications
stay current as pages and links are added, deleted, moved or modified.

There are many applications for Web crawlers. One is business intelli-
gence, whereby organizations collect information about their competitors
and potential collaborators. Another use is to monitor Web sites and pages
of interest, so that a user or community can be notified when new informa-
tion appears in certain places. There are also malicious applications of
crawlers, for example, that harvest email addresses to be used by spam-
mers or collect personal information to be used in phishing and other iden-
tity theft attacks. The most widespread use of crawlers is, however, in sup-
port of search engines. In fact, crawlers are the main consumers of Internet
bandwidth. They collect pages for search engines to build their indexes.
Well known search engines such as Google, Yahoo! and MSN run very ef-
ficient universal crawlers designed to gather all pages irrespective of their
content. Other crawlers, sometimes called preferential crawlers, are more
targeted. They attempt to download only pages of certain types or topics.

This chapter introduces the main concepts, algorithms and data struc-
tures behind Web crawlers. After discussing the implementation issues that
all crawlers have to address, we describe different types of crawlers: uni-
versal, focused, and topical. We also discuss some of the ethical issues
around crawlers. Finally, we peek at possible future uses of crawlers in
support of alternative models where crawling and searching activities are
distributed among a large community of users connected by a dynamic and
adaptive peer network.

By Filippo Menczer

274 8 Web Crawling

8.1 A Basic Crawler Algorithm

In its simplest form, a crawler starts from a set of seed pages (URLs) and
then uses the links within them to fetch other pages. The links in these
pages are, in turn, extracted and the corresponding pages are visited. The
process repeats until a sufficient number of pages are visited or some other
objective is achieved. This simple description hides many delicate issues
related to network connections, spider traps, URL canonicalization, page
parsing, and crawling ethics. In fact, Google founders Sergey Brin and
Lawrence Page, in their seminal paper, identified the Web crawler as the
most sophisticated yet fragile component of a search engine [68].

Figure 8.1 shows the flow of a basic sequential crawler. Such a crawler
fetches one page at a time, making inefficient use of its resources. Later in
the chapter we discuss how efficiency can be improved by the use of mul-
tiple processes, threads, and asynchronous access to resources. The crawler
maintains a list of unvisited URLs called the frontier. The list is initialized
with seed URLs which may be provided by the user or another program. In
each iteration of its main loop, the crawler picks the next URL from the
frontier, fetches the page corresponding to the URL through HTTP, parses
the retrieved page to extract its URLs, adds newly discovered URLs to the
frontier, and stores the page (or other extracted information, possibly index
terms) in a local disk repository. The crawling process may be terminated
when a certain number of pages have been crawled. The crawler may also
be forced to stop if the frontier becomes empty, although this rarely hap-
pens in practice due to the high average number of links (on the order of
ten out-links per page across the Web).

A crawler is, in essence, a graph search algorithm. The Web can be seen
as a large graph with pages as its nodes and hyperlinks as its edges. A
crawler starts from a few of the nodes (seeds) and then follows the edges to
reach other nodes. The process of fetching a page and extracting the links
within it is analogous to expanding a node in graph search.

The frontier is the main data structure, which contains the URLs of un-
visited pages. Typical crawlers attempt to store the frontier in the main
memory for efficiency. Based on the declining price of memory and the
spread of 64-bit processors, quite a large frontier size is feasible. Yet the
crawler designer must decide which URLs have low priority and thus get
discarded when the frontier is filled up. Note that given some maximum
size, the frontier will fill up quickly due to the high fan-out of pages. Even
more importantly, the crawler algorithm must specify the order in which
new URLs are extracted from the frontier to be visited. These mechanisms
determine the graph search algorithm implemented by the crawler.

8.1 A Basic Crawler Algorithm 275

Fig. 8.1. Flow chart of a basic sequential crawler. The main data operations are
shown on the left, with dashed arrows.

8.1.1 Breadth-First Crawlers

The frontier may be implemented as a first-in-first-out (FIFO) queue, cor-
responding to a breadth-first crawler. The URL to crawl next comes from
the head of the queue and new URLs are added to the tail of the queue.
Once the frontier reaches its maximum size, the breadth-first crawler can
add to the queue only one unvisited URL from each new page crawled.

276 8 Web Crawling

The breadth-first strategy does not imply that pages are visited in “ran-
dom” order. To understand why, we have to consider the highly skewed,
long-tailed distribution of indegree in the Web graph. Some pages have a
number of links pointing to them that are orders of magnitude larger than
the mean. Indeed, the mean indegree is not statistically significant when
the indegree k is distributed according to a power law Pr(k) ∼ k−γ with ex-
ponent γ < 3 [437]. For the Web graph, this is the case, with γ ≈ 2.1 [69].
This means that the fluctuations of indegree are unbounded, i.e., the stan-
dard deviation is bounded only by the finite size of the graph. Intuitively,
popular pages have so many incoming links that they act like attractors for
breadth-first crawlers. It is therefore not surprising that the order in which
pages are visited by a breadth-first crawler is highly correlated with their
PageRank or indegree values. An important implication of this phenome-
non is an intrinsic bias of search engines to index well connected pages.

Another reason that breadth-first crawlers are not “random” is that they
are greatly affected by the choice of seed pages. Topical locality measures
indicate that pages in the link neighborhood of a seed page are much more
likely to be related to the seed pages than randomly selected pages. These
and other types of bias are important to universal crawlers (Sect. 8.3).

As mentioned earlier, only unvisited URLs are to be added to the fron-
tier. This requires some data structure to be maintained with visited URLs.
The crawl history is a time-stamped list of URLs fetched by the crawler
tracking its path through the Web. A URL is entered into the history only
after the corresponding page is fetched. This history may be used for post-
crawl analysis and evaluation. For example, we want to see if the most
relevant or important resources are found early in the crawl process. While
history may be stored on disk, it is also maintained as an in-memory data
structure for fast look-up, to check whether a page has been crawled or not.
This check is required to avoid revisiting pages or wasting space in the
limited-size frontier. Typically a hash table is appropriate to obtain quick
URL insertion and look-up times (O(1)). The look-up process assumes that
one can identify two URLs effectively pointing to the same page. This in-
troduces the need for canonical URLs (see Sect. 8.2).

Another important detail is the need to prevent duplicate URLs from be-
ing added to the frontier. A separate hash table can be maintained to store
the frontier URLs for fast look-up to check whether a URL is already in it.

8.1.2 Preferential Crawlers

A different crawling strategy is obtained if the frontier is implemented as a
priority queue rather than a FIFO queue. Typically, preferential crawl-

8.2 Implementation Issues 277

ers assign each unvisited link a priority based on an estimate of the value
of the linked page. The estimate can be based on topological properties
(e.g., the indegree of the target page), content properties (e.g., the similar-
ity between a user query and the source page), or any other combination of
measurable features. For example, the goal of a topical crawler is to follow
edges that are expected to lead to portions of the Web graph that are rele-
vant to a user-selected topic. The choice of seeds is even more important in
this case than for breadth-first crawlers. We will discuss various preferen-
tial crawling algorithms in Sects. 8.4 and 8.5. For now let us simply as-
sume that some function exists to assign a priority value or score to each
unvisited URL. If pages are visited in the order specified by the priority
values in the frontier, then we have a best-first crawler.

The priority queue may be a dynamic array that is always kept sorted by
URL scores. At each step, the best URL is picked from the head of the
queue. Once the corresponding page is fetched, the URLs extracted from
it must, in turn, be scored. They are then added to the frontier in such a
manner that the sorting order of the priority queue is maintained. As for
breadth-first, best-first crawlers also need to avoid duplicate URLs in the
frontier. Keeping a separate hash table for look-up is an efficient way to
achieve this. The time complexity of inserting a URL into the priority
queue is O(logF), where F is the frontier size (looking up the hash requires
constant time). To dequeue a URL, it must first be removed from the prior-
ity queue (O(logF)) and then from the hash table (again O(1)). Thus the
parallel use of the two data structures yields a logarithmic total cost per
URL. Once the frontier’s maximum size is reached, only the best URLs are
kept; the frontier must be pruned after each new set of links is added.

8.2 Implementation Issues

8.2.1 Fetching

To fetch pages, a crawler acts as a Web client; it sends an HTTP request to
the server hosting the page and reads the response. The client needs to
timeout connections to prevent spending unnecessary time waiting for re-
sponses from slow servers or reading huge pages. In fact, it is typical to re-
strict downloads to only the first 10-100 KB of data for each page. The cli-
ent parses the response headers for status codes and redirections. Redirect
loops are to be detected and broken by storing URLs from a redirection
chain in a hash table and halting if the same URL is encountered twice.
One may also parse and store the last-modified header to determine the age
of the document, although this information is known to be unreliable. Er-

278 8 Web Crawling

ror-checking and exception handling is important during the page fetching
process since the same code must deal with potentially millions of remote
servers. In addition, it may be beneficial to collect statistics on timeouts
and status codes to identify problems or automatically adjust timeout val-
ues. Programming languages such as Java, Python and Perl provide simple
programmatic interfaces for fetching pages from the Web. However, one
must be careful in using high-level interfaces where it may be harder to de-
tect lower-level problems. For example, a robust crawler in Perl should use
the Socket module to send HTTP requests rather than the higher-level
LWP library (the World-Wide Web library for Perl). The latter does not al-
low fine control of connection timeouts.

8.2.2 Parsing

Once (or while) a page is downloaded, the crawler parses its content, i.e.,
the HTTP payload, and extracts information both to support the crawler’s
master application (e.g., indexing the page if the crawler supports a search
engine) and to allow the crawler to keep running (extracting links to be
added to the frontier). Parsing may imply simple URL extraction from hy-
perlinks, or more involved analysis of the HTML code. The Document Ob-
ject Model (DOM) establishes the structure of an HTML page as a tag tree,
as illustrated in Fig. 8.2. HTML parsers build the tree in a depth-first man-
ner, as the HTML source code of a page is scanned linearly.

Unlike program code, which must compile correctly or else will fail
with a syntax error, correctness of HTML code tends to be laxly enforced
by browsers. Even when HTML standards call for strict interpretation, de
facto standards imposed by browser implementations are very forgiving.
This, together with the huge population of non-expert authors generating
Web pages, imposes significant complexity on a crawler's HTML parser.
Many pages are published with missing required tags, tags improperly
nested, missing close tags, misspelled or missing attribute names and val-
ues, missing quotes around attribute values, unescaped special characters,
and so on. As an example, the double quotes character in HTML is re-
served for tag syntax and thus is forbidden in text. The special HTML en-
tity " is to be used in its place. However, only a small number of au-
thors are aware of this, and a large fraction of Web pages contains this
illegal character. Just like browsers, crawlers must be forgiving in these
cases; they cannot afford to discard many important pages as a strict parser
would do. A wise preprocessing step taken by robust crawlers is to apply a
tool such as tidy (www.w3.org/People/Raggett/tidy) to clean up the HTML
content prior to parsing. To add to the complexity, there are many coexist-

8.2 Implementation Issues 279

ing HTML and XHTML reference versions. However, if the crawler only
needs to extract links within a page and/or the text in the page, simpler
parsers may suffice. The HTML parsers available in high-level languages
such as Java and Perl are becoming increasingly sophisticated and robust.

Fig. 8.2. Illustration of the DOM (or tag) tree built from a simple HTML page.
Internal nodes (shown as ovals) represent HTML tags, with the <html> tag as the
root. Leaf nodes (shown as rectangles) correspond to text chunks.

A growing portion of Web pages are written in formats other than
HTML. Crawlers supporting large-scale search engines routinely parse and
index documents in many open and proprietary formats such as plain text,
PDF, Microsoft Word and Microsoft PowerPoint. Depending on the appli-

280 8 Web Crawling

cation of the crawler, this may or may not be required. Some formats pre-
sent particular difficulties as they are written exclusively for human inter-
action and thus are especially unfriendly to crawlers. For instance, some
commercial sites use graphic animations in Flash; these are difficult for a
crawler to parse in order to extract links and their textual content. Other
examples include image maps and pages making heavy use of Javascript
for interaction. New challenges are going to come as new standards such
as Scalable Vector Graphics (SVG), Asynchronous Javascript and XML
(AJAX), and other XML-based languages gain popularity.

8.2.3 Stopword Removal and Stemming

When parsing a Web page to extract the content or to score new URLs
suggested by the page, it is often helpful to remove so-called stopwords,
i.e., terms such as articles and conjunctions, which are so common that
they hinder the discrimination of pages on the basis of content.

Another useful technique is stemming, by which morphological variants
of terms are conflated into common roots (stems). In a topical crawler
where a link is scored based on the similarity between its source page and
the query, stemming both the page and the query helps improve the
matches between the two sets and the accuracy of the scoring function.

Both stop-word removal and stemming are standard techniques in in-
formation retrieval, and are discussed in greater detail in Chap. 6.

8.2.4 Link Extraction and Canonicalization

HTML parsers provide the functionality to identify tags and associated at-
tribute-value pairs in a given Web page. In order to extract hyperlink
URLs from a page, we can use a parser to find anchor (<a>) tags and grab
the values of the associated href attributes. However, the URLs thus ob-
tained need to be further processed. First, filtering may be necessary to ex-
clude certain file types that are not to be crawled. This can be achieved
with white lists (e.g., only follow links to text/html content pages) or black
lists (e.g., discard links to PDF files). The identification of a file type may
rely on file extensions. However, they are often unreliable and sometimes
missing altogether. We cannot afford to download a document and then
decide whether we want it or not. A compromise is to send an HTTP
HEAD request and inspect the content-type response header, which is usu-
ally a more reliable label.

Another type of filtering has to do with the static or dynamic nature of
pages. A dynamic page (e.g., generated by a CGI script) may indicate a

8.2 Implementation Issues 281

query interface for a database or some other application in which a crawler
may not be interested. In the early days of the Web, such pages were few
and easily recognizable, e.g., by matching URLs against the /cgi-bin/ direc-
tory name for CGI scripts, or against the special characters [?=&] used in
CGI query strings. However, the use of dynamic content has become much
more common; it is used in a variety of sites for content that is perfectly
indexable. Most importantly, its dynamic nature is very difficult to recog-
nize via URL inspection. For these reasons, most crawlers no longer make
such distinction between static and dynamic content. While a crawler nor-
mally would not create query URLs autonomously (unless it is designed to
probe the so-called deep or hidden Web, which contain databases with
query interfaces), it will happily crawl URLs hard-coded in HTML source
of parsed pages. In other words, if a URL is found in a Web page, it is fair
game. There is one important exception to this strategy, the spider trap,
which is discussed below.

Before links can be added to the frontier, relative URLs must be con-
verted to absolute URLs. For example, the relative URL news/today.html
in the page http://www.somehost.com/index.html is to be transformed into
the absolute form http://www.somehost.com/news/today.html. There are
various rules to convert relative URLs into absolute ones. A relative URL
can be expressed as a relative or absolute path relative to the Web server’s
document root directory. The base URL may be specified by an HTTP
header or a meta-tag within an HTML page, or not at all–in the latter case
the directory of the hyperlink’s source page is used as a base URL.

Converting relative URLs is just one of many steps that make up the
canonicalization process, i.e., the conversion of a URL into a canonical
form. The definition of canonical form is somewhat arbitrary, so that dif-
ferent crawlers may specify different rules. For example, one crawler may
always specify the port number within the URL (e.g.,
http://www.somehost.com:80/), while another may specify the port number
only when it is not 80 (the default HTTP port). As long as the canonical
form is applied consistently by a crawler, such distinctions are inconse-
quential. Some programming languages such as Perl provide modules to
manage URLs, including methods for absolute/relative conversion and
canonicalization. However, several canonicalization steps require the ap-
plication of heuristic rules, and off-the-shelf tools typically do not provide
such functionalities. A crawler may also need to use heuristics to detect
when two URLs point to the same page in order to minimize the likelihood
that the same page is fetched multiple times. Table 8.1 lists the steps typi-
cally employed to canonicalize a URL.

282 8 Web Crawling

Table 8.1. Some transformations to convert URLs to canonical forms. Stars indi-
cate heuristic rules, where there is a tradeoff between the risk of altering the se-
mantics of the URL (if a wrong guess is made) and the risk of missing duplicate
URLs (if no transformation is applied) for the same target

Description and transformation Example and canonical form
Default port number http://cs.indiana.edu:80/
Remove http://cs.indiana.edu/
Root directory http://cs.indiana.edu
Add trailing slash http://cs.indiana.edu/
Guessed directory* http://cs.indiana.edu/People
Add trailing slash http://cs.indiana.edu/People/
Fragment http://cs.indiana.edu/faq.html#3
Remove http://cs.indiana.edu/faq.html
Current or parent directory http://cs.indiana.edu/a/./../b/
Resolve path http://cs.indiana.edu/b/
Default filename* http://cs.indiana.edu/index.html
Remove http://cs.indiana.edu/
Needlessly encoded characters http://cs.indiana.edu/%7Efil/
Decode http://cs.indiana.edu/~fil/
Disallowed characters http://cs.indiana.edu/My File.htm
Encode http://cs.indiana.edu/My%20File.htm
Mixed/upper-case host names http://CS.INDIANA.EDU/People/
Lower-case http://cs.indiana.edu/People/

8.2.5 Spider Traps

A crawler must be aware of spider traps. These are Web sites where the
URLs of dynamically created links are modified based on the sequence of
actions taken by the browsing user (or crawler). Some e-commerce sites
such as Amazon.com may use URLs to encode which sequence of products
each user views. This way, each time a user clicks a link, the server can log
detailed information on the user's shopping behavior for later analysis. As
an illustration, consider a dynamic page for product x, whose URL path is
/x and that contains a link to product y. The URL path for this link would
be /x/y to indicate that the user is going from page x to page y. Now sup-
pose the page for y has a link back to product x. The dynamically created
URL path for this link would be /x/y/x, so that the crawler would think this
is a new page when in fact it is an already visited page with a new URL.
As a side effect of a spider trap, the server may create an entry in a data-
base every time the user (or crawler) clicks on certain dynamic links. An
example might be a blog or message board where users can post com-
ments. These situations create sites that appear infinite to a crawler, be-
cause the more links are followed, the more new URLs are created. How-

8.2 Implementation Issues 283

ever these new “dummy” links do not lead to existing or new content, but
simply to dynamically created form pages, or to pages that have already
been visited. Thus a crawler could go on crawling inside the spider trap
forever without actually fetching any new content.

In practice spider traps are not only harmful to the crawler, which
wastes bandwidth and disk space to download and store duplicate or use-
less data. They may be equally harmful to the server sites. Not only does
the server waste its bandwidth, the side effect of a crawler caught in a spi-
der trap may also be filling a server-side database with bogus entries. The
database may eventually become filled to capacity, and the site may be
disabled as a result. This is a type of denial of service attack carried out
unwittingly by the crawler.

In some cases a spider trap needs the client to send a cookie set by the
server for the dynamic URLs to be generated. So the problem is prevented
if the crawler avoids accepting or sending any cookies. However, in most
cases a more proactive approach is necessary to defend a crawler against
spider traps. Since the dummy URLs often become larger and larger in size
as the crawler becomes entangled in a spider trap, one common heuristic
approach to tackle such traps is by limiting the URL sizes to some maxi-
mum number of characters, say 256. If a longer URL is encountered, the
crawler should simply ignore it. Another way is by limiting the number of
pages that the crawler requests from a given domain. The code associated
with the frontier can make sure that every consecutive sequence of, say,
100 URLs fetched by the crawler contains at most one URL from each
fully qualified host name. This approach is also germane to the issue of
crawler etiquette, discussed later.

8.2.6 Page Repository

Once a page is fetched, it may be stored/indexed for the master application
(e.g., a search engine). In its simplest form a page repository may store
the crawled pages as separate files. In this case each page must map to a
unique file name. One way to do this is to map each page's URL to a com-
pact string using some hashing function with low probability of collisions,
e.g., MD5. The resulting hash value is used as a (hopefully) unique file
name. The shortcoming of this approach is that a large scale crawler would
incur significant time and disk space overhead from the operating system
to manage a very large number of small individual files.

A more efficient solution is to combine many pages into one file. A
naïve approach is to simply concatenate some number of pages (say 1,000)
into each file, with some special markup to separate and identify the pages

284 8 Web Crawling

within the file. This requires a separate look-up table to map URLs to file
names and IDs within each file. A better method is to use a database to
store the pages, indexed by (canonical) URLs. Since traditional RDBMSs
impose high overhead, embedded databases such as the open-source
Berkeley DB are typically preferred for fast access. Many high-level
languages such as Java and Perl provide simple APIs to manage Berkeley
DB files, for example as tied associative arrays. This way the storage
management operations become nearly transparent to the crawler code,
which can treat the page repository as an in-memory data structure.

8.2.7 Concurrency

A crawler consumes three main resources: network, CPU, and disk. Each
is a bottleneck with limits imposed by bandwidth, CPU speed, and disk
seek/transfer times. The simple sequential crawler described in Sect. 8.1
makes a very inefficient use of these resources because at any given time
two of them are idle while the crawler attends to the third.

The most straightforward way to speed-up a crawler is through concur-
rent processes or threads. Multiprocessing may be somewhat easier to im-
plement than multithreading depending on the programming language and
platform, but it may also incur a higher overhead due to the involvement of
the operating system in the management (creation and destruction) of child
processes. Whether threads or processes are used, a concurrent crawler
may follow a standard parallel computing model [292] as illustrated in Fig.
8.3. Basically each thread or process works as an independent crawler, ex-
cept for the fact that access to the shared data structures (mainly the fron-
tier, and possibly the page repository) must be synchronized. In particular
a frontier manager is responsible for locking and unlocking the frontier
data structures so that only one process or thread can write to them at one
time. Note that both enqueueing and dequeuing are write operations. Addi-
tionally, the frontier manager would maintain and synchronize access to
other shared data structures such as the crawl history for fast look-up of
visited URLs.

It is a bit more complicated for a concurrent crawler to deal with an
empty frontier than for a sequential crawler. An empty frontier no longer
implies that the crawler has reached a dead-end, because other processes
may be fetching pages and adding new URLs in the near future. The proc-
ess or thread manager may deal with such a situation by sending a tempo-
rary sleep signal to processes that report an empty frontier. The process
manager needs to keep track of the number of sleeping processes; when all
the processes are asleep, the crawler must halt.

8.3 Universal Crawlers 285

Fig. 8.3. Architecture of a concurrent crawler

The concurrent design can easily speed-up a crawler by a factor of 5 or
10. The concurrent architecture however does not scale up to the perform-
ance needs of a commercial search engine. We discuss in Sect. 8.3 further
steps that can be taken to achieve more scalable crawlers.

8.3 Universal Crawlers

General purpose search engines use Web crawlers to maintain their indices
[25], amortizing the cost of crawling and indexing over the millions of
queries received between successive index updates (though indexers are

286 8 Web Crawling

designed for incremental updates [101]. These large-scale universal crawl-
ers differ from the concurrent breadth-first crawlers described above along
two major dimensions:

1. Performance: They need to scale up to fetching and processing hun-
dreds of thousands of pages per second. This calls for several architec-
tural improvements.

2. Policy: They strive to cover as much as possible of the most important
pages on the Web, while maintaining their index as fresh as possible.
These goals are, of course, conflicting so that the crawlers must be de-
signed to achieve good tradeoffs between their objectives.

Next we discuss the main issues in meeting these requirements.

8.3.1 Scalability

Figure 8.4 illustrates the architecture of a large-scale crawler, based on the
accounts in the literature [68, 85, 238]. The most important change from
the concurrent model discussed earlier is the use of asynchronous sockets
in place of threads or processes with synchronous sockets. Asynchronous
sockets are non-blocking, so that a single process or thread can keep hun-
dreds of network connections open simultaneously and make efficient use
of network bandwidth. Not only does this eliminate the overhead due to
managing threads or processes, it also makes locking access to shared data
structures unnecessary. Instead, the sockets are polled to monitor their
states. When an entire page has been fetched into memory, it is processed
for link extraction and indexing. This “pull” model eliminates contention
for resources and the need for locks.

The frontier manager can improve the efficiency of the crawler by main-
taining several parallel queues, where the URLs in each queue refer to a
single server. In addition to spreading the load across many servers within
any short time interval, this approach allows to keep connections with
servers alive over many page requests, thus minimizing the overhead of
TCP opening and closing handshakes.

The crawler needs to resolve host names in URLs to IP addresses. The
connections to the Domain Name System (DNS) servers for this purpose
are one of the major bottlenecks of a naïve crawler, which opens a new
TCP connection to the DNS server for each URL. To address this bottle-
neck, the crawler can take several steps. First, it can use UDP instead of
TCP as the transport protocol for DNS requests. While UDP does not
guarantee delivery of packets and a request can occasionally be dropped,
this is rare. On the other hand, UDP incurs no connection overhead with a

8.3 Universal Crawlers 287

significant speed-up over TCP. Second, the DNS server should employ a
large, persistent, and fast (in-memory) cache. Finally, the pre-fetching of
DNS requests can be carried out when links are extracted from a page. In
addition to being added to the frontier, the URLs can be scanned for host
names to be sent to the DNS server. This way, when a URL is later ready
to be fetched, the host IP address is likely to be found in the DNS cache,
obviating the need to propagate the request through the DNS tree.

Fig. 8.4. High-level architecture of a scalable universal crawler

288 8 Web Crawling

In addition to making more efficient use of network bandwidth through
asynchronous sockets, large-scale crawlers can increase network band-
width by using multiple network connections switched to multiple routers,
thus utilizing the networks of multiple Internet service providers. Simi-
larly, disk I/O throughput can be boosted via a storage area network con-
nected to a storage pool through a fibre channel switch.

8.3.2 Coverage vs. Freshness vs. Importance

Given the size of the Web, it is not feasible even for the largest-scale
crawlers employed by commercial search engines to index all of the con-
tent that could be accessed. Instead, search engines aim to focus on the
most “important” pages, where importance is assessed based on various
factors such as link popularity measures (indegree or PageRank) [102,
234]. At the time of this writing the three major commercial search engines
report index sizes in the order of 1010 pages, while the indexable Web may
be at least an order of magnitude larger.

The simplest strategy to bias the crawler in favor of popular pages is to
do nothing – given the long-tailed distribution of indegree discussed in
Sect. 8.1, a simple breadth-first crawling algorithm will tend to fetch the
pages with the highest PageRank by definition, as confirmed empirically
[401]. In fact, one would have to apply a reverse bias to obtain a fair sam-
ple of the Web. Suppose that starting with a random Web walk, we wanted
a random sample of pages drawn with uniform probability distribution
across all pages. We can write the posterior probability of adding a page p
to the sample as Pr(accept(p)|crawl(p))⋅Pr(crawl(p)) where the first factor
is the conditional probability of accepting the page into the sample given
that it was crawled, and the second factor is the prior probability of crawl-
ing the page in the random walk. We can find the acceptance strategy to
obtain a uniform sample by setting the product to a constant, yielding
Pr(accept(p)|crawl(p)) ∼ 1/Pr(crawl(p)). The prior Pr(crawl(p)) is given by
the PageRank of p, and can be approximated during the random walk by
the frequency f(p) that the crawler has encountered a link to p. So there-
fore, each visited page p should be accepted with probability proportional
to 1/f(p). Empirical tests on a simulated Web graph validate that this strat-
egy yields a sample of the graph that is statistically representative of the
original [235].

The goal to cover as many pages as possible (among the most important
ones) is in conflict with the need to maintain a fresh index. Because of the
highly dynamic nature of the Web, with pages being added, deleted, and
modified all the time, it is necessary for a crawler to revisit pages already

8.4 Focused Crawlers 289

in the index in order to keep the index up-to-date. Many studies have been
conducted to analyze the dynamics of the Web, i.e., the statistical proper-
ties of the processes leading to change in Web structure and content 66,
101, 152, 177, 416]. They all indicate that the Web changes at very rapid
rates. While early studies relied on the values reported by Web servers in
the last-modified HTTP header, recently there is consensus that this infor-
mation has little reliability. The most recent and exhaustive study at the
time of this writing [416] reports that while new pages are created at a rate
of about 8% per week, only about 62% of the content of these pages is
really new because pages are often copied from existing ones. The link
structure of the Web is more dynamic, with about 25% new links created
per week. Once created, pages tend to change little so that most of the
changes observed in the Web are due to additions and deletions rather than
modifications. Finally, there is an agreement on the observation that the
degree of change of a page is a better predictor of future change than the
frequency of change [177, 416]. This suggests that crawler revisit strate-
gies based on frequency of change [25, 101] may not be the most appropri-
ate for achieving a good tradeoff between coverage and freshness.

8.4 Focused Crawlers

Rather than crawling pages from the entire Web, we may want to crawl
only pages in certain categories. One applications of such a preferential
crawler would be to maintain a Web taxonomy such as the Yahoo! Direc-
tory (dir.yahoo.com) or the volunteer-based Open Directory Project
(ODP, dmoz.org). Suppose you are the ODP editor for a certain category;
you may wish to launch such a crawler from an initial seed set of pages
relevant to that category, and see if any new pages discovered should be
added to the directory, either directly under the category in question or one
of its subcategories. A focused crawler attempts to bias the crawler to-
wards pages in certain categories in which the user is interested.

Chakrabarti et al. [87] proposed a focused crawler based on a classifier.
The idea is to first build a text classifier using labeled example pages from,
say, the ODP. Then the classifier would guide the crawler by preferentially
selecting from the frontier those pages that appear most likely to belong to
the categories of interest, according to the classifier's prediction. To train
the classifier, example pages are drawn from various categories in the tax-
onomy as shown in Fig. 8.5. The classification algorithm used was the na-
ïve Bayesian method (see Chap. 3). For each category c in the taxonomy
we can build a Bayesian classifier to compute the probability Pr(c|p) that a
crawled page p belongs to c (by definition, Pr(top|p) = 1 for the top or root

290 8 Web Crawling

category). The user can select a set c* of categories of interest. Each
crawled page is assigned a relevance score.

∑ ∈
= *).|Pr()(

cc
pcpR (1)

Two strategies were explored. In the “soft” focused strategy, the crawler
uses the score R(p) of each crawled page p as a priority value for all unvis-
ited URLs extracted from p. The URLs are then added to the frontier,
which is treated as a priority queue (see Sect. 8.1.2). In the “hard” focused
strategy, for a crawled page p, the classifier first finds the leaf category

)(ˆ pc in the taxonomy most likely to include p:

ˆ c (p) = arg max
c: / ∃ c'⊂c

Pr(c | p). (2)

If an ancestor of)(ˆ pc is a focus category, i.e., ∃c’:)(ˆ pc ⊂ c’∧ c’∈ c*,
then the URLs from the crawled page p are added to the frontier. Other-
wise they are discarded. The idea is illustrated in Fig. 8.5 (left). For exam-
ple, imagine a crawler focused on soccer (c' = soccer ∈ c*) visits a page p
in the FIFA World Cup Germany 2006 site. If the classifier correctly as-
signs p to the leaf category ĉ =Sports/Soccer/Competitions/World_Cup/2006,

Fig. 8.5. Left: A taxonomy supporting a focused crawler. The areas in gray repre-
sent the categories of interest c*. A crawler with hard focus would add to the fron-
tier the links extracted from a page classified in the leaf category 1̂c because its
ancestor category c' is of interest to the user, while the links from a page classi-
fied in 2ĉ would be discarded. Right: A context graph with L = 3 layers con-
structed to train a context focused crawler from the target set in layer l = 0.

8.4 Focused Crawlers 291

the links extracted from p are added to the frontier because 2006 is a sub-
category of Sports/Soccer (ĉ ⊂ soccer). The soft and hard focus strategies
worked equally well in experiments.

Another element of the focused crawler is the use of a distiller. The dis-
tiller applies a modified version of the HITS algorithm [282] to find topical
hubs. These hubs provide links to authoritative sources on a focus cate-
gory. The distiller is activated at various times during the crawl and some
of the top hubs are added to the frontier.

Context-Focused Crawlers are another type of focused crawlers. They
also use naïve Bayesian classifiers as a guide, but in this case the classifi-
ers are trained to estimate the link distance between a crawled page and a
set of relevant target pages [139]. To see why this might work, imagine
looking for information on “machine learning.” One might go to the home
pages of computer science departments and from there to faculty pages,
which may then lead to relevant pages and papers. A department home
page, however, may not contain the keywords “machine learning.” A typi-
cal focused or best-first crawler would give such a page a low priority and
possibly never follow its links. However, if the crawler could estimate that
pages about machine learning are only two links away from a page con-
taining the keywords “computer science department,” then it would give
the department home page a higher priority.

The context-focused crawler is trained using a context graph with L
layers (Fig. 8.5 right). The seed (target) pages form the layer 0 of the
graph. The pages corresponding to the in-links to the seed pages are in
layer 1. The in-links to the layer 1 pages make up the layer 2, and so on.
The in-links to any page can be obtained by submitting a link: query to a
search engine. The seed pages in layer 0 (and possibly those in layer 1) are
then concatenated into a single large document, and the top few terms ac-
cording to the TF-IDF weighting scheme (see Chap. 6) are selected as the
vocabulary (feature space) to be used for classification. A naïve Bayesian
classifier is built for each layer in the context graph. A prior probability
Pr(l) = 1/L is assigned to each layer. All the pages in a layer are used to
compute Pr(t| l), the probability of occurrence of a term t given the layer
(class) l . At the crawling time, these are used to compute Pr(p| l) for each
crawled page p. The posterior probability Pr(l |p) of p belonging to layer l
can then be computed for each layer from Bayes’ rule. The layer l * with
highest posterior probability wins:

).|Pr(maxarg)(* pp ll
l

= (3)

292 8 Web Crawling

If Pr(l *|p) is less than a threshold, p is classified into the “other” class,
which represents pages that do not have a good fit with any of the layers in
the context graph. If Pr(l *|p) exceeds the threshold, p is classified into l *.

The set of classifiers corresponding to the context graph provides a
mechanism to estimate the link distance of a crawled page from a relevant
page. If the mechanism works, the computer science department page in
our example will get classified into layer 2. The crawler maintains a sepa-
rate priority queue for each layer, containing the links extracted from vis-
ited pages classified in that layer. Each queue is sorted by the scores
Pr(l |p). The next URL to crawl is taken from the non-empty queue with
the smallest l . So the crawler gives precedence to links that appear to be
closest to relevant targets. It is shown in [139] that the context-focused
crawler outperforms the standard focused crawler in experiments.

While the majority of focused crawlers in the literature have employed
the naïve Bayesian method as the classification algorithm to score unvis-
ited URLs, an extensive study with hundreds of topics has provided strong
evidence that classifiers based on SVM or neural networks can yield sig-
nificant improvements in the quality of the crawled pages [433].

8.5 Topical Crawlers

For many preferential crawling tasks, labeled (positive and negative) ex-
amples of pages are not available in sufficient numbers to train a focused
crawler before the crawl starts. Instead, we typically have a small set of
seed pages and a description of a topic of interest to a user or user commu-
nity. The topic can consist of one or more example pages (possibly the
seeds) or even a short query. Preferential crawlers that start with only such
information are often called topical crawlers [85, 102, 377]. They do not
have text classifiers to guide crawling.

Even without the luxury of a text classifier, a topical crawler can be
smart about preferentially exploring regions of the Web that appear rele-
vant to the target topic by comparing features collected from visited pages
with cues in the topic description.

To illustrate a topical crawler with its advantages and limitations, let us
consider the MySpiders applet (myspiders.informatics.indiana.edu). Figure
8.6 shows a screenshot of this application. The applet is designed to dem-
onstrate two topical crawling algorithms, best-N-first and InfoSpiders,
both discussed below [431].

MySpiders is interactive in that a user submits a query just like one
would do with a search engine, and the results are then shown in a win-

8.5 Topical Crawlers 293

dow. However, unlike a search engine, this application has no index to
search for results. Instead the Web is crawled in real time. As pages
deemed relevant are crawled, they are displayed in a list that is kept sorted
by a user-selected criterion: score or recency. The score is simply the con-
tent (cosine) similarity between a page and the query (see Chap. 6); the re-
cency of a page is estimated by the last-modified header, if returned by the
server (as noted earlier this is not a very reliable estimate).

Fig. 8.6. Screenshot of the MySpiders applet in action. In this example the user
has launched a population of crawlers with the query “search censorship in france”
using the InfoSpiders algorithm. The crawler reports some seed pages obtained
from a search engine, but also a relevant blog page (bottom left) that was not re-
turned by the search engine. This page was found by one of the agents, called Spi-
der2, crawling autonomously from one of the seeds. We can see that Spider2
spawned a new agent, Spider13, who started crawling for pages also containing
the term “italy.” Another agent, Spider5, spawned two agents one of which, Spi-
der11, identified and internalized the relevant term “engine.”

One of the advantages of topic crawling is that all hits are fresh by defi-
nition. No stale results are returned by the crawler because the pages are
visited at query time. This makes this type of crawlers suitable for applica-

294 8 Web Crawling

tions that look for very recently posted documents, which a search engine
may not have indexed yet. On the down side, the search is slow compared
to a traditional search engine because the user has to wait while the crawler
fetches and analyzes pages. If the user's client machine (where the applet
runs) has limited bandwidth, e.g., a dial-up Internet connection, the wait is
likely infeasible. Another disadvantage is that the ranking algorithms can-
not take advantage of global prestige measures, such as PageRank, avail-
able to a traditional search engine.

Several research issues around topical crawlers have received attention.
One key question is how to identify the environmental signals to which
crawlers should attend in order to determine the best links to follow. Rich
cues such as the markup and lexical (text) signals within Web pages, as
well as features of the link graph built from pages already seen, are all rea-
sonable sources of evidence to exploit.

Crawlers can use the evidence available to them in different ways, for
example more or less greedily. The goals of the application also provide
crucial context. For example the desired properties of the pages to be
fetched (similar pages, popular pages, authoritative pages, recent pages,
and so on) can lead to significant differences in crawler design and imple-
mentation. The task could be constrained by parameters like the maximum
number of pages to be fetched (long crawls vs. short crawls) or the mem-
ory available. A crawling task can thus be viewed as a constrained multi-
objective search problem. The wide variety of objective functions, coupled
with the lack of appropriate knowledge about the search space, make such
a problem challenging.

In the remainder of this section we briefly discuss the theoretical condi-
tions necessary for topical crawlers to function, and the empirical evidence
supporting the existence of such conditions. Then we review some of the
machine learning techniques that have been successfully applied to iden-
tify and exploit useful cues for topical crawlers.

8.5.1 Topical Locality and Cues

The central assumption behind topical crawlers is that Web pages contain
reliable cues about each other’s content. This is a necessary condition for
designing a crawler that has a better-than-random chance to preferentially
visit pages relevant with respect to a given topic. Indeed, if no estimates
could be made about unvisited pages, then all we could do is a random
walk through the Web graph, or an exhaustive search (using breadth-first
or depth-first search algorithms). Fortunately, crawling algorithms can use
cues from words and hyperlinks, associated respectively with a lexical and

8.5 Topical Crawlers 295

a link topology. In the former, two pages are close to each other if they
have similar textual content; in the latter, if there is a short path between
them (we will see what “short” means).

Lexical metrics are text similarity measures derived from the vector
space model (see Chap. 6). The cluster hypothesis behind this model is
that a document lexically close to a relevant document (with respect to the
given query) is also relevant with high probability [461].

Link metrics typically look at hyperlinks as directed edges in a graph,
but a path can also be defined in an undirected sense, in which case two
pages have a short link distance between them if they are co-cited or co-
referenced, even if there is no directed path between them. Links are a very
rich source of topical information about Web pages.

From a crawler's perspective, there are two central questions:

1. link-content conjecture: whether two pages that link to each other are
more likely to be lexically similar to each other, compared to two ran-
domly selected pages;

2. link-cluster conjecture: whether two pages that link to each other are
more likely to be semantically related to each other, compared to two
randomly selected pages.

A first answer to the link-content conjecture was obtained by computing
the cosine similarity between linked and random pairs of pages, showing
that the similarity is an order of magnitude higher in the former case [123].
The same study also showed that the anchor text tends to be a good (simi-
lar) description of the target page.

The link-content conjecture can be generalized by looking at the decay
in content similarity as a function of link distance from a source page. This
decay was measured by launching an exhaustive breadth-first crawl from
seed sets of 100 topics in the Yahoo! directory [372]. Let us use the cosine
similarity measure σ(p1, p2) between pages p1 and p2 (see Chap. 6). We can
measure the link distance δ1(p1, p2) along the shortest directed path from p1
and p2, revealed by the breadth-first crawl. Both distances δ1(q, p) and
similarities σ(q, p) were averaged for each topic q over all pages p in the
crawl set q

dP for each depth d:

)(1),(),(1
1

1
q
i

d

i

q
iq

d
P

NNi
N

pqdq p
d

−
=

−=≡ ∑δδ (4)

∑
∈

=≡
p

d

p
d

Pp
q
d

P
pq

N
pqdq),(1),(),(σσσ (5)

296 8 Web Crawling

where Nd
q is the size of the cumulative page set Pd

q = {p | δ1(q, p) ≤ d}.
The crawlers were stopped at depth d = 3, yielding 3000 data points

 {(p, d): q ∈{1, …, 100}, d ∈{1, 2, 3}}.

These points were then used for fitting an exponential decay model:
2

1)1()(
αδασσδσ −

∞∞ −+≈ e (6)

where σ∞ is the noise level in similarity, measured empirically by averag-
ing across random pairs of pages. The parameters α1 and α2 are set by fit-
ting the data. This was done for pages in various top-level domains, and
the resulting similarity decay curves are plotted in Fig. 8.7.

Fig. 8.7. Illustration of the link-content conjecture. The curves plot, for each top-
level domain, the decay in mean cosine similarity between pages as a function of
their mean directed link distance, obtained by fitting data from 100 exhaustive
breadth-first crawls starting from the 100 Yahoo! directory topics [372].

The curves provide us with a rough estimate of how far in link space one
can make inferences about lexical content. We see that a weak signal is
still present three links away from the starting pages for all but the .com
domain, and even further for the .edu domain. Such heterogeneity is not
surprising – academic pages are written carefully to convey information
and proper pointers, while business sites often do not link to related sites
because of competition. Therefore a topical crawler in the commercial do-
main would have a harder task, other things being equal. A solution may

8.5 Topical Crawlers 297

be to use undirected links. More specifically, if a crawler can obtain in-
links to good pages (by querying a search engine), it can use co-citation to
detect hubs. If a page links to several good pages, it is probably a good hub
and all its out-links should be given high priority. This strategy, related to
the so-called sibling locality [3], has been used in focused crawlers [87]
and in topical crawlers for business intelligence [432]. In addition to co-
citation, one could look at bibliographic coupling: if several good pages
link to a certain page, that target is likely to be a good authority so it and
its in-links should be given high priority. Fig. 8.8 illustrates various ways
in which crawlers can exploit co-citation and bibliographic coupling.

Fig. 8.8. Crawling techniques exploiting co-citation (top) and bibliographic cou-
pling (bottom). Dashed edges represent in-links, which require access to a search
engine or connectivity server. Page A is a good hub, so it should be given high
priority; once fetched, page B linked by it can be discovered and placed in the
frontier with high priority since it is likely to be a good authority. Page C is also a
good hub, so D should be given high priority. Page E is a good authority, so it
should be given high priority. Its URL can also be used to discover F, which may
be a good hub and should be placed in the frontier. G is also a good authority, so
H should be given high priority and I should be placed in the frontier.

298 8 Web Crawling

The link-cluster conjecture, also known as linkage locality [87], states
that one can infer the meaning of a page by looking at its neighbors. This is
actually more important than inferring lexical content, since the latter is
only relevant insofar as it is correlated with the semantic content of pages.
The same exhaustive crawl data used to validate the link-content conjec-
ture can also be used to explore the link-cluster conjecture, namely the ex-
tent to which relevance is preserved within link space neighborhoods and
the decay in expected relevance as one browses away from a relevant page
[372]. The link-cluster conjecture can be simply formulated in terms of the
conditional probability that a page p is relevant with respect to some query
q, given that page r is relevant and that p is within d links from r:

Rq (d) ≡ Pr(relq (p) | relq (r)∧δ1(r, p) ≤ d] (7)

where relq() is a binary relevance assessment with respect to q. In other
words a page has a higher than random probability of being about a certain
topic if it is in the neighborhood of other pages about that topic. Rq(d) is
the posterior relevance probability given the evidence of a relevant page
nearby. The conjecture is then represented by the likelihood ratio λ(q, d)
between Rq(d) and the prior relevance probability Gq ≡ Pr(relq(p)), also
known as the generality of the query. If semantic inferences are possible
within a link radius d, then the following condition must hold:

.1
)(

),(>≡
q

q

G
dR

dqλ (8)

To illustrate the meaning of the link-cluster conjecture, consider a random
crawler searching for pages about a topic q. Call ηq(t) the probability that
the crawler hits a relevant page at time t. Solving the recursion

ηq (t +1) = ηq (t)Rq (1) + (1−ηq (t))Gq (9)

for ηq(t+1) = ηq(t) yields the stationary hit rate

.
)1(1

*

qq

q
q RG

G
−+

=η (10)

The link-cluster conjecture is a necessary and sufficient condition for
such a crawler to have a better than chance hit rate:

.1)1,(* >⇔> qGqq λη (11)

Figure 8.9 plots the mean likelihood ratio λ(q, d) versus the mean link dis-
tance δ(q, d) obtained by fitting an exponential decay function

8.5 Topical Crawlers 299

λ(δ) ≈1+ α3e
−α4δ

α5 (12)

to the same 300 data points {(q, d)}. Note that this three-parameter model
is more complex than the one used to validate the link-content conjecture,
because λ(δ = 0) must also be estimated from the data (λ(q, 0) = 1/Gq).
The fitted curve reveals that being within a radius of three links from a
relevant page increases the relevance probability by a factor λ(q, d) >>1.
This is very reassuring for the design of topical crawlers. It also suggests
that crawlers should attempt to remain within a few links from some rele-
vant source. In this range hyperlinks create detectable signals about lexical
and semantic content, despite the Web's apparent lack of structure.

Fig. 8.9. Illustration of the link-cluster conjecture. The curve plots the decay in
mean likelihood ratio as a function of mean directed link distance from a relevant
page, obtained by fitting data from 100 exhaustive breadth-first crawls starting
from as many Yahoo! directory topics [372].

The link-content and link-cluster conjectures can be further developed
by looking at the correlation between content-based, link-based, and se-
mantic-based similarity measures. Using the ODP as a ground truth, we
can express the semantic similarity between any two pages in the taxon-
omy [373, 359] and see how it can be approximated by content and link
similarity measures. For content one can consider for example cosine simi-
larity based on TF or TF-IDF term weights. For link similarity one can
similarly represent a page as a bag of links (in-links, out-links, or

300 8 Web Crawling

both/undirected) and then apply a Jaccard coefficient or a cosine similar-
ity. Figure 8.10 shows, for various topical domains from the ODP, the cor-
relation between semantic similarity and two representative content and
link similarity measures. We observe significant heterogeneity in the corre-
lations, suggesting that topical crawlers have an easier job in some topics
(e.g., “news”) than others (e.g., “games”). Another observation is that in
some topical domains (e.g., “home”) textual content is a more reliable sig-
nal, while in others (e.g., “computers”) links are more helpful.

Fig. 8.10. Pearson correlation coefficients between the semantic similarity ex-
tracted from ODP [359] and two representative content and link similarity meas-
ures. The correlations are measured using a stratified sample of 150,000 URLs
from the ODP, for a total of 4 billion pairs [373]. Content similarity is cosine with
TF weights, and link similarity is the Jaccard coefficient with undirected links.

8.5.2 Best-First Variations

The majority of crawling algorithms in the literature are variations of the
best-first scheme described in Sect. 8.1.2. The difference is in the heuris-
tics that they use to score unvisited URLs. A very simple instance is the
case where each URL is queued into the frontier with priority given by the
content similarity between the topic description and the page from which
the URL was extracted. Content similarity can be measured with the stan-

8.5 Topical Crawlers 301

dard cosine similarity, using TF or TFIDF term weights (in the latter case
the crawler must have global or topic-contextual term frequency informa-
tion available). This simple crawler is also known as naïve best-first.

Many variations of the naïve best-first crawlers are possible. Some give
more importance to certain HTML markups, such as the title, or to text
segments marked by special tags, such as headers. Other techniques focus
on determining the most appropriate textual context to score a link. One al-
ternative to using the entire page or just the anchor text as context, used by

Fig. 8.11. Link context from distance-weighted window (top) and from the DOM
tree (bottom).

302 8 Web Crawling

InfoSpiders [375] and Clever [86], is a weighted window where topic key-
words occurrences near the anchor count more toward the link score than
those farther away, as shown in Fig. 8.11. Another approach is to consider
the tag (DOM) tree of the HTML page [85]. The idea is to walk up the tree
from the link anchor toward the root, stopping at an appropriate aggrega-
tion node. The link context is then obtained by the text in the tag subtree
rooted at the aggregation node (Fig. 8.11).

SharkSearch [237] is an improved version of the earlier FishSearch
crawler [60]. It uses a similarity measure like the one used in the naïve
best-first crawler as a first step for scoring unvisited URLs. The similarity
is computed for anchor text, a fixed-width link context, the entire source
page, and ancestor pages. The ancestors of a URL are the pages that appear
on the crawl path to the URL. SharkSearch, like its predecessor Fish-
Search, maintains a depth bound. That is, if the crawler finds unimportant
pages on a crawl path it stops crawling further along that path. To this
end, each URL in the frontier is associated with a depth and a potential
score. The score of an unvisited URL is obtained from a linear combina-
tion of anchor text similarity, window context similarity, and an inherited
score. The inherited score is the similarity of the source page to the topic,
unless it is zero, in which case it is inherited from the source's parent (and
recursively from its ancestors). The implementation of SharkSearch re-
quires to preset three similarity coefficients in addition to the depth bound.
This crawler does not perform as well as others described below.

Rather than (or in addition to) improving the way we assign priority
scores to unvisited URLs, we can also improve on a naïve best-first crawler
by altering the priority scheme. A classic trade-off in machine learning is
that between exploration and exploitation of information. A crawler is no
different: it can greedily pursue the best-looking leads based on noisy qual-
ity estimates, or be more explorative and visit some pages that seem less
promising, but might lead to better pages. The latter approach is taken in
many optimization algorithms in order to escape local optima and reach a
global optimum with some probability. As it turns out, the same strategy is
also advantageous for topical crawlers. Visiting some URLs with lower
priority leads to a better overall quality of the crawler pages than strictly
following the best-first order. This is demonstrated by best-N-first, a
crawling algorithm that picks N URLs at a time from the frontier (the top N
by priority score) and fetches them all. Once all N pages are visited, the
newly extracted URLs are merge-sorted into the priority queue, and the
cycle is repeated. The best-N-first crawler with N = 256 is a very strong
competitor, outperforming most of the other topical crawlers in the litera-
ture [434, 377]. Figure 8.12 shows a comparison with two crawlers dis-

8.5 Topical Crawlers 303

cussed thus far. Note that a concurrent implementation of a best-first
crawler with N threads or processes is equivalent to a best-N-first crawler.

8.5.3 Adaptation

All the crawlers discussed thus far use a static strategy both to evaluate
unvisited URLs and to manage the frontier. Thus they do not learn from
experience or adapt to the context of a particular topic in the course of the
crawl. In this section we describe a number of machine learning techniques
that have been incorporated into adaptive topical crawlers.

The intelligent crawler uses a statistical model for learning to assign
priorities to the URLs in the frontier, considering Bayesian interest factors
derived from different features [3]. For example, imagine that the crawler
is supposed to find pages about soccer and that 40% of links with the
keyword football in the anchor text lead to relevant pages, versus a back-
ground or prior frequency of only 2% of crawled pages being relevant.
Then the crawler assigns an interest factor

Fig. 8.12. Performance of best-N-first crawler with N = 256 (BFS256) compared
with a naïve best-first crawler (BFS1) and a breadth-first crawler. Recall refers to
sets of relevant pages that the crawlers are supposed to discover; averages and er-
ror bars are computed across 100 crawls from as many ODP topics.

304 8 Web Crawling

20
)](Pr[

)](|)(Pr[
),(

=
∈

=

∈

prel
panchorfootballprel

anchorfootballsoccer

soccer

soccer

λ
 (13)

to the feature “keyword football in anchor.” Recall relsoccer(p) is the binary
relevance score (0 or 1) of page p to soccer. The interest factors are treated
as independent sources of evidence, or likelihoods. They are combined by
a linear combination of log-likelihoods, with user-defined weight parame-
ters. The features employed by the intelligent crawler may be diverse, de-
pending on the particular crawling task. They may include tokens extracted
from candidate URLs, source page content and links, co-citation (sibling)
relationships, and/or other characteristics of the visited and unvisited
URLs. As more evidence is accumulated and stored throughout the crawl,
the interest factors are recalculated and the priorities updated, so that the
frontier is always sorted according to the most recent estimates. Thus intel-
ligent crawlers adapt to the content and link structure of the Web
neighborhoods being explored.

The original focused crawlers described earlier also use machine learn-
ing, in particular a classifier that guides the crawler. However the classifier
is trained before the crawl is launched, and no learning occurs during the
crawl. Therefore we do not consider it an adaptive crawler. However, in a
later “accelerated” version of the focused crawler [85], an online learning
apprentice was added to the system; the original (baseline) classifier then
acts as a critic, providing the apprentice with training examples for learn-
ing to classify outgoing links from the features of the pages from which
they are extracted. Suppose page p1 is fetched and contains a link to page
p2. Later, p2 is fetched and the baseline classifier assigns it to a relevant
class. This information is passed to the apprentice, which uses the labeled
example (“the link from p1 to p2 is good”) to learn to classify the link to p2
as good based on the textual features in the context of the anchor within p1.
Future links with a similar context should be given high priority. Con-
versely, if p2 is deemed irrelevant by the baseline classifier, the apprentice
learns to predict (“bad link”) when it encounters a link with a similar con-
text in the future. The features used to train the apprentice were textual to-
kens associated with a link context based on the DOM tree, and the learn-
ing algorithm used by the apprentice was a naïve Bayesian classifier. This
approach led to a significant reduction in the number of irrelevant pages
fetched by the focused crawler.

While the accelerated focused crawler is not a topical crawler because it
still needs labeled examples to train the baseline classifier prior to the
crawl, the idea of training an apprentice online during the crawl can be ap-

8.5 Topical Crawlers 305

plied in topical crawlers as well. Indeed this is a type of reinforcement
learning technique employed in several crawlers, using different features
and/or different learning algorithms for the apprentice. In reinforcement
learning [263] we have a network where nodes are states and directed links
are actions. An action a ∈ A (think “anchor”) moves an agent from a state
p ∈ P (think “page”) to another state according to a transition function L: P
× A → P. Thus an adaptive crawler is seen as an agent moving from page
to page. Actions are rewarded according to a function r: P × A → ℜ. We
want to learn a policy mapping states to actions, π: P → A, that maximizes
future reward discounted over time:

∑
∞

=

=
0

0),()(
t

tt
t aprpV γπ (14)

where we follow action (link) at=π(pt) from state (page) pt at each time
step t. The parameter γ determines how future rewards are discounted (0 ≤
γ < 1). If γ = 0, the reinforcement learning policy is the greedy one em-
ployed by the naïve best-first crawler. To learn an optimal policy, we de-
fine the value of selecting action a from state p, and following the optimal
policy thereafter:

)],([),(),(* apLVaprapQ γ+= (15)

where V* is the value function of the optimal policy π*(p) = argmaxaQ(p,
a). The question then becomes how to estimate the function Q, i.e., to as-
sign a value to a link a based on the context information in page p from
which the link is extracted. However, the actions available to the crawler
are not limited to the links from the last page visited; any of the actions
corresponding to the URLs in the frontier are available. Furthermore, there
is no reason why the Q value of a link should be a function of a particular
source page; if links to the same target page are extracted from multiple
source pages, the estimated values of the anchors can be combined, for ex-
ample Q(u) = max{(p, a): L(p, a) = u}Q(p, a). This way Q values can be com-
puted not for links (anchors), but for target pages (URLs); the state and ac-
tion spaces are thus greatly reduced, basically collapsing all visited pages
into a single degenerate state and all links to their target URLs. The policy
π reduces to the simple selection of the URL in the frontier with the maxi-
mum Q value.

One way to calculate Q values is via a naïve Bayesian classifier. This
method was found to work well compared to a breadth-first crawler for the
tasks of crawling computer science research papers and company directory
information [366, 459]. In this case, the classifier was trained off-line

306 8 Web Crawling

rather than online while crawling, using labeled examples as in the focused
crawler. Training the classifier to predict future reward (γ > 0) was better
than only using immediate reward (γ = 0). For future reward the authors
use a heavy discount γ = 0.5, arguing that it is optimal to be greedy in se-
lecting URLs from the frontier, so that one can crawl toward the nearest
relevant page. This assumes that all relevant targets are within reach. So
there is no reason to delay reward. However, as discussed earlier, a crawler
typically deals with noisy data, so the classifier’s Q estimates are not en-
tirely reliable; more importantly, a typical crawler cannot possibly cover
the entire search space. These factors suggest that it may be advantageous
to occasionally give up some immediate reward in order to explore other
directions, potentially leading to pockets or relevant pages unreachable by
a greedy crawler (see Fig. 8.12).

Using a previously trained classifier to compute Q values for URLs in
the frontier means that supervised learning is combined with reinforcement
learning. As for focused crawlers, labeled examples must be available prior
to the start of the crawl. This may be possible in tasks such as the collec-
tion of research articles, but is not a realistic assumption for typical topical
crawlers. An adaptive crawling algorithm that actually uses reinforcement
learning while crawling online, without any supervised learning, is InfoS-
piders. This crawler employs various machine learning techniques to ex-
ploit various types of Web regularities. InfoSpiders are inspired by artifi-
cial life models in which a population of agents lives, learn, evolve, and
die in an environment. Individual agents learn during their lifetimes based
on their experiences, with the environment playing the role of a critic, pro-
viding rewards and penalties for actions. Agents may also reproduce, giv-
ing rise to new agents similar to them, and die. The environment is the
Web, the actions consist of following links and visiting pages and the text
and link features of pages are the signals that agents can internalize into
their learned and evolved behaviors. Feedback from the environment con-
sists of a finite energy resource, necessary for survival. Each action has an
energy cost, which may be fixed or proportional to, say, the size of a
fetched page or the latency of a page download [126]. Energy is gained
from visiting new pages relevant to the query topic. A cache prevents an
agent from accumulating energy by visiting the same page multiple times.
In the recent version of InfoSpiders, each agent maintains its own frontier
of unvisited URLs [377]. The agents can be implemented as concurrent
processes/threads, with non-contentious access to their local frontiers. Fig.
8.13 illustrates the representation and flow of an individual agent.

The adaptive representation of each InfoSpiders agent consists of a list
of keywords (initialized with the topic description) and a neural net used to
evaluate new links. Each input unit of the neural net receives a count of the

8.5 Topical Crawlers 307

frequency with which the keyword occurs in the vicinity of each link,
weighted to give more importance to keywords occurring near the anchor
and maximum for the anchor text (Fig. 8.11). The neural net has a single
output unit whose activation is used as a Q value (score) for each link u in
input. The agent’s neural net learns to predict the Q value of the link’s tar-
get URL u given the inputs from the link's source page p. The reward func-
tion r(u) is the cosine similarity between the agent’s terms and the target
page u. The future discounted optimal value γV*(u) is approximated using
the highest neural net prediction among the links subsequently extracted
from u. This procedure is similar to the reinforcement learning algorithm
described above, except that the neural net replaces the naïve Bayesian
classifier. The neural net is trained by the back-propagation algorithm
[469]. This mechanism is called connectionist reinforcement learning
[335]. While the neural net can in principle model nonlinear relationships
between term frequencies and pages, in practice we have used a simple
perceptron whose prediction is a linear combination of the keyword
weights. Such a learning technique provides each InfoSpiders agent with
the capability to adapt its own link-following behavior in the course of a
crawl by associating relevance estimates with particular patterns of key-
word frequencies around links.

Fig. 8.13. A single InfoSpiders agent. The link context is the weighted window as
shown in Fig. 8.11: for each newly extracted URL and for each term in the agent's
term list, this produces a weight that is fed into the neural network, whose output
is stored as the link's priority score in the frontier.

308 8 Web Crawling

The neural net's link scores are combined with estimates based on the
cosine similarity between the agent's keyword list and the entire source
page. A parameter α (0 ≤ α ≤ 1) regulates the relative importance given to
the estimates based on the neural net versus the source page. Based on the
combined score σ the agent uses a stochastic selector to pick one of the
links in the frontier with probability

∑ ∈

=
φ

βσ

βσ

'
)'(

)(

)Pr(
u

u

u

e
eu (16)

where u is a URL in the local frontier φ. Parameter β regulates the greedi-
ness of the link selector. Its value can be fixed or evolved with the agent.

After a new page u has been fetched, the agent receives an energy pay-
off proportional to the difference between the reward r(u) and the cost
charged for the download. An agent dies when it runs out of energy. The
energy level is also used to determine whether or not the agent should re-
produce after visiting a page. An agent reproduces when the energy level
passes a fixed threshold. The reproduction is meant to bias the search to-
ward areas with pages relevant to the topic. Topical locality suggests that if
an agent visits a few relevant pages in rapid sequence, more relevant pages
are likely to be nearby (in the frontier). To exploit this, the accumulated
energy results in a short-term doubling of the frequency with which the
crawler explores this agent’s frontier. At reproduction, the agent’s energy
and frontier are split in half with the offspring (new agent or thread). Ac-
cording to ecological theory, this way the agent population is supposed to
move toward an optimal cover of the Web graph in proportion to the local
density of resources, or relevant pages.

In addition to the individual's reinforcement learning and the popula-
tion’s evolutionary bias, InfoSpiders employ a third adaptive mechanism.
At reproduction, the offspring’s keyword vector is mutated (expanded) by
adding a new term. The chosen term/keyword is the one that is most fre-
quent in the parent’s last visited page, i.e., the page that triggered the re-
production. This selective query expansion strategy, illustrated in Fig.
8.6, is designed to allow the population to diversify and expand its focus
according to each agent’s local context. An InfoSpiders crawler incorpo-
rating all of these adaptive techniques has been shown to outperform vari-
ous versions of naïve best-first crawlers (Fig. 8.14) when visiting a suffi-
ciently large number of pages (more than 10,000) so that the agents have
time to adapt [377, 504].

8.5 Topical Crawlers 309

Fig. 8.14. Performance plots [377]: average target recall 〈RT(t)〉 (top) and average
precision 〈PD(t)〉 (similarity to topic description, bottom). The averages are calcu-
lated over 10 ODP topics. After 50,000 pages crawled, one tailed t-tests reveal
that both BFS256 and InfoSpiders outperform the breadth-first crawler on both
performance metrics. InfoSpiders outperform BFS256 on recall, while the differ-
ence in precision is not statistically significant.

310 8 Web Crawling

8.6 Evaluation

Given the goal of building a “good” crawler, a critical question is how to
evaluate crawlers so that one can reliably compare two crawling algo-
rithms and conclude that one is “better” than the other. Since a crawler is
usually designed to support some application, e.g., a search engine, it can
be indirectly evaluated through the application it supports. However, attri-
bution is problematic; if a search engine works better than another (assum-
ing that were easy to determine!), how can we attribute this difference in
performance to the underlying crawling algorithms as opposed to the rank-
ing or indexing schemes? Thus it is desirable to evaluate crawlers directly.

Often crawler evaluation has been carried out by comparing a few
crawling algorithms on a limited number of queries/tasks without consider-
ing the statistical significance. Such anecdotal results, while important, do
not suffice for thorough performance comparisons. As the Web crawling
field has matured, a need has emerged for evaluating and comparing dispa-
rate crawling strategies on common tasks through well-defined perform-
ance measures. Let us review the elements of such an evaluation frame-
work, which can be applied to topical as well as focused crawlers.

A comparison between crawlers must be unbiased and must allow one to
measure statistically significant differences. This requires a sufficient
number of crawl runs over different topics, as well as sound methodologies
that consider the temporal nature of crawler outputs. Significant challenges
in evaluation include the general unavailability of relevant sets for particu-
lar topics or queries. Unfortunately, meaningful experiments involving real
users for assessing the relevance of pages as they are crawled are ex-
tremely problematic. In order to obtain a reasonable notion of crawl effec-
tiveness one would have to recruit a very large number of subjects, each of
whom would have to judge a very large number of pages. Furthermore,
crawls against the live Web pose serious time constraints and would be
overly burdensome to the subjects.

To circumvent these problems, crawler evaluation typically relies on de-
fining measures for automatically estimating page relevance and quality.
The crawler literature reveals several performance measures used for these
purposes. A page may be considered relevant if it contains some or all of
the keywords in the topic/query. The frequency with which the keywords
appear on the page may also be considered [102]. While the topic of inter-
est to the user is often expressed as a short query, a longer description may
be available in some cases. Similarity between the short or long description
and each crawled page may be used to judge the page's relevance [237,
376, 504]. The pages used as the crawl's seed URLs may be combined to-
gether into a single document, and the cosine similarity between this

8.6 Evaluation 311

document and a crawled page may serve as the page’s relevance score
[18]. A classifier may be trained to identify relevant pages. The training
may be done using seed pages or other pre-specified relevant pages as
positive examples. The trained classifier then provides boolean or continu-
ous relevance scores for each of the crawled pages [87, 139]. Note that if
the same classifier, or a classifier trained on the same labeled examples, is
used both to guide a (focused) crawler and to evaluate it, the evaluation is
not unbiased. Clearly the evaluating classifier would be biased in favor of
crawled pages. To partially address this issue, an evaluation classifier may
be trained on a different set than the crawling classifier. Ideally the training
sets should be disjoint. At a minimum the training set used for evaluation
must be extended with examples not available to the crawler [433]. An-
other approach is to start N different crawlers from the same seeds and let
them run until each crawler gathers P pages. All of the N×P pages col-
lected from the crawlers are ranked against the topic query/description us-
ing a retrieval algorithm such as cosine. The rank provided by the retrieval
system for each page is then used as a relevance score. Finally, one may
use algorithms, such as PageRank or HITS, that provide authority or popu-
larity estimates for each crawled page. A simpler method would be to use
just the number of in-links to the crawled page to derive similar informa-
tion [18, 102]. Many variations of link-based methods using topical
weights may be applied to measure the topical quality of pages [52, 88].

Once each page is assessed, a method is needed to summarize the per-
formance of a crawler across a set of crawled pages. Given a particular
measure of page relevance and/or importance we can summarize the per-
formance of the crawler with metrics that are analogous to the information
retrieval notions of precision and recall (see Chap. 6). Lacking well-
defined relevant sets, the classic boolean relevance is replaced by one of
the scores outlined above. A few precision-like measures are found in the
literature. In case we have boolean relevance scores, we could measure the
rate at which “good” pages are found; if 100 relevant pages are found in
the first 500 pages crawled, we have an acquisition rate or harvest rate of
20% at 500 pages [3]. If the relevance scores are continuous (e.g., from co-
sine similarity or a trained classifier) they can be averaged over the
crawled pages. The average relevance, as shown in Fig. 8.14, may be com-
puted over the progress of the crawl [376]. Sometimes running averages
are calculated over a window of a number of pages, e.g., the last 50 pages
from a current crawl point [87]. Another measure from information re-
trieval that has been applied to crawler evaluation is search length [375],
defined as the number of pages (or the number of irrelevant pages) crawled
before a certain percentage of the relevant pages are found. Search length
is akin to the reciprocal of precision for a preset level of recall.

312 8 Web Crawling

Recall-like measures would require normalization by the number of
relevant pages. Since this number is unknown for Web crawling tasks, it
might appear that recall cannot be applied to crawlers. However, even if
unknown, the size of the relevant set is a constant. Therefore, it can be dis-
regarded as a scaling factor when comparing two crawling algorithms on
the same topical query. One can simply sum the quality or relevance esti-
mates (obtained by one of the methods outlined above) over the course of a
crawl, and obtain a total relevance as shown in Fig. 8.14.

It is possible to design crawling experiments so that a set of relevant tar-
get pages is known by the experimenter. Then precision and recall can be
calculated from the fraction of these relevant targets that are discovered by
the crawler, rather than based on relevance estimates. One way to obtain a
set of relevant pages is from a public directory such as the ODP. This way
one can leverage the classification already carried out by the volunteer edi-
tors of the directory. The experimenter can select as topics a set of catego-
ries from the ODP, whose distance from the root of the ODP taxonomy can
be determined so as to obtain topics with generality/specificity appropriate
for the crawling task [377, 504]. Figure 8.5 (left) illustrates how subtrees
rooted at a chosen category can be used to harvest a set of relevant target
pages. If a page is classified in a subtopic of a target topic, it can be con-
sidered relevant with respect to the target topic.

If a set of known relevant target pages is used to measure the perform-
ance of a topical crawler, these same pages cannot be used as seeds for the
crawl. Two approaches have been proposed to obtain suitable seed pages.
One is to perform a back-crawl from the target pages [504]. By submitting
link: queries to a search engine API, one can obtain a list of pages linking
to each given target; the process can be repeated from these parent pages to
find “grandparent” pages, and so on until a desired link distance is reached.
The greater the link distance, the harder the task is for the crawler to locate
the relevant targets from these ancestor seed pages. The procedure has the
desired property that directed paths are guaranteed to exist from any seed
page to some relevant targets. Given the potentially large fan-in of pages,
sampling is likely required at each stage of the back-crawl to obtain a suit-
able number of seeds. The process is similar to the construction of a con-
text graph, as shown in Fig. 8.5 (right). A second approach is to split the
set of known relevant pages into two sets; one set can be used as seeds, the
other as targets. While there is no guarantee that the targets are reachable
from the seeds, this approach is significantly simpler because no back-
crawl is necessary. Another advantage is that each of the two relevant sub-
sets can be used in turn as seeds and targets. In this way, one can measure
the overlap between the pages crawled starting from the two disjoint sets.

8.6 Evaluation 313

A large overlap is interpreted as robustness of the crawler in covering
relevant portions of the Web [87, 85].

The use of known relevant pages as proxies for unknown relevant sets
implies an important assumption, which we can illustrate by the Venn dia-
gram in Fig. 8.15. Here S is a set of crawled pages and T is the set of
known relevant target pages, a subset of the relevant set R. Let us consider
the measure of recall. Using T as if it were the relevant set means that we
are estimating the recall |R ∩ S| / |R| by |T ∩ S| / |T|. This approximation
only holds if T is a representative, unbiased sample of R independent of the
crawl process. While the crawler attempts to cover as much as possible of
R, it should not have any information about how pages in T are sampled
from R. If T and S are not independent, the measure is biased and unreli-
able. For example if a page had a higher chance of being selected in T be-
cause it was in S, or vice versa, then the recall would be overestimated.
The same independence assumption holds for precision-like measures,
where we estimate |R ∩ S| / |S| by |T ∩ S| / |S|. A consequence of the inde-
pendence requirement is that if the ODP is used to obtain T, the experi-
menter must prevent the crawler from accessing the ODP. This would bias
the results because, once a relevant ODP category page is found, all of the
relevant target pages can be reached by the crawler in a short breadth-first
sweep. Preventing access to the ODP may pose a challenge because so
many ODP mirrors exist on the Web. They may not be known by the ex-
perimenter, and not trivial to detect.

To summarize, crawler performance measures [504] can be character-
ized along two dimensions: the source of relevance assessments (target
pages vs. similarity to their descriptions) and the normalization factor (av-

Fig. 8.15. Illustration of precision and recall measures based on known relevant
target pages and underlying independence assumption/requirement.

314 8 Web Crawling

erage relevance, or precision, vs. total relevance, or recall). Using target
pages as the relevant sets we can define crawler precision and recall as fol-
lows:

||
||),(

θ

θθ
T

TStR t
T

∩
= (17)

||
||),(

t

t
T S

TStP θθ
∩

= (18)

where St is the set of pages crawled at time t (t can be wall clock time,
network latency, number of pages visited, number of bytes downloaded,
and so on). Tθ is the relevant target set, where θ represents the parameters
used to select the relevant target pages. This could include for example the
depth of ODP category subtrees used to extract topic-relevant pages.
Analogously we can define crawler precision and recall based on similarity
to target descriptions:

||

),(
),(

θ

θσ
θ

T

Dp
tR tSp

D

∑ ∈=
(19)

||

),(
),(

t

Sp
D S

Dp
tP t

∑ ∈=
θσ

θ
(20)

where Dθ is the textual description of the target pages, selected with pa-
rameters θ, and σ is a text-based similarity function, e.g., cosine similarity
(see Chap. 6). Figure 8.14 shows two examples of performance plots for
three different crawlers discussed earlier in this chapter. The two plots de-
pict RT and PD as a function of pages crawled. InfoSpiders and the BFS256
crawler are found to outperform the breadth-first crawler. InfoSpiders gain
a slight edge in recall once the agents have had an opportunity to adapt.
This evaluation involves each of the three crawlers visiting 50,000 pages
for each of 10 topics, for a total of 1.5 million pages.

Another set of evaluation criteria can be obtained by scaling or normal-
izing any of the above performance measures by the critical resources used
by a crawler. This way, one can compare crawling algorithms by way of
performance/cost analysis. For example, with limited network bandwidth
one may see latency as a major bottleneck for a crawling task. The time
spent by a crawler on network I/O can be monitored and applied as a scal-
ing factor to normalize precision or recall. Using such a measure, a crawler

8.7 Crawler Ethics and Conflicts 315

designed to preferentially visit short pages, or pages from fast servers
[126], would outperform one that can locate pages of equal or even better
quality but less efficiently.

8.7 Crawler Ethics and Conflicts

Crawlers, especially when efficient, can put a significant strain on the re-
sources of Web servers, mainly on their network bandwidth. A crawler that
sends many page requests to a server in rapid succession, say ten or more
per second, is considered impolite. The reason is that the server would be
so busy responding to the crawler that its service to other requests, includ-
ing those from human browsing interactively, would deteriorate. In the ex-
treme case a server inundated with requests from an aggressive crawler
would become unable to respond to other requests, resulting in an effective
denial of service attack by the crawler.

To prevent such incidents, it is essential for a crawler to put in place
measures to distribute its requests across many servers, and to prevent any
one server (fully qualified host name) from receiving requests at more than
some reasonably set maximum rate (say, one request every few seconds).
In a concurrent crawler, this task can be carried out by the frontier man-
ager, when URLs are dequeued and passed to individual threads or proc-
esses. This practice not only is required by politeness toward servers, but
also has the additional benefits of limiting the impact of spider traps and
not overloading the server, which will respond slowly.

Preventing server overload is just one of a number of policies required
of ethical Web agents [160]. Such policies are often collectively referred to
as crawler etiquette. Another requirement is to disclose the nature of the
crawler using the User-Agent HTTP header. The value of this header
should include not only a name and version number of the crawler, but also
a pointer to where Web administrators may find information about the
crawler. Often a Web site is created for this purpose and its URL is in-
cluded in the User-Agent field. Another piece of useful information is the
email contact to be specified in the From header.

Finally, crawler etiquette requires compliance with the Robot Exclusion
Protocol. This is a de facto standard providing a way for Web server ad-
ministrators to communicate which files may not be accessed by a crawler.
This is accomplished via an optional file named robots.txt in the root direc-
tory of the Web server (e.g., http://www.somehost.com/robots.txt). The file
provides access policies for different crawlers, identified by the User-agent
field. For any user-agent value (or the default “*”) a number of Disallow
entries identify directory subtrees to be avoided. Compliant crawlers must

316 8 Web Crawling

fetch and parse a server's robots.txt file before sending requests to that
server. For example, the following policy in robots.txt:
 User-agent: *
 Disallow: /

directs any crawler to stay away from the entire server. Some high-level
languages such as Perl provide modules to parse robots.txt files. It is wise
for a crawler to cache the access policies of recently visited servers, so that
the robots.txt file need not be fetched and parsed every time a request is
sent to the same server. Additionally, Web authors can indicate if a page
may or may not be indexed, cached, or mined by a crawler using a special
HTML meta-tag. Crawlers need to fetch a page in order to parse this tag,
therefore this approach is not widely used. More details on the robot exclu-
sion protocols can be found at http://www.robotstxt.org/wc/robots.html.

When discussing the interactions between information providers and
search engines or other applications that rely on Web crawlers, confusion
sometime arises between the ethical, technical, and legal ramifications of
the Robot Exclusion Protocol. Compliance with the protocol is an ethical
issue, and non-compliant crawlers can justifiably be shunned by the Web
community. However, compliance is voluntary, and a robots.txt file cannot
enforce it. Servers can, however, block access to a client based on its IP
address. Thus it is likely that a crawler which does not comply with the
Exclusion Protocol and does not follow proper etiquette will be quickly
blocked by many servers. Crawlers may disguise themselves as browsers
by sending a browser's identifying string in the User-Agent header. This
way a server administrator may not immediately detect lack of compliance
with the Exclusion Protocol, but an aggressive request profile is likely to
reveal the true nature of the crawler. To avoid detection, some mischievous
crawlers send requests at low and randomized rates. While such behaviors
may be reprehensible, they are not illegal – at least not at the time of this
writing. Nonetheless, there have been cases of businesses bringing lawsuits
against search organizations for not complying with the Robot Exclusion
Protocol. In a recent lawsuit involving the Internet Archive's WayBack
Machine (www.archive.org), a plaintiff not only attributed legal weight to
the Exclusion Protocol, but also expected that a newly added robots.txt
policy should have retroactive value!

Deception does not occur only by crawlers against servers. Some servers
also attempt to deceive crawlers. For example, Web administrators may at-
tempt to improve the ranking of their pages in a search engine by provid-
ing different content depending on whether a request originates from a
browser or a search engine crawler, as determined by inspecting the re-
quest's User-Agent header. This technique, called cloaking, is frowned

8.7 Crawler Ethics and Conflicts 317

upon by search engines, which remove sites from their indices when such
abuses are detected. For more information about Web spam, see Chap. 6.

One of the most serious challenges for crawlers originates from the ris-
ing popularity of pay-per-click advertising. If a crawler is not to follow ad-
vertising links, it needs to have a robust detection algorithm to discriminate
ads from other links. A bad crawler may also pretend to be a genuine user
who clicks on the advertising links in order to collect more money from
merchants for the hosts of advertising links.

The above examples suggest a view of the Web as a new playground for
artificial intelligence (AI). Crawlers need to become increasingly sophisti-
cated to prevent insidious forms of spam from polluting and exploiting the
Web environment. Malicious crawlers are also becoming smarter in their
efforts, not only to spam but also to steal personal information and in gen-
eral to deceive people and crawlers for illicit gains. One chapter of this
arms race has been the development of CAPTCHAs [14], graphics-based
inverse Turing tests automatically generated by server sites to keep out
malicious crawlers. Maybe a stronger AI will be a positive outcome of
crawler evolution; maybe a less usable Web will be a hefty price to pay.

Interestingly, the gap between humans and crawlers may be narrowing
from both sides. While crawlers become smarter, some humans are
dumbing down their content to make it more accessible to crawlers. For
example some online news providers use simpler titles than can be easily
classified and interpreted by a crawler as opposed or in addition to witty ti-
tles that can only be understood by humans.

Another gap that is getting narrower is the distinction between browsers
and crawlers, with a growing gray area between the two. A business may
wish to disallow crawlers from its site if it provides a service by which it
wants to entice human users to visit the site, say to make a profit via ads on
the site. A competitor crawling the information and mirroring it on its own
site, with different ads, is a clear violator not only of the Robot Exclusion
Protocol but also possibly of copyright law. What about an individual user
who wants to access the information but automatically hide the ads? There
are many browser extensions that allow users to perform all kinds of tasks
that deviate from the classic browsing activity, including hiding ads, alter-
ing the appearance and content of pages, adding and deleting links, adding
functionality to pages, pre-fetching pages, and so on. Such extensions have
some of the functionalities of crawlers. Should they identify themselves
through the User-Agent header as distinct from the browser with which
they are integrated? Should a server be allowed to exclude them? And
should they comply with such exclusion policies? These too are questions
about ethical crawler behaviors that remain open for the moment.

318 8 Web Crawling

8.8 Some New Developments

The typical use of (universal) crawlers thus far has been for creating and
maintaining indexes for general purpose search engines. However a more
diverse use of (topical) crawlers is emerging both for client and server
based applications. Topical crawlers are becoming important tools to sup-
port applications such as specialized Web portals (a.k.a. “vertical” search
engines), live crawling, and competitive intelligence.

Another characteristic of the way in which crawlers have been used by
search engines up to now is the one-directional relationship between users,
search engines, and crawlers. Users are consumers of information provided
by search engines, search engines are consumers of information provided
by crawlers, and crawlers are consumers of information provided by users
(authors). This one-directional loop does not allow, for example, informa-
tion to flow from a search engine (say, the queries submitted by users) to a
crawler. It is likely that commercial search engines will soon leverage the
huge amounts of data collected from their users to focus their crawlers on
the topics most important to the searching public. To investigate this idea
in the context of a vertical search engine, a system was built in which the
crawler and the search engine engage in a symbiotic relationship [430].
The crawler feeds the search engine which in turn helps the crawler. It was
found that such a symbiosis can help the system learn about a community's
interests and serve such a community with better focus.

As discussed in Sect. 8.3, universal crawlers have to somehow focus on
the most “important” pages given the impossibility to cover the entire Web
and keep a fresh index of it. This has led to the use of global prestige
measures such as PageRank to bias universal crawlers, either explicitly
[102, 234] or implicitly through the long-tailed structure of the Web graph
[401]. An important problem with these approaches is that the focus is dic-
tated by popularity among “average” users and disregards the heterogene-
ity of user interests. A page about a mathematical theorem may appear
quite uninteresting to the average user, if one compares it to a page about a
pop star using indegree or PageRank as a popularity measure. Yet the math
page may be highly relevant and important to a small community of users
(mathematicians). Future crawlers will have to learn to discriminate be-
tween low-quality pages and high-quality pages that are relevant to very
small communities.

Social networks have recently received much attention among Web us-
ers as vehicles to capture commonalities of interests and to share relevant
information. We are witnessing an explosion of social and collaborative
engines in which user recommendations, opinions, and annotations are ag-
gregated and shared. Mechanisms include tagging (e.g., del.icio.us and

8.8 Some New Developments 319

flickr.com), ratings (e.g., stumbleupon.com), voting (e.g., digg.com), and
hierarchical similarity (GiveALink.org) [363]. One key advantage of social
systems is that they empower humans rather than depending on crawlers to
discover relevant resources. Further, the aggregation of user recommenda-
tions gives rise to a natural notion of trust. Crawlers could be designed to
expand the utility of information collected through social systems. For ex-
ample it would be straightforward to obtain seed URLs relevant to specific
communities of all sizes. Crawlers would then explore the Web for other
resources in the neighborhood of these seed pages, exploiting topical local-
ity to locate and index other pages relevant to those communities.

Social networks can emerge not only by mining a central repository of
user-provided resources, but also by connecting hosts associated with indi-
vidual users or communities scattered across the Internet. Imagine a user
creating its own micro-search engine by employing a personalized topical
crawler, seeded for example with a set of bookmarked pages. Desktop
search applications make it easy to also share certain local files, if so de-
sired. Can federations of such micro-engine agents emerge on the basis of
mutual interests? Peer-to-peer (P2P) networks are beginning to be seen as
robust architectures ideal for brokering among individual needs and cater-
ing to communities [354].

Adaptive peer-based search systems driven by simple distributed adap-
tive query routing algorithms can spontaneously organize into networks
with efficient communication and with emerging clusters capturing seman-
tic locality. Specifically, in a P2P search application called 6Search (6S),
each peer crawls the Web in a focused way, guided by its user’s informa-
tion context. Each peer submits and responds to queries to/from its
neighbors. This search process has no centralized control. Peers depend on
local adaptive routing algorithms to dynamically change the topology of
the peer network and search for the best neighbors to answer their queries.
Machine learning techniques are being explored to improve local adaptive
routing. Validation of the 6S framework and network via simulations with
70−500 model users based on actual Web crawls has yielded encouraging
preliminary results. The network topology rapidly converges from a ran-
dom network to a small-world network, with clusters emerging to match
user communities with shared interests [15]. Additionally the quality of the
results is significantly better than obtained by centralized search engines
built with equivalent resources, and comparable with the results from
much larger search engines such as Google [553, 554].

The integration of effective personalized/topical crawlers with adaptive
query routing algorithms is the key to the success of peer-based social
search systems. Many synergies may be exploited in this integration by
leveraging contextual information about the local peer that is readily avail-

320 8 Web Crawling

able to the crawler, as well as information about the peer's neighbors that
can be mined through the stream of queries and results routed through the
local peer. An open-source prototype of 6S enabling sharing of bookmarks,
one-click crawling, and distributed collaborative search is available
(http://homer.informatics.indiana.edu/~nan/6S/). If successful, this kind of
application could create a new paradigm for crawling and searching where
universal crawlers and search engines are complemented with swarms of
personal crawlers and micro-engines tuned to the specialized information
needs of individual users and dynamic self-organized social networks.

Bibliographic Notes

General ideas and techniques about crawling can be found in [68, 85, 263],
but little is known about implementation details of commercial crawlers.
Focused crawling discussed in this chapter is based on [87, 85, 139]. Lite-
rature on topical crawling algorithms is extensive [e.g., 3, 60, 102, 126,
237, 366, 369, 375, 377, 432, 434, 459]. Topical crawlers have been used
for building focused repositories, automating resource discovery, and sup-
porting software agents. For example, topical crawlers are used to collect
papers for building scientific literature digital libraries such as CiteSeer
and Google Scholar [308, 366, 550]. Applications of topical crawlers to
business and competitive intelligence are discussed in [432], and biomedi-
cal applications in [503]. Controversial applications to harvest personal in-
formation for spam and phishing purposes are illustrated in [251].

On best-first crawlers, various methods have been used to determine an
appropriate textual context in which to evaluate and score unvisited links.
Using the anchor text is one strategy [123]. Another strategy is to use win-
dows of a fixed size, e.g., 50 words around the anchor, in place of/in addi-
tion to the anchor text [237]. The weighted window used by InfoSpiders
[375] yields a weight for each link, which is then fed to a neural network to
score each link. In the tag (DOM) tree approach [85], using the parent
node of the anchor as aggregation node worked well in a business intelli-
gence crawling task [432]. There is a tradeoff analogous to that between
precision and recall when we consider the optimal size of a link context:
small contexts (e.g., anchor text) have the highest average similarities to
the target page, but also highest chance to miss important cues about the
target. Larger contexts (e.g., parent or grand-parent aggregator node) have
lower average similarities to the target, but lower chance to miss all the
keywords in the target. This suggests a greedy optimization scheme: climb
the DOM tree from the anchor until sufficient terms are present in the link
context [429]. This approach outperformed both the fixed-window method

Bibliographic Notes 321

(with optimal window size) and the DOM tree method with a fixed aggre-
gator depth (anchor, parent, or grandparent).

Early versions of InfoSpiders were described in [369, 374, 375, 376].
Certain aspects of evolutionary computation have also been used in other
topical crawlers such as the itsy bitsy spider [96]. Another adaptive mecha-
nism for topical crawlers inspired by natural processes is ant colony opti-
mization [194]. The idea is that a population of agents leaves a trail of
pheromone along the paths that lead to relevant pages, gradually biasing
the crawl toward promising portions of the Web graph. A more extensive
review of adaptive topical crawling algorithms can be found in [380].

9 Structured Data Extraction: Wrapper
Generation

Web information extraction is the problem of extracting target information
items from Web pages. There are two general problems: extracting infor-
mation from natural language text and extracting structured data from Web
pages. This chapter focuses on extracting structured data. A program for
extracting such data is usually called a wrapper. Extracting information
from text is studied mainly in the natural language processing community.

Structured data on the Web are typically data records retrieved from un-
derlying databases and displayed in Web pages following some fixed tem-
plates. In this chapter, we still call them data records. Extracting such
data records is useful because it enables us to obtain and integrate data
from multiple sources (Web sites and pages) to provide value-added ser-
vices, e.g., customizable Web information gathering, comparative shop-
ping, meta-search, etc. With more and more companies and organizations
disseminating information on the Web, the ability to extract such data from
Web pages is becoming increasingly important. At the time of writing this
book, there are several companies working on extracting products sold
online, product reviews, job postings, research publications, forum discus-
sions, statistics data tables, news articles, search results, etc.

Researchers and Internet companies started to work on the extraction
problem from the middle of 1990s. There are three main approaches:

1. Manual approach: By observing a Web page and its source code, the
human programmer finds some patterns and then writes a program to
extract the target data. To make the process simpler for programmers,
several pattern specification languages and user interfaces have been
built. However, this approach is not scalable to a large number of sites.

2. Wrapper induction: This is the supervised learning approach, and is
semi-automatic. The work started around 1995-1996. In this approach, a
set of extraction rules is learned from a collection of manually labeled
pages or data records. The rules are then employed to extract target data
items from other similarly formatted pages.

3. Automatic extraction: This is the unsupervised approach started
around 1998. Given a single or multiple pages, it automatically finds

324 9 Structured Data Extraction: Wrapper Generation

patterns or grammars from them for data extraction. Since this approach
eliminates the manual labeling effort, it can scale up data extraction to a
huge number of sites and pages.

The first approach will not be discussed further. This chapter focuses on
the last two approaches. Sects. 9.2 and 9.3 study supervised wrapper learn-
ing, and the rest of the chapter studies automatic extraction.

9.1 Preliminaries

To start our discussion, let us see some real pages that contain structured
data that we want to extract. We then develop a Web data model and a
HTML mark-up encoding scheme for the data model. Data extraction is
simply the reverse engineering task. That is, given the HTML mark-up en-
coded data (i.e., Web pages), the extraction system recovers the original
data model and extracts data from the encoded data records.

9.1.1 Two Types of Data Rich Pages

There are mainly two types of data rich pages. Data in such pages are usu-
ally retrieved from underlying databases and displayed on the Web follow-
ing some fixed templates. This task is often done by computer programs.
1. List pages: Each of such pages contains several lists of objects. Figure

9.1 shows such a page, which has two lists of products. From a layout
point of view, we see two data regions (one horizontal and one verti-
cal). Within each region, the data records are formatted using the same
template. The templates used in the two regions are different.

2. Detail pages: Such a page focuses on a single object. For example, in
Fig. 9.2, the page focuses on the product “iPod Video 30GB, Black”.
That is, it contains all the details of the product, name, image, price and
other purchasing information, product description, customer rating, etc.

Note that when we say that a page focuses on a particular object (or lists of
objects), we do not mean that the page contains no other information. In
fact, it almost certainly contains other information. For example, in the
page for “iPod Video 30GB, Black” (Fig. 9.2), there are some related prod-
ucts on the right-hand side, company information at the top, and copyright
notices, terms and conditions, privacy statements at the bottom, etc. They
are not shown in Fig. 9.2 as we want the main part of the product clearly
eligible. For list pages, it is often easy to use some heuristics to identify the
main data regions, but for detail pages, it is harder.

9.1 Preliminaries 325

Fig. 9.1. A segment of a list page with two data regions

Fig. 9.2. A segment of a detail page

326 9 Structured Data Extraction: Wrapper Generation

In Fig. 9.1, the description of each product is called a data record. No-
tice that the data records in this page are all flat with no nesting. Figure
9.3(A) contains some nested data records, which makes the problem more
interesting and also harder. The first product, “Cabinet Organizers by
Copco,” has two sizes (9-in. and 12-in.) with different prices. These two
organizers are not at the same level as “Cabinet Organizers by Copco”.

Our objective: We want to extract the data and produce the data table
given in Fig. 9.3(B). “image 1” and “Cabinet Organizers by Copco” are re-
peated for the first two rows due to the nesting.

9.1.2 Data Model

We now describe a data model commonly used for structured data on the
Web. In the next sub-section, we present a HTML mark-up encoding of the
model and the data, which helps extraction.

Most Web data can be modeled as nested relations, which are typed
objects allowing nested sets and tuples. The types are defined as follows:

(A) An example of a nested data record

image 1 Cabinet Organizers by Copco 9-in. Round Turntable: White ***** $4.95
image 1 Cabinet Organizers by Copco 12-in. Round Turntable: White ***** $7.95
image 2 Cabinet Organizers 14.75x9

Cabinet Organizer (Non-

skid): White
***** $7.95

image 3 Cabinet Organizers 22x6 Cookware Lid Rack **** $19.95

(B) Extraction results

Fig. 9.3. An example input page and output data table

9.1 Preliminaries 327

• There is a set of basic types, B = {B1, B2, …, Bk}. Each Bi is an atomic
type, and its domain, denoted by dom(Bi), is a set of constants;

• If T1, T2, …, Tn are basic or set types, then [T1, T2, …, Tn] is a tuple type
with the domain dom([T1, T2, …, Tn]) = {[v1, v2, …, vn] | vi ∈ dom(Ti)};

• If T is a tuple type, then {T} is a set type with the domain dom({T}) be-
ing the power set of dom(T).

A basic type Bi is analogous to the type of an attribute in relational data-
bases, e.g., string and int. In the context of the Web, Bi is usually a text
string, image-file, etc. The example in Fig. 9.4 shows a nested tuple type
product, with attributes

• name (of type string),
• image (of type image-file), and
• differentSizes (a set type), consisting of a set of tuples with attributes:
• size (of type string), and
• price (of type string).

 product [name: string;
 image: image-file;
 differentSizes: { [size: string;
 price: string;] }]

Fig. 9.4. An example nested type

We can also define flat tuple and set types:

• If T1, T2, …, Tn are basic types, then [T1, T2, …, Tn] is a flat tuple type;
• If T is a flat tuple type, then {T} is a flat set type.

Classic flat relations are of flat set types. Nested relations are of arbi-
trary set types. Types can be represented as trees.

• A basic type Bi is a leaf tree or node;
• A tuple type [T1, T2, …, Tn] is a tree rooted at a tuple node with n sub-

trees, one for each Ti;
• A set type {T} is a tree rooted at a set node with one sub-tree.

An instance of a type T is simply an element of dom(T). Clearly, in-
stances can be represented as trees as well:

• An instance (constant) of a basic type is a leaf tree;
• A tuple instance [v1, v2, …, vn] forms a tree rooted at a tuple node with n

children or sub-trees representing attribute values v1, v2, …, vn;
• A set instance {e1, e2, …, en} forms a set node with n children or sub-

trees representing the set elements e1, e2, …, and en.

328 9 Structured Data Extraction: Wrapper Generation

An instance of a tuple type (also known as a tuple instance) is usually
called a data record in the data extraction research. An instance of a set
type (also known as a set instance) is usually called a list as in an actual
Web page the data records in the set are presented in a particular order. An
instance of a flat tuple type is called a flat data record (no nested lists),
and an instance of a flat set type is called a list of flat data records.

We note that attribute names are not included in the type tree. We next
introduce a labeling of a type tree, which is defined recursively:

• If a set node is labeled ϕ, then its child is labeled ϕ.0, a tuple node;
• If a tuple node is labeled ϕ, then its n children are labeled ϕ.1, …, ϕ.n.

We can think of labels as abstract names for types or attributes. For exam-
ple, in Fig. 9.4 the top level tuple type is “product”, its three children are
attributes: product.name, product.image, and product.differentSizes. ϕ.0
labels a tuple node without a name of two attributes, “size” and “price”.

9.1.3 HTML Mark-Up Encoding of Data Instances

In a Web page, the data is encoded or formatted with HTML mark-up tags.
This sub-section discusses the encoding of data instances in the above ab-
stract data model using HTML tags.

Web pages are written in HTML consisting of plain texts, tags and links
to image, audio and video files, and other pages. Most HTML tags work in
pairs. Each pair consists of an open tag and a close tag indicated by < >
and </> respectively. Within each corresponding tag-pair, there can be
other pairs of tags, resulting in nested structures. Thus, HTML tags can
naturally encode nested data. We note the following:

1. There are no designated tags for each type as HTML was not designed
as a data encoding language. Any HTML tag can be used for any type.

2. For a tuple type, values (data items) of different attributes are usually
encoded differently to distinguish them and to highlight important items.

3. A tuple may be partitioned into several groups or sub-tuples. Each group
covers a disjoint subset of attributes and may be encoded differently.

Based on these characteristics of the HTML language, the HTML mark-up
encoding of instances is defined recursively below. We encode based on
the type tree, where each node of the tree is associated with an encoding
function, which will encode (or mark-up) all the instances of the type in
the same way. We will use the tuple type and its attributes explicitly be-
cause values of different attributes in the tuple type are typically encoded
differently. We use T.i to represent a value instance of the tuple type T and

9.1 Preliminaries 329

attribute i. We use enc to denote an abstract encoding function.
• For a leaf node of a basic type labeled ϕ, an instance c is encoded with
 enc(φ:c) = OPEN-TAGS c CLOSE-TAGS

 where OPEN-TAGS is a sequence of open HTML tags, and CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number
of tags is greater than or equal to 0.

• For a tuple node labeled ϕ of n children or attributes, [ϕ.1, …, ϕ.n], the
attributes are first partitioned into h (≥ 1) groups <ϕ.1, …, ϕ.e>,
<ϕ.(e+1),…, ϕ.g> … <ϕ.(k+1), …, ϕ.n> and an instance [v1, …, vn] of
the tuple node is encoded with

 enc(ϕ:[v1, …, vn]) = OPEN-TAGS1 enc(v1) … enc(ve) CLOSE-TAGS1
 OPEN-TAGS2 enc(ve+1)…enc(vg) CLOSE-TAGS2
 …
 OPEN-TAGSh enc(vk+1)…enc(vn) CLOSE-TAGSh

 where OPEN-TAGSi is a sequence of open HTML tags, and CLOSE-
TAGSi is the sequence of corresponding close tags. The number of tags
is greater than or equal to 0.

• For a set node labeled ϕ, an non-empty set instance {e1, e2, …, en} is en-
coded with

 enc(ϕ:{e1, …, en}) = OPEN-TAGS enc(ej1)…enc(ejn) CLOSE-TAGS,

 where OPEN-TAGS is a sequence of open HTML tags, and CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number
of tags is greater than or equal to 0. The set elements are ordered based
on an ordering function <. With ordering, a set instance is called a list.
An empty set instance is encoded with OPEN-TAGS CLOSE-TAGS.

By no means does this mark-up encoding cover all cases in Web pages. In
fact, each group of a tuple type can be further divided. Anyway, you get
the idea. We should also note that in an actual Web page the encoding is
usually done not only by HTML tags, but also by words and punctuation
marks. For example, in Fig. 9.5, if we are interested in extracting the ad-
dresses and the area codes, the punctuation marks are useful.

Fig. 9.5. Words and punctuation marks are also used in data encoding

330 9 Structured Data Extraction: Wrapper Generation

9.2 Wrapper Induction

We are now ready to study the first approach to data extraction, namely
wrapper induction, which is based on supervised learning. A wrapper in-
duction system learns data extraction rules from a set of labeled training
examples. Labeling is usually done manually, which simply involves
marking the data items in the training pages/examples that the user wants
to extract. The learned rules are then applied to extract target data from
other pages with the same mark-up encoding or the same template.

The algorithm discussed in this section is based on the Stalker system
[399]. Related work includes WIEN [296], Softmealy [244], WL2 [108],
the system in [250], etc. The next section describes a different learning ap-
proach, which is based on the IDE system given in [599].

Stalker models the Web data as nested relations. Let us model the res-
taurant page in Fig. 9.5. It has four addresses in four different cities. The
type tree of the data is given in Fig. 9.6 (the country code is omitted). For
each type, we also added an intuitive label. The wrapper uses a tree struc-
ture based on this to facilitate extraction rule learning and data extraction.

Fig. 9.6. Type tree of the restaurant page in Fig. 9.5

Below, we first introduce the data extraction process, and then describe
the learning algorithm for generating extraction rules.

9.2.1 Extraction from a Page

A Web page can be seen as a sequence of tokens S (e.g., words, numbers
and HTML tags). The extraction is done using a tree structure called the
EC tree (embedded catalog tree), which models the data embedding in a
HTML page. The EC tree is based on the type tree above. The root of the
tree is the document containing the whole token sequence S of the page,
and the content of each child node is a subsequence of the sequence of its
parent node. To extract a node of interest, the wrapper uses the EC descrip-
tion of the page and a set of extraction rules. Figure 9.7 shows the EC tree
of the page in Fig. 9.5. Note that we use LIST here because the set of ad-

String: Name

String:
Street

String:
City

Set: Addresses

Integer:
Area-Code

String:
Phone-No.

Tuple: Restaurant

Tuple: Address

9.2 Wrapper Induction 331

dresses are already ordered in a page. For an extraction task, the EC tree
for a data source is specified by the user (not discovered by the system).

Fig. 9.7. The EC tree of the HTML page in Fig. 9.5

For each node in the tree, the wrapper identifies or extracts the content
of the node from its parent, which contains the sequence of tokens of all its
children. Each extraction is done using two rules, the start rule and the
end rule. The start rule identifies the beginning of the node and the end
rule identifies the end of the node. This strategy is applicable to both leaf
nodes (which represent data items) and list nodes. For a list node, list it-
eration rules are needed to break the list into individual data records (tu-
ple instances). To extract items from the data records, data extraction rules
are applied to each record. All the rules are learned during wrapper induc-
tion, which will be discussed in Sect. 9.2.2. Given the EC tree and the
rules, any node can be extracted by following the tree path P from the root
to the node by extracting each node in P from its parent.

The extraction rules are based on the idea of landmarks. Each landmark
is a sequence of consecutive tokens and is used to locate the beginning or
the end of a target item. Let us use the example in Fig. 9.5 to introduce ex-
traction rules and the extraction process based on the EC tree (Fig. 9.7).
Figure 9.8 shows the HTML source code of the page in Fig. 9.5.

1: <p> Restaurant Name: Good Noodles

2: 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987
3: 25 Oak, <i>Forest</i>, Phone (800) 234-7903
4: 324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023
5: 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 </p>

Fig. 9.8. The HTML source of the page in Fig. 9.5

Let us try to extract the restaurant name “Good Noodles”. The following
rule can be used to identify the beginning of the name:

R1: SkipTo()

This rule means that the system should start from the beginning of the page
and skip all the tokens until it sees the first tag. is a landmark.

Name

Street City

LIST (Addresses)

Area-Code Phone-No.

Address

Page

332 9 Structured Data Extraction: Wrapper Generation

Obviously, SkipTo(:) and SkipTo(<i>) will not work. According to the EC
tree in Fig. 9.7, R1 is applied to the parent of node name, which is the root
node. The root node contains the token sequence of the whole page.

Similarly, to identify the end of the restaurant name, we can use:

R2: SkipTo()

R2 is applied from the end of the page toward the beginning. R1 is called
the start rule and R2 is called the end rule.

Note that a rule may not be unique. For example, we can also use the
following rules (and many more) to identify the beginning of the name:

R3: SkiptTo(Name _Punctuation_ _HtmlTag_)
or R4: SkiptTo(Name) SkipTo()

R3 means that we skip everything till the word “Name” followed by a
punctuation symbol and then a HTML tag. In this case, “Name
Punctuation _HtmlTag_” together is a landmark. _Punctuation_ and
HtmlTag are called wildcards. A wildcard represents a class of tokens.
For example, _HtmlTag_ represents any HTML tag, i.e., any HTML tag
matches the wildcard _HtmlTag_. R4 means that we skip everything till
the word “Name” and then again skip everything till the tag . Since
wrapper induction algorithms find simple rules first, R1 will be produced.

Now, suppose that we also want to extract each area code. The wrapper
needs to perform the following steps:

1. Identify the entire list of addresses. We can use the start rule
SkipTo(

), and the end rule SkipTo(</p>).

2. Iterate through the list (lines 2-5 in Fig. 9.8) to break it into four indi-
vidual records. To identify the beginning of each address, the wrapper
can start from the first token of the parent and repeatedly apply the start
rule SkipTo() to the content of the list. Each successive identifica-
tion of the beginning of an address starts from where the previous one
ends. Similarly, to identify the end of each address, it starts from the last
token of its parent and repeatedly apply the end rule SkipTo().

Once each address record is identified or extracted, we can extract the area
code in it. Due to variations in the format of area codes (some are in italic
and some are not), we need to use disjunctions. In this case, the disjunctive
start and the end rules are respectively R5 and R6:

R5: either SkipTo(() R6: either SkipTo())
 or SkipTo(-<i>) or SkipTo(</i>)

In a disjunctive rule, the disjuncts are applied sequentially until a disjunct
can identify the target node.

9.2 Wrapper Induction 333

Finally, we summarize the data extraction features of Stalker.

1. Extraction is done hierarchically based on the EC tree, which enables
extraction of items at any level of the hierarchy.

2. The extraction of each node is independent of its siblings. No contextual
or ordering information of siblings is used in extraction or rule learning.

3. Each extraction is done using two rules, the start rule and the end rule.
Each rule consists of an ordered list of disjuncts (could be one).

9.2.2 Learning Extraction Rules

We now present the wrapper learning algorithm for generating extraction
rules. The basic idea is as follows: To generate the start rule for a node in
the EC tree, some prefix tokens or their wildcards of the node are identified
as the landmarks that can uniquely identify the beginning of the node. To
generate the end rule for a node, some suffix tokens or their wildcards of
the node are identified as the landmarks. The rule generation process for
the start rule and the end rule is basically the same. Their applications are
also similar except that to apply a start rule the system starts by consuming
the first token in the sequence of the parent and goes towards the last to-
ken, while for an end rule the system starts from the last token in the se-
quence of the parent and goes towards the first. Without loss of generality,
in this section, we will discuss only the generation of start rules.

For rule learning, the user first marks or labels the target items that need
to be extracted in a few training examples. For instance, we have the ex-
amples in Fig. 9.8, which are addresses from the page in Fig. 9.5. Suppose
we want to generate rules to extract the area code from each address. The
area codes are labeled (marked) as in Fig. 9.9. A graphic user interface can
make the labeling process very easy.

Given a set of labeled training examples E, the learning algorithm
should generate extraction rules that extract all the target items (also called
positive items) without extracting any other items (called negative items).

Learning is done based on the machine learning method, sequential
covering (see Sect. 3.4.1). The algorithm is given in Fig. 9.10. In each it-
eration, the algorithm LearnRule() (Fig. 9.10) generates a perfect dis-

E1: 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987
E2: 25 Oak, <i>Forest</i>, Phone (800) 234-7903
E3: 324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023
E4: 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008

Fig. 9.9. Training examples: four addresses with labeled area codes

334 9 Structured Data Extraction: Wrapper Generation

junct that covers as many positive items as possible and does not cover
any negative item in E (Examples). Then, all the examples whose positive
items are covered by the rule are removed. The next iteration starts. The
input to LearnRule() is E. Once all the positive items are covered, the rule
is returned (line 6), which consists of an ordered list of learned disjuncts.

The function LearnDisjunct() performs the actual generation of perfect
disjuncts (Fig. 9.11). It works as follows: It first chooses a Seed example
(line 1), which is the shortest example. In the case of Fig. 9.9, it is E2. It
then generates the initial candidate disjuncts. Let us explain using a generic
Seed, which can be represented as follows:

t1 t2 … tk <target item> tk+1 tk+2 … tn,

where ti is a token and <target item> is a labeled target item. We call t1 t2
… tk the prefix sequence of the target item, and tk+1tk+2…tn the suffix se-
quence of the target item. The initial candidate disjuncts for the start rule
are tk, and its matching wildcards. Let us use seven wildcards, _Numeric_,
AlphaNum, _Alphabetic_, _Capitalized_, _AllCaps_, _HtmlTag_, and
Punctuation. Their meanings are self-explanatory. For the example E2
of Fig. 9.9, the following candidate disjuncts are generated:

D1: SkipTo(()
D2: SkipTo(_Punctuation_)

In line 4 of LearnDisjunct(), the function BestDisjunct() selects the best
disjunct using a set of heuristics given in Fig. 9.13.

In this case, D1 is selected as the best disjunct. D1 is a perfect disjunct,
i.e., it only covers positive items in E2 and E4 but not any negative items
in E. D1 is returned from LearnDisjunct(), which also ends the first itera-
tion of LearnRule(). E2 and E4 are removed (line 4) of Fig. 9.10. The next
iteration of LearnRule() is left with E1 and E3. LearnDisjunct() will select
E1 as Seed as it is shorter. Two candidates are then generated:

D3: SkipTo(<i>)
D4: SkipTo(_HtmlTag_)

Both these two candidates match early in the uncovered examples, E1 and
E3. Thus, they cannot uniquely locate the positive items. Even worse, they
can match to negative items in the two already covered examples, E2 and
E4. Refinement is thus needed, which aims to specialize a disjunct by add-
ing more terminals (a token or one of its matching wildcards) to it. We
hope the refined version will be able to uniquely identify the positive items
in some examples without matching any negative item in any example in
E. Two refinement strategies are used:

9.2 Wrapper Induction 335

Algorithm LearnRule(Examples) // Examples: training examples
1 Rule ← ∅ // Rule: the returned rule
2 while Examples ≠ ∅ do
3 Disjunct ← LearnDisjunct(Examples);
4 remove all examples in Examples covered by Disjunct;
5 add Disjunct to Rule
6 return Rule

Fig. 9.10. The main learning algorithm − based on sequential covering

Function LearnDisjunct(Examples)
1 let Seed ∈ Examples be the shortest example;
2 Candidates ← GetInitialCandidates(Seed);
3 while Candidates ≠ ∅ do
4 D ← BestDisjunct(Candidates);
5 if D is a perfect disjunct then
6 return D
7 Candidates ← Candidates ∪ Refine(D, Seed);
8 remove D from Candidates;
9 return D

Fig. 9.11. Learning disjuncts

Function Refine(D, Seed)
1 D is a consecutive landmarks (l0, l1, …, ln); // li is in fact SkipTo(li)
2 TopologyRefs ← LandmarkRefs ← ∅;
3 for i = 1 to n do // t0 or t1 below may be null
4 for each sequence s = t0 li t1 before the target item in Seed do
5 LandmarkRefs ← LandmarkRefs ∪ {(l0, …, li−1, t0 li, …, ln)} ∪
 {(l0, …, li−1, x li, …, ln) | x is a wildcard that matches t0}
 ∪ {(l0, …, li t1, li+1, …, ln)} ∪
 {(l0, …, li x, li+1, …, ln) | x is a wildcard that matches t1}
6 for each token t between li−1 and li before the target item in Seed do
7 ToplogyRefs ← TopologyRefs ∪ {(l0, …, li, t, li+1, …, ln)} ∪
 {(l0, …, li, x, li+1, …, ln)} | x is a wildcard that matches t}
8 return TopologyRefs ∪ LandmarkRefs

Fig. 9.12. Refining a disjunct to generate more specialized candidates

BestDisjunct () prefer candidates that have:
- more correct matches
- accepts fewer false positives
- fewer wildcards
- longer end-landmarks

Fig. 9.13. Choosing the best disjunct

336 9 Structured Data Extraction: Wrapper Generation

1. Landmark refinement (lines 4-5 in Fig. 9.12): Increase the size of a
landmark li by concatenating a terminal (a token t0 or t1, and its matching
wildcards) at the beginning or at the end of li. If t0 or t1 does not exist, it
will not be considered. We note that each landmark li in the algorithm in
Fig. 9.12 actually represents the SkipTo(li).

2. Topology refinement (lines 6-7 in Fig. 9.12): Increase the number of
landmarks by adding 1-terminal landmarks, i.e., t and its matching wild-
cards. Note that l0 is not a landmark, which is used to simplify the algo-
rithm presentation. It represents the beginning of the Seed example.

Let us go back to our running example. D3 is selected as the best disjunct
(line 4 of Fig. 9.11). Clearly, D3 is not a perfect disjunct. Then, refinement
is carried out. Landmark refinement produces the following candidates:

D5: SkipTo(- <i>)
D6: SkipTo(_Punctuation_ <i>)

Topology refinement produces the 15 candidates in Fig. 9.14. We can
already see that D5, D10, D12, D13, D14, D15, D18 and D21 match cor-
rectly with E1 and E3 and fail to match on E2 and E4. Using the heuristics
in Fig. 9.13, D5 is selected as the final solution as it has longest last land-
mark (- <i>). D5 is then returned by LearnDisjunct(). It is possible that no
perfect disjunct can be found after all possible refinements have been tried.
In this case, an imperfect best disjunct will be returned (line 9 in Fig. 9.11).

Since all the examples are covered, LearnRule() ends and returns the
disjunctive (start) rule “either D1 or D5”, i.e.,

R7: either SkipTo(()
 or SkipTo(- <i>)

In summary, we note the following:

1. The algorithm presented in this section is by no mean the only possible
algorithm. Many variations are possible. Of course, there are also many
other entirely different algorithms for wrapper induction.

D7: SkipTo(205) SkipTo(<i>) D15: SkipTo(_Numeric_) SkipTo(<i>)
D8: SkipTo(Willow) SkipTo(<i>) D16: SkipTo(_Alphabetic_) SkipTo(<i>)
D9: SkipTo(,) SkipTo(<i>) D17: SkipTo(_Punctuation_) SkipTo(<i>)
D10: SkipTo(<i>) SkipTo(<i>) D18: SkipTo(_HtmlTag_) SkipTo(<i>)
D11: SkipTo(Glen) SkipTo(<i>) D19: SkipTo(_Capitalized_) SkipTo(<i>)
D12: SkipTo(1) SkipTo(<i>) D20: SkipTo(_AlphaNum_) SkipTo(<i>)
D13: SkipTo(-) SkipTo(<i>) D21: SkipTo(</i>) SkipTo(<i>)
D14: SkipTo(Phone) SkipTo(<i>)

Fig. 9.14. All 15 topology refinements of D3

9.2 Wrapper Induction 337

2. In our discussion above, we used only the SkipTo() function in extrac-
tion rules. However, in some situations it may not be sufficiently ex-
pressive. Therefore, other functions may be added. For example, Stalker
also has the SkipUntil() function. Its argument is a part of the target item
to be extracted, and is not consumed when the rule is applied. That is,
the rule stops right before its occurrence.

9.2.3 Identifying Informative Examples

One of the important issues in wrapper learning is the manual labeling of
training examples. To ensure accurate learning, a large number of training
examples are needed. To manually label them is labor intensive and time
consuming. The question is: is it possible to automatically select (unla-
belled) examples that are informative for the user to label? Clearly, exam-
ples of the same format are of limited use. Examples that represent excep-
tions are informative as they are different from already labeled examples.
Active learning is an approach that helps identify informative unlabeled
examples automatically. Given a set of unlabeled examples U, the ap-
proach works as follows in the wrapper induction context:

1. Randomly select a small subset L of unlabeled examples from U
2. Manually label the examples in L, and U = U − L;
3. Learn a wrapper W based on the labeled set L;
4. Apply W to U to find a set of informative examples L;
5. Stop if L = ∅, otherwise go to step 2.

The key is to find informative examples in step 4. In [400], Muslea et al.
proposed a method, called co-testing, to identify informative examples.

The idea of co-testing is simple. It exploits the fact that there are often
multiple ways of extracting the same item. Thus, the system can learn dif-
ferent rules, forward and backward rules, to locate the same item. Let us
use learning of start rules as an example. The rules learned in Sect. 9.2.2
are called forward rules because they consume tokens from the beginning
of the example to the end. In a similar way, we can also learn backward
rules that consume tokens from the end of the example to the beginning.

Given an unlabeled example, both the forward rule and backward rule
are applied. If the two rules disagree on the beginning of a target item in
the example, this example is given to the user to label. The intuition behind
is simple. When the two rules agree, the extraction is very likely to be cor-
rect. When the two rules do not agree on the example, one of them must be
wrong. By giving the user the example to label, we obtain a labeled infor-
mative training example.

338 9 Structured Data Extraction: Wrapper Generation

9.2.4 Wrapper Maintenance

Once a wrapper is generated, it is applied to other Web pages that contain
similar data and are formatted in the same ways as the training examples.
This introduces new problems.

1. If the site changes, does the wrapper know the change? This is called the
wrapper verification problem.

2. If the change is correctly detected, how to automatically repair the
wrapper? This is called the wrapper repair problem.

One way to deal with both problems is to learn the characteristic patterns
of the target items, which are then used to monitor the extraction to check
whether the extracted items are correct. If they are incorrect, the same pat-
terns can be used to locate the correct items assuming that the page
changes are minor formatting changes. This is called re-labeling. After re-
labeling, re-learning is performed to produce a new wrapper. These two
tasks are very difficult because contextual and/or semantic information is
often needed to detect changes and to find the new locations of the target
items. Wrapper maintenance is still an active research area.

9.3. Instance-Based Wrapper Learning

The wrapper induction method discussed in the previous section requires a
set of labeled examples to learn extraction rules. Active learning may be
applied to identify informative examples for labeling to reduce the manual
labeling effort. In this section, we introduce an instance-based learning ap-
proach to wrapper building, which does not learn extraction rules. Instead,
it extracts target items in a new instance/page by comparing their prefix
and suffix token strings with those of the corresponding items in the la-
beled examples. At the beginning, the user needs to label only a single ex-
ample, which is then used to identify target items from unlabeled exam-
ples. If some item in an unlabeled example cannot be identified, it is sent
for labeling, which is active learning but with no additional mechanism.
Thus, in this approach the user labels only a minimum number of training
examples. The method described here is based on the IDE algorithm in
[599], which is given in Fig. 9.15. It consists of three steps:

1. A random example p from a set of unlabeled training examples S is se-
lected for labeling (line 1). The examples here can be a set of detail
pages or a set of data records identified from list pages. We will see in
Sect. 9.8 that data records in list pages can be identified automatically.

9.3. Instance-Based Wrapper Learning 339

2. The user labels/marks the target items in the selected example p (line 2).
The system also stores a sequence of k consecutive tokens right before
each labeled item (called the prefix string of the item) and a sequence of
k consecutive tokens right after the labeled item (called the suffix string
of the item). The prefix and suffix strings of all target items form a tem-
plate. Storing the prefix and suffix strings is to avoid keeping the whole
page in memory. The value of k does not affect the extraction result. If it
is too small, the algorithm can always get more tokens from the original
page. In practice, we can give k a large number, say 30, so that the sys-
tem does not have to refer back to the original page during extraction.
The variable Templates keeps all templates (line 3).

3. The algorithm then starts to extract items from unlabeled examples (line
4–9) using the function extract() (line 5). For each unlabeled example d,
it compares the stored prefix and suffix strings of each target item with
the token string of d to identify its corresponding item. If some item
from d cannot be identified, d is passed to the user for labeling (line 6)
(which is active learning), i.e., d is an informative example.

Let us use an example to show what a template looks like. For example, in
the page of Fig. 9.1, we are interested in extracting three items from each
product, namely, name, image, and price. The template (Tj) for a labeled
example j is represented with:

 Tj = 〈patname, patimage, patprice〉

Each pati in Tj consists of a prefix string and a suffix string of the item i.
For example, if the product image is embedded in the following source:

 … <table><tr><td> </td><td></td> …

then we have (we use k = 3 and regard each HTML tag as a token)
patimg = (img, prefix:〈<table><tr><td>〉, suffix:〈</td><td></td>〉).

Algorithm IDE(S) // S is the set of unlabeled examples.
1. p ← randomSelect(S); // Randomly select a page p from S
2. Tp ← labeling(p); // the user labels the page p
3. Templates ← 〈Tp〉; // initialization
4. for each remaining unlabeled example d in S do
5. if ¬(extract(Templates, d)) then
6. Td ← labeling(d);
7. insert Td into Templates
8. end-if
9. end-for

Fig. 9.15. The IDE algorithm

340 9 Structured Data Extraction: Wrapper Generation

Extract(Templates, d) function: For each unlabeled example d, extract()
tries to use each saved template T (∈ Templates) to match with the token
string of d to identify every target item in d. If a sequence of prefix (and
respectively suffix) tokens of a target item g in T matches a sequence of
prefix (and suffix) tokens of an item f in d that uniquely identifies f in d, f
is regarded as g’s corresponding item in d. By “uniquely identifies”, we
mean that only item f in d matches g based on their prefix and suffix
strings. An example is given below.

After item f, which corresponds to item g in T, is identified and ex-
tracted from d, we use the token strings of d before f and after f to find the
remaining target items using the same template T. This process continues
until all the corresponding items of those items in T are identified from d.
If the corresponding item of an item in T cannot be uniquely identified
from d, then the extraction using T fails on d. The next template in Tem-
plates is tried. If every template in Templates fails on d, d is sent to the
user for labeling (line 6 of Fig. 9.15). The algorithm is fairly straightfor-
ward, and thus is omitted. See [599] for more details, which also discusses
how to deal with some additional issues, e.g., missing items in a page.

Fig. 9.16 gives an example to show how a target item is uniquely identi-
fied. Assume that 5 tokens <table><tr><td><i> are saved in the prefix
string of item price from a labeled example. Given an unlabeled example,
after scanning through its token string, we obtain the match situation in
Fig. 9.16. That is, we find 4 ’s, three <i> together, and only one
<td><i> together, which can match some prefix tokens of price. These
are shown in four rows below the saved prefix string. The number within
each “()” is the sequence id of the token (the tag) in the unlabeled exam-
ple. “−” means no match. The HTML source is given in the box of Fig.
9.16 with sequence id’s attached. We observe that the beginning of price is

prefix: <table> <tr> <td> <i> price
 − (10)
 − <i>(17) (18)
 − <td>(23) <i>(24) (25)
 − <i>(67) (68)

 1 3 4

Fig. 9.16. The price is found uniquely.

…<td> ……<td> <i> …
 8 9 10 15 16 17 18

… <tr> <td> <i> $25.00 …...
 22 23 24 25

...
 <i>
 65 66 67 68

HTML
source of the

9.4 Automatic Wrapper Generation: Problems 341

uniquely identified because the sequence of prefix tokens of price,
<td><i>, has only one match. Note that we do not need to use all the
saved tokens in the prefix string of price. This technique is thus called suf-
ficient match. We see that is not unique because there are 4 ’s.
<i> is not unique because there are 3 matches.

Once the beginning of item price is found, the algorithm tried to locate
the ending of item price in the same way by comparing suffix strings in the
opposite direction. After item price is identified and extracted, the algo-
rithm goes to identify other items if they are not extracted.

The final set of templates and the extract() function together form a
wrapper, which can be used to extract target items from future examples.

Apart from performing active learning automatically, there are two other
interesting features about IDE. Firstly, there is no pre-specified sequence
of items to be extracted. For example, the order of items in the HTML
source may be: name, price, and image. If at the beginning we can identify
item price uniquely in the unlabeled example, we can then start from price
and search forward to find item image and search backward to find item
name. The final extraction sequence of items may be price, image and
name. Secondly, the method exploits local contexts in extraction. It may
be the case that from the whole page/data record we are unable to identify
a particular item. However, within a local area, it is easy to identify the
item. For instance, in the above example, after identifying item price, we
only need to search for item image in the rest of the input. Even a similar
item appears before price, it will not be considered. Evaluation results in
[599] show that this simple technique works very well.

9.4 Automatic Wrapper Generation: Problems

Wrapper generation using supervised learning has two main shortcomings:

1. It is not suitable for a large number of sites due to the manual labeling
effort. For example, if a shopping site wants to extract all the products
sold on the Web, manual labeling becomes almost an impossible task.

2. Wrapper maintenance is very costly. The Web is a dynamic environ-
ment. Sites change constantly. Since wrapper learning systems mainly
rely on HTML formatting tags, if a site changes its formatting templates,
the existing wrapper for the site will become invalid. As we discussed
earlier, automatic verification and repair are still difficult. Doing them
manually is very costly if the number of sites involved is large.

Due to these problems, automatic (or unsupervised) extraction has been
studied by researchers. Automatic extraction is possible because data re-

342 9 Structured Data Extraction: Wrapper Generation

cords (tuple instances) in a Web site are usually encoded using a very
small number of fixed templates. It is possible to find these templates by
mining repeated patterns in multiple data records. The rest of the chapter
focuses on automatic extraction.

Note that in general we use the term “templates” to refer to hidden tem-
plates employed by Web page designers. We use the term “patterns” to re-
fer to regular structures that the system has discovered.

9.4.1 Two Extraction Problems

In Sects. 9.1.2 and 9.1.3, we described an abstract model of structured data
on the Web (i.e., nested relations), and a HTML mark-up encoding of the
data model respectively. The general goal of data extraction is to recover
the hidden schema from the HTML mark-up encoded data. In the rest of
the chapter, we focus on two problems, which are really quite similar.

Problem 1: Extraction Based on a Single List Page

Input: A single HTML string S, which contains k non-overlapping sub-
strings s1, s2, …, sk with each si encoding an instance of a set type. That
is, each si contains a collection Wi of mi (≥ 2) non-overlapping sub-
substrings encoding mi instances of a tuple type.

Output: k tuple types σ1, σ2, …, σk, and k collections C1, C2, …, Ck of in-
stances of the tuple types such that for each collection Ci there is a
HTML encoding function enci such that enci: Ci → Wi is a bijection.

We use the example in Fig. 9.1 to explain. The input string S is the full
Web page (only part of it is shown in Fig. 9.1). In this page, there are two
substrings s1 and s2 that encode two set instances, i.e., the two sets of data
records. s1 consists of four encodings (displayed horizontally) enc1(I1),
enc1(I2), enc1(I3), enc1(I4) of four product instances I1, I2, I3, I4 of a tuple
type σ1, according to some mark-up encoding function enc1. Similarly, s2
consists of encodings of some other products (displayed vertically). One
important note is that S often contains some other information (not shown
in Fig. 9.1) apart from the encoded data. An algorithm needs to work on
the string S to find each substring and construct the tuple type by generat-
ing a pattern from each substring representing the mark-up encoding func-
tion enci.

The pattern may be represented as a regular expression. Data extrac-
tion can be done using the regular expression or the original pattern as we
will see in Sect. 9.11.1.

9.4 Automatic Wrapper Generation: Problems 343

Problem 2: Extraction Based on Multiple Pages

Input: A collection W of k HTML strings, which encodes k instances of
the same type.

Output: A type σ, and a collection C of instances of type σ, such that
there is a HTML encoding enc such that enc: C → W is a bijection.

The input consists of a collection of k encodings enc(I1), enc(I2), …, enc(Ik)
of instances I1, I2, …, Ik of a nested type σ, according to some mark-up en-
coding function enc. An algorithm works on the encoded instances and
constructs the type by generating a pattern (the encoding function enc),
which again may be represented as a regular expression and used to extract
data from other pages. Note that, for this problem, the input may be a set of
detail pages (of a tuple type) or list pages (of a set type).

The next few sections describe several techniques to solve the two prob-
lems. As we will see in Sect. 9.10, most techniques for solving problem 1
can also be used for solving problem 2.

9.4.2 Patterns as Regular Expressions

A regular expression can be naturally used to model the HTML encoded
version of a nested type. Given an alphabet of symbols Σ and a special to-
ken “#text” that is not in Σ, a regular expression over Σ is a string over Σ
∪ {#text, *, ?, |, (,)} defined as follows:

• The empty string ε and all elements of Σ ∪ {#text} are regular expres-
sions.

• If A and B are regular expressions, then AB, (A|B) and (A)? are regular
expressions, where (A|B) stands for A or B and (A)? stands for (A|ε).

• If A is a regular expression, (A)* is a regular expression, where (A)*
stands for ε or A or AA or ...

We also use (A)+ as a shortcut for A(A)*, which can be used to model the
set type of a list of tuples. (A)? indicates that A is optional. (A|B) represents
a disjunction. If a regular expression does not include (A|B), it is called a
union-free regular expression. Regular expressions are often employed
to represent extraction patterns (or encoding functions). However, extrac-
tion patterns do not have to be regular expressions, as we will see later.

Given a regular expression, a nondeterministic finite-state automaton
can be constructed and employed to match its occurrences in string se-
quences representing Web pages. In the process, data items can be ex-
tracted, which are text strings represented by #text.

344 9 Structured Data Extraction: Wrapper Generation

9.5 String Matching and Tree Matching

As we can see from both problems in Sect. 9.4.1, the key is to find the en-
coding template from a collection of encoded instances of the same type. A
natural way to do this is to detect repeated patterns from HTML encoding
strings. String matching and tree matching are obvious techniques for
the task. Tree matching is useful because HTML encoding strings also
form nested structures due to their nested HTML tags. Such nested struc-
tures can be modeled as trees, commonly known as DOM (tag) trees.
DOM stands for Document Object Model (http://www.w3.org/DOM/). Be-
low we describe some string matching and tree matching algorithms.

9.5.1 String Edit Distance

String edit distance (also known as Levenshtein distance) is perhaps the
most widely used string matching/comparison technique. The edit distance
of two strings, s1 and s2, is defined as the minimum number of point muta-
tions required to change s1 into s2, where a point mutation is one of: (1)
change a character, (2) insert a character, and (3) delete a character.

Assume we are given two strings s1 and s2. The following recurrence re-
lations define the edit distance, d(s1, s2), of two strings s1 and s2:

d(ε, ε) = 0 // ε represents an empty string
d(s, ε) = d(ε, s) = |s| // |s| is the length of string s
d(s1–+c1, s2–+c2) = min(d(s1–, s2–) + p(c1, c2), d(s1–+c1, s2–) + 1,

 d(s1–, s2–+c2) + 1),

where c1 and c2 are the last characters of s1 (= s1–+c1) and s2 (= s2–+c2) re-
spectively, and p(c1, c2) = 0 if c1 = c2; p(c1, c2) = 1, otherwise.

The first two rules are obvious. Let us examine the last one. Since nei-
ther string is empty, each has a last character, c1 and c2 respectively. c1 and
c2 have to be explained in an edit of s1–+c1 into s2–+c2. If c1 = c2, they match
with no penalty, i.e., p(c1, c2) = 0, and the overall edit distance is d(s1–, s2–).
If c1 ≠ c2, then c1 could be changed into c2, giving p(c1, c2) = 1 and an
overall cost d(s1–, s2–)+1. Another possibility is to edit s1–+c1 into s2– and
then insert c2, giving d(s1–+c1, s2–)+1. The last possibility is to delete c1 and
edit s1– into s2–+c2, giving d(s1–, s2–+c2)+1. There are no other alternatives.
We take the least expensive, i.e., min. of these alternatives.

From the relations, we can see that d(s1, s2) depends only on d(s1′, s2′)
where s1′ is a shorter string than s1, or s2′ is a shorter string than s2, or both.
Thus, the dynamic programming technique can be applied to compute
the edit distance of two strings.

9.5 String Matching and Tree Matching 345

We can use a two-dimensional matrix, m[0..|s1|, 0..|s2|], to hold the edit
distances. The low right corner cell m(|s1|, |s2|) will furnish the required
value of the edit distance d(s1, s2). We have

m[0, 0] = 0
m[i, 0] = i, i =1, 2, ..., |s1|
m[0, j] = j, j =1, 2, ..., |s2|
m[i, j] = min(m[i−1, j−1] + p(s1[i], s2[j]), m[i−1, j] + 1, m[i, j−1] + 1),

 where i = 1, 2, ..., |s1|, j = 1, 2, ..., |s2|, and p(s1[i], s2[j]) = 0 if
s1[i] = s2[j]; p(s1[i], s2[j]) = 1, otherwise.

Once the edit distance computation is completed, we can find the align-
ment of characters that give the final distance. For this, we need to record
which case in the above recursive rule minimizes the distance, and then
trace back the path that corresponds to the best alignment. Note that, in
many cases, the minimal choice is not unique, and different paths could
have been drawn, which indicate alternative optimal alignments.

Example 1: We want to compute the edit distance and find the alignment
of the following two strings:

s1: X G Y X Y X Y X
s2: X Y X Y X Y T X

The edit distance matrix is given in Fig. 9.17. The final edit distance value
is 2, which is the value in the bottom right corner cell. Figure 9.17 also
shows the trace back path. Notice that a diagonal line means match or
change, a vertical line means insertion, and a horizontal line means dele-
tion. Thus, the final alignment of our two strings is:

s1: X G Y X Y X Y − X
s2: X − Y X Y X Y T X

Fig. 9.17. The edit distance matrix and back trace path

 s1 X G Y X Y X Y X
s2 0 1 2 3 4 5 6 7 8
X 1 0 1 2 3 4 5 6 7
Y 2 1 1 1 2 3 4 5 6
X 3 2 2 2 1 2 3 4 5
Y 4 3 3 2 2 1 2 3 4
X 5 4 4 3 2 2 1 2 3
Y 6 5 5 4 3 2 2 1 2
T 7 6 6 5 4 3 3 2 2
X 8 7 7 6 5 4 3 3 2

346 9 Structured Data Extraction: Wrapper Generation

The time-complexity of the algorithm is O(|s1||s2|) (to fill the matrix).
The space complexity is also O(|s1||s2|). Back trace takes O(|s1|+|s2|) time.

The normalized edit distance ND(s1, s2) is defined as the edit distance
divided by the mean length of the two strings:

.
2/|)||(|

),(
),(

21

21
21

ss

ssd
ssND

+
= (1)

Another commonly used denominator is max(|s1|, |s2|).
Finally, in data extraction, “change a character” may be undesirable

(which represents a disjunction in regular expressions). A large distance
may be used to disallow it. We will discuss this issue again in Sect. 9.11.2.

9.5.2 Tree Matching

Like string edit distance, tree edit distance between two trees A and B (la-
beled ordered rooted trees) is the cost associated with the minimum set of
operations needed to transform A into B. In the classic formulation, the set
of operations used to define tree edit distance includes, node removal, node
insertion, and node replacement. A cost is assigned to each operation.
Solving the tree edit distance problem is to find a minimum-cost mapping
between two trees. The concept of mapping is formally defined as:

Let X be a tree and let X[i] be the ith node of tree X in a preorder walk of
the tree. A mapping M between a tree A of size n1 and a tree B of size n2 is
a set of ordered pairs (i, j), one from each tree, satisfying the following
conditions for all (i1, j1), (i2, j2) ∈ M:

(1) i1 = i2 iff j1 = j2;
(2) A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2];
(3) A[i1] is an ancestor of A[i2] iff B[j1] is an ancestor of B[j2].

Intuitively, the definition requires that each node appears no more than
once in a mapping and the order among siblings and the hierarchical rela-
tion among nodes are preserved. Figure 9.18 shows a mapping example.

Several algorithms have been proposed to address the problem of find-
ing the minimum set of operations (i.e., the one with the minimum cost) to
transform one tree into another. All the formulations have complexities
above quadratic. In [509], a solution based on dynamic programming is
presented with the complexity of O(n1n2h1h2), where n1 and n2 are the sizes
of the trees and h1 and h2 are the heights of the trees. In [95, 532], two im-
proved algorithms are presented, and in [605], it is shown that if the trees
are not ordered, the problem is NP-complete.

9.5 String Matching and Tree Matching 347

Fig. 9.18. A general tree mapping example

In the above general setting, mapping can cross levels, e.g., node a in
tree A and node a in tree B (Fig. 9.18). Replacements are also allowed,
e.g., node b in A and node h in B. We now define a restricted tree mapping
[572], called simple tree matching (STM), in which no node replacement
and no level crossing are allowed. In STM, the aim is to find the maximum
matching between two trees (not the edit distance of two trees). This re-
stricted model has been found quite effective for Web data extraction.

Let A and B be two trees, and i ∈ A and j ∈ B be two nodes in A and B
respectively. A matching between two trees is defined to be a mapping M
such that, for every pair (i, j) ∈ M where i and j are non-root nodes, (par-
ent(i), parent(j)) ∈ M. A maximum matching is a matching with the
maximum number of pairs.

Let A = RA:〈A1, …, Ak〉 and B = RB:〈B1,…, Bn〉 be two trees, where RA and
RB are the roots of A and B, and Ai and Bj are the ith and jth first-level sub-
trees of A and B respectively. Let W(A, B) be the number of pairs in the
maximum matching of trees A and B. If RA and RB contain identical sym-
bols, the maximum matching between A and B (i.e., W(A, B)) is m(〈A1, …,
Ak〉, 〈B1, …, Bn〉) + 1, where m(〈A1, …, Ak〉, 〈B1, …, Bn〉) is the number of
pairs in the maximum matching of 〈A1, …, Ak〉 and 〈B1, …, Bn〉. If RA ≠ RB,
W(A, B)) = 0. Formally, W(A, B) is defined as follows:

⎩
⎨
⎧

+〉〈〉〈
≠

= ;
otherwise1),...,,,...,(

 if 0
),(

11 nk

BA

BBAAm
RR

BAW

m(〈〉, 〈〉) = 0 // 〈〉 represents an empty sub-tree list.
m(s, 〈〉) = m(〈〉, s) = 0 // s matches any non-empty sub-tree list
m(〈A1, …, Ak〉, 〈B1, …, Bn〉) = max(m(〈A1, …, Ak-1〉, 〈B1, …, Bn-1〉) + W(Ak, Bn),

 m(〈A1, …, Ak〉, 〈B1, …, Bn-1〉),
 m(〈A1, …, Ak-1〉, 〈B1, …, Bn〉)).

This definition of m is similar to that of the string edit distance except
that here we compute the maximum matching rather than the distance and

c

b a

p

c

h e

p

d a d

A B

348 9 Structured Data Extraction: Wrapper Generation

that W(Ak, Bn) needs to be computed recursively since Ak and Bn are sub-
trees. Clearly, the dynamic programming technique is again applicable.

We now give an algorithm for simple tree matching (STM), which com-
putes W(A, B). The algorithm is also called STM (Fig. 9.19). STM is a top-
down algorithm. It evaluates the similarity by producing the maximum
matching through dynamic programming. The algorithm has the complex-
ity of O(n1n2), where n1 and n2 are the sizes of trees A and B respectively.

In line 1, the roots of A and B are compared first. If the roots contain
distinct symbols, then the two trees do not match at all. If the roots contain
identical symbols, then the algorithm recursively finds the maximum
matching between first-level sub-trees of A and B and save it in a W matrix
(line 8). Based on the W matrix, a dynamic programming scheme is ap-
plied to find the number of pairs in a maximum matching between two
trees A and B. We use an example (Fig. 9.20) to explain the algorithm.

To find the maximum matching between trees A and B, their roots (N1
and N15) are compared first. Since N1 and N15 contain identical symbols,
m1,15[4, 2]+1 is returned as the maximum matching value between trees A
and B (line 11). The m1,15 matrix is computed based on the W1,15 matrix.
Each entry in W1,15, e.g., W1,15[i, j], is the maximum matching between the
ith and jth first-level sub-trees of A and B, which is computed recursively
based on its m matrix. For example, W1,15[4, 2] is computed recursively by
building the matrices (E)-(H). All the relevant cells are shaded. The zero
column and row in m matrices are initializations. Note that we use sub-
scripts for both m and W to indicate the nodes that they are working on.

Algorithm: STM(A, B)
1. if the roots of the two trees A and B contain distinct symbols then
2. return (0)
3. else k ← the number of first-level sub-trees of A;
4. n ← the number of first-level sub-trees of B;
5. Initialization: m[i, 0] ← 0 for i = 0, …, k;
 m[0, j] ← 0 for j = 0, …, n;
6. for i = 1 to k do
7. for j = 1 to n do
8. m[i, j] ← max(m[i, j−1], m[i−1, j], m[i−1, j−1]+W[i, j]),
 where W[i, j] ← STM(Ai, Bj)
9. end-for
10. end-for
11. return (m[k, n]+1)
12. end-if

Fig. 9.19. The simple tree matching (STM) algorithm

9.5 String Matching and Tree Matching 349

Fig. 9.20. (A) Tree A; (B) Tree B; (C) m matrix for the first level sub-trees of N1
and N15; (D) W matrix for the first level sub-trees of N1 and N15; (E)-(H) m ma-
trixes and W matrixes for the lower level sub-trees.

The normalized simple tree matching NSTM(A, B) is obtained by di-
viding the matching score by the mean number of nodes in the two trees:

2/))()((
),(

),(
BnodesAnodes

BASTM
BANSTM

+
= .

(2)

We may also use max(nodes(A), nodes(B)) as the denominator. nodes(X)
denotes the number of nodes in tree X.

Similar to string edit distance, after matching computation, we can trace
back in the m matrices to find the aligned nodes from the two trees.

e d d e

j

b b c

f

p

c

g

h i

b

p

c

g

h

d e

 0 1 (N16) 2 (N16-N17)
0 0 0 0

1 (N2) 0 3 3
2 (N2-N3) 0 3 5
3 (N2-N4) 0 3 5
4 (N2-N5) 0 3 6

 1 (N16) 2 (N17)
1 (N2) 3 0
2 (N3) 0 2
3 (N4) 2 0
4 (N5) 0 3

 0 1 (N20) 2 (N20-N21)
0 0 0 0

1 (N11) 0 2 2

 1(N20) 2(N21)
1 (N11) 2 0

 1 (N22)
1 (N12) 1
2 (N13) 0
3 (N14) 0

(C) m1,15 (D) W1,15

(E) m5,17

(G) m11,20 (H) W11,20

(F) W5,17

(A) (B)
N1 N15

N2 N3 N4 N5

 N6 N7 N8 N9 N10

N11

N12 N13 N14

 N18 N19 N20 N21

N22

N16 N17

f

 0 1 (N22)
0 0 0

1 (N12) 0 1
2 (N12-N13) 0 1
3 (N12-N14) 0 1

350 9 Structured Data Extraction: Wrapper Generation

9.6 Multiple Alignment

In order to find repeated patterns from HTML strings based on string edit
distance or tree matching, we need alignments of strings and trees. We
have discussed how to obtain the alignment of two strings or trees. How-
ever, a Web page usually contains more than two data records, thus more
than two strings or trees need to be aligned. Producing a global alignment
of all the strings or trees is crucial. The task is called multiple alignment.

In [82], Carrillo and Lipman proposed an optimal multiple alignment
based on multidimensional dynamic programming. However, its time
complexity is exponential, and is thus not suitable for practical use. Many
heuristic methods exist. We describe two of them: the center star method
and the partial tree alignment method in [600].

9.6.1 Center Star Method

This is a classic technique [213]. It is commonly used for multiple string
alignments, but can be adopted for trees. The method is applied to data ex-
traction based on alignments of HTML strings in [91]. Let the set of strings
to be aligned be S. In the method, a string sc that minimizes

∑ ∈Ss ic
i

ssd),((3)

is first selected as the center string. d(sc, si) is the distance of two strings.
The algorithm then iteratively computes the alignment of rest of the strings
with sc. Spaces are added when needed. The algorithm is in Fig. 9.21.

CenterStar(S)
1. choose the center star sc using Equation (3);
2. initialize the multiple sequence alignment M that contains only sc;
4. for each s in S-{sc} do
5. let c* be the aligned version of sc in M;
6. let s′ and c*′ be the optimally aligned strings of s and c*;
7. add aligned strings s′ and c*′ into the multiple alignment M;
8. add spaces to each string in M, except, s′ and c*′, at locations where new

spaces are added to c*
9. endfor
10. return multiple string alignment M

Fig. 9.21. The center star algorithm

Example 2: We have three strings, i.e., S = {ABC, XBC, XAB}. ABC is
selected as the center string sc. Let us align the other strings with ABC.

9.6 Multiple Alignment 351

Iteration 1: Align c* (= sc) with s =XBC:
 c*′ : A B C
 | |
 s′ : X B C
 Update M: A B C → A B C
 X B C
Iteration 2: Align c* with s = XAB:
 c*′ : − A B C
 | |
 s′ : X A B −
 Update M: A B C → − A B C
 X B C − X B C
 X A B −

Assume there are k strings in S and all strings have length n, finding the
center takes O(k2n2) time and the iterative pair-wise alignment takes O(kn2)
time. Thus, the overall time complexity is O(k2n2).

For our data extraction task, this method has two shortcomings:
1. the algorithm runs slowly for pages containing many data records and/or

data records containing many tags (i.e., long strings) because finding the
center string needs O(k2n2) time.

2. if the center string (or tree) does not have a particular data item, other
data records that contain the same data item may not be aligned prop-
erly. For example, the letter X’s in the last two strings (in bold) are not
aligned in the final result, but they should.

Let us discuss the second point further. As we mentioned in Sect. 9.5.1,
giving the cost of 1 for “changing a letter” in edit distance is problematic
(e.g., A and X in the first and second strings in the final result) because of
optional data items in data records. The problem can be partially dealt with
by disallowing “changing a letter” (e.g., giving it a very large cost). How-
ever, this introduces another problem. For example, if we align only ABC
and XBC, it is not clear which of the following alignment is better.
 (1) A – B C (2) – A B C
 – X B C X – B C

If we also consider the string XAB, then (2) is better. However, the cen-
ter star method does not have this global view. The partial tree alignment
algorithm described below deals with both problems nicely.

9.6.2 Partial Tree Alignment

This method is proposed in [600] for multiple tree alignment in the context
of data extraction. It can also be used for aligning multiple strings. For

352 9 Structured Data Extraction: Wrapper Generation

simplicity, we describe the method in the context of trees. The main idea is
as follows: The algorithm aligns multiple trees by progressively growing a
seed tree. The seed tree, denoted by Ts, is initially picked to be the tree
with the maximum number of data fields, which is similar to the center
string but without the O(k2n2) pair-wise tree matching to choose it. The
reason for choosing this seed tree is clear as it is more likely for this tree to
have a good alignment with data fields in other data records. Then, for
each Ti (i ≠ s), the algorithm finds for each node in Ti a matching node in
Ts. If no match can be found for a node vi, then the algorithm attempts to
expand the seed tree by inserting vi into Ts. The expanded seed tree Ts is
then used in subsequent matching. The insertion is done only if a position
for vi can be uniquely determined in Ts. Otherwise, it is left unmatched.
Thus the alignment is partial. It represents a least commitment ap-
proach. Early uncertain commitments can result in undesirable effects for
later matches. Note that although the method was designed originally for
aligning multiple trees, it can also be adapted for aligning multiple strings.

Partial Alignment of Two Trees

Before presenting the full algorithm for aligning multiple trees, let us first
look at the partial alignment of two trees. As indicated above, after Ts and
Ti are matched, some nodes in Ti can be aligned with their corresponding
nodes of Ts because they match one another. For those nodes in Ti that are
not matched, we want to insert them into Ts as they may contain optional
data items. There are two possible situations when inserting a new node vi
from Ti into Ts, depending on whether a location in Ts can be uniquely de-
termined to insert vi. Instead of considering a single node vi, we can con-
sider each set of unmatched consecutive sibling nodes vj…vm from Ti to-
gether. Without loss of generality, we assume that the parent of vj…vm has
a match in Ts and we want to insert vj…vm into Ts under the same parent
node. We only insert vj…vm into Ts if a position for inserting vj…vm can be
uniquely determined in Ts. Otherwise, they will not be inserted into Ts and
left unaligned. The location for inserting vj…vm can be uniquely decided:

1. If vj…vm have two neighboring siblings in Ti, one on the right and one
on the left, that are matched with two consecutive siblings in Ts. Figure
9.22(A) shows such a situation, which gives one part of Ts and one part
of Ti. We can see that node c in Ti can be inserted into Ts between node
b and node e in Ts because node b and node e in Ts and Ti match. The
new (extended) Ts is also shown in Fig. 9.22(A). We note that nodes a,
b, c and e may also have their own children. We did not draw them to
save space. This applies to all the cases below.

9.6 Multiple Alignment 353

2. If vj…vm has only one left neighboring sibling x in Ti and x matches the
right most node x in Ts, then vj…vm can be inserted after node x in Ts.
Figure 9.22(B) illustrates this case.

3. If vj…vm has only one right neighboring sibling x in Ti and it matches
the left most node x in Ts, then vj…vm can be inserted before node x in
Ts. This case is similar to the second case above.

Otherwise, we cannot uniquely decide a location for unmatched nodes in Ti
to be inserted into Ts. This is shown in Fig. 9.22(C). The unmatched node x
in Ti could be inserted into Ts in two positions, between nodes a and b, or
between node b and e in Ts. In this situation, we will not insert it into Ts.

Fig. 9.22. Expand the seed: (A) and (B) unique insertion; (C) insertion ambiguity

Partial Alignment of Multiple Trees

Figure 9.23 gives the full algorithm for multiple tree alignment based on
partial alignment of two trees. S is the set of input trees. We use a simple
example in Fig. 9.24 to explain the algorithm. S has three example trees.

Lines 1–2 (Fig. 9.23) find the tree with the most data items. It is used as
the seed tree Ts. In Fig. 9.24, the seed tree is the first tree (we omitted
many nodes on the left of T1). Line 3 initializes R, which is used to store
those trees that are not completely aligned with Ts in each iteration. Line 4
starts the while loop to align every other tree against Ts. Line 5 picks the
next unaligned tree, and line 6 does the tree matching. Line 7 finds all the
matched pairs by tracing the matrix results of line 6. This function is simi-
lar to aligning two strings using edit distance. In Fig. 9.24, Ts and T2 pro-

p Ts Ti

(C)

p

a b e

(A)

c e b

c e

p

b

New Ts

a

a

(B)

b e f e g

p p Ts Ti

f e g

p

b

New Ts

a

e a b x

p p Ts Ti

a e

354 9 Structured Data Extraction: Wrapper Generation

duce one match, node b. Nodes w, c, k and g are not matched to Ts. Lines 8
and 9 attempt to insert the unmatched nodes into Ts. This is the partial tree
alignment discussed above. In Fig. 9.24, none of the nodes w, c, k and g in
T2 can be inserted into Ts because no unique location can be found. Thus, it
will not pass the if-statement (InsertIntoSeed() returns false in line 9 of
Fig. 9.23). Lines 13–14 inserts T2 into R, which is a list of trees that need
to be re-matched since some data items are not aligned and not inserted
into Ts. In Fig. 9.24, when matching T3 with Ts in the next iteration, all
unmatched nodes c, h and k can be inserted into Ts (line 9). Since there are
some insertions, we re-match those trees in R. Line 10 and line 11 put the
trees in R into S and reinitializes R. T3 will not be inserted into R (line 13).

In Fig. 9.24, T2 is the only tree in R, which will be matched to the new
Ts in the next round. Now, every node in T2 can be matched or inserted,
and the process completes. Line 18 of Fig. 9.23 outputs the data items from
each tree according to the alignment produced. Note that if there are still
un-matched nodes with data after the algorithm completes (e.g., R ≠ ∅),
each un-matched data will occupy a single column by itself. Table 1 shows
the data table for the trees in Fig. 9.24. We use “1” to indicate a data item.

The complexity of the algorithm is O(k2n2), where k is the number of
trees in S and n is the size of each tree (we assume that all the trees are of
similar size). However, as reported in [600], in practice, the algorithm al-
most always goes through S only once (i.e., R = ∅).

Algorithm PartialTreeAlignment(S)
1. Sort trees in S in descending order of the number of unaligned data items;
2. Ts ← the first tree (which is the largest) and delete it from S;
3. R ← ∅;
4. while (S ≠ ∅) do
5. Ti ← select and delete next tree from S; // follow the sorted order
6. STM(Ts, Ti); // tree matching
7. AlignTrees(Ts, Ti); // based on the result from line 6
8. if Ti is not completely aligned with Ts then
9. if InsertIntoSeed(Ts, Ti) then // True: some insertions are done
10. S ← S ∪ R;
11. R ← ∅
12 endif;
13. if there are still unaligned items in Ti that are not inserted into Ts then
14. R ← R ∪ {Ti}
15. endif;
16. endif;
17. endwhile;
18. Output data fields from each Ti to a data table based on the alignment results.

Fig. 9.23. The partial tree alignment algorithm

9.6 Multiple Alignment 355

Fig. 9.24. Iterative tree alignment with two iterations

Table 1. Final data table (“1” indicates a data item)

 … x b w c d h k g
T1 … 1 1 1
T2 1 1 1 1 1
T3 1 1 1 1 1

In fact, to make the algorithm complete, a recursive call should be added
after line 17 in Fig. 9.23 to handle the case when R ≠ ∅, i.e., to further
align only those trees in R. The following three lines can be added:

18. if R ≠ ∅ then
19. PartialTreeAlignment(R)
20. endif

This takes care of the situation where some items are not aligned and
not inserted. However, it is shown in [600] that this part is usually not
needed for data extraction.

We make two remarks about this complete algorithm. First, the
recursion will terminate even if no alignment and/or no insertion is made
to the seed tree because the seed tree is deleted in each recursion and thus

d x … b

p

c k g w

p

b d h k c

p

b

d x … b

p

k c x … b

p

d h

c k g w

p

b

wx… b

p

c d h k

S ← R.
R contains only T2

No node inserted

c, h, and k are inserted

Ts = T1 T2 T3

T2

g

Ts

New Ts

Initial set S

356 9 Structured Data Extraction: Wrapper Generation

R becomes smaller and smaller. Second, the algorithm can found multiple
templates in the data. The seed tree from each recursion represents a dif-
ferent template.

9.7 Building DOM Trees

DOM (Document Object Model) tree building from input pages is a neces-
sary step for many data extraction algorithms. We describe two methods
for building DOM trees, which are also commonly called tag trees (we
will use them interchangeably in this chapter).

Using Tags Alone: Most HTML tags work in pairs. Each pair consists of
an open tag and a close tag (indicated by < > and </> respectively). Within
each corresponding tag-pair, there can be other pairs of tags, resulting in a
nested structure. Building a DOM tree from a page using its HTML code is
thus natural. In the tree, each pair of tags is a node, and the nested pairs of
tags within it are the children of the node. Two tasks need to be performed:

1. HTML code cleaning: Some tags do not require close tags (e.g., ,
<hr> and <p>) although they have close tags. Hence, additional close
tags should be inserted to ensure all tags are balanced. Ill-formatted tags
also need to be fixed. Such error tags are usually close tags that cross
different nested blocks, e.g., <tr> … <td> … </tr> … </td>, which can
be hard to fix if multiple levels of nesting exist. There are open source
programs that can be used to clean up HTML pages. One popular pro-
gram is called tidy (available at http://tidy.sourceforge. net/).

2. Tree building: We can follow the nested blocks of the HTML tags in the
page to build the DOM tree. It is fairly straightforward. We will not dis-
cuss it further.

This method works for most pages. However, for some ill-formatted tags,
even the tidy program cannot fix. Then, the constructed DOM trees may be
wrong, which makes it difficult for subsequent data extraction.

Using Tags and Visual Cues: Instead of analyzing the HTML code to
fix errors, rendering or visual information (i.e., the locations on the screen
at which tags are rendered) can be used to infer the structural relationship
among tags and to construct a DOM tree. This method leads to more robust
tree construction due to the high error tolerance of the rendering engines of
Web browsers (e.g., Internet Explorer). As long as the browser is able to
render a page correctly, its tag tree can be built correctly.

In a Web browser, each HTML element (consisting of an open tag,
optional attributes, optional embedded HTML content, and a close tag that

9.8 Extraction Based on a Single List Page: Flat Data Records 357

may be omitted) is rendered as a rectangle. The visual information can be
obtained after the HTML code is rendered by a Web browser. A DOM tree
can then be constructed based on the nested rectangles (resulted from
nested tags). The details are as follows:

1. Find the four boundaries of the rectangle of each HTML element by
calling the rendering engine of a browser, e.g., Internet Explorer.

2. Follow the sequence of open tags and perform containment checks to
build the tree. Containment check means checking if one rectangle is
contained in another.

Let us use an example to illustrate the process. Assume we have the
HTML code on the left of Fig. 9.25. However, there are three errors in the
code. The close tag </td> for line 3 is put after the open tag for line 4.
Also, the close tags </tr> in line 5 and </td> in line 7 are missing. How-
ever, this HTML segment can be rendered correctly in a browser, with the
boundary coordinates for each HTML element shown in the middle of Fig.
9.25. Using this visual information, it is easy to build the tree on the right.

Fig. 9.25. A HTML code segment, boundary coordinates and the resulting tree

9.8 Extraction Based on a Single List Page: Flat Data
Records

We are now ready to perform the data extraction task. In this and the next
sections, we study the first extraction problem in Sect. 9.4.1, i.e., extrac-
tion based on a single list page. This section focuses on a simpler case, i.e.,
a list (a data region) containing only flat data records (no nesting). We as-
sume that the DOM tree has been built for the page. In Sect. 9.10, we will
study the second extraction problem based on multiple input pages. The
techniques studied in this section are based on the work in [341, 600].

1 <table>
2 <tr>
3 <td> data1 <td>
4 </td>data2 </td>
5 <tr>
6 <td> data3 </td>
7 <td> data4
8 </tr>
9 </table>

left right top bottom
100 300 200 400
100 300 200 300
100 200 200 300
200 300 200 300
100 300 300 400
100 200 300 400
200 300 300 400

table

tr tr

td td td td

358 9 Structured Data Extraction: Wrapper Generation

Given a list page containing multiple lists and each list contains multiple
data records (at least two), the following tasks are performed:

1. Identify each list (also called a data region), i.e., mine all data regions,
2. Segment data records in each list or data region, and
3. Align data items in the data records to produce a data table for each data

region and also a regular expression pattern.

9.8.1 Two Observations about Data Records

Data records in each list (or data region) are encoded using the same
HTML mark-up encoding. Finding the data records and its hidden schema
means to find repeated patterns and align them. String or tree match-
ing/comparison are natural techniques. The problem, however, is the effi-
ciency because a data record can start from anywhere in a page and has
any length. It is prohibitive to try all possibilities. If all data records have
exactly the same tag string, then the problem is easier. However, in prac-
tice, a set of data records typically does not have exactly the same tag
string or data items due to missing or optional items (see Fig. 9.26). The
two important observations below help to solve the problem, which are
based on the DOM tree structure [341].

Observation 1: A group of data records that contains descriptions of a set
of similar objects is typically presented in a contiguous region of a page
and is formatted using similar HTML tags. Such a region represents a
list or a data region. For example, in Fig. 9.26 two books are presented
in one contiguous region.

Observation 2: A list of data records in a region is formed by some child
sub-trees of the same parent node. It is unlikely that a data record starts
in the middle of a child sub-tree and ends in the middle of another child
sub-tree. Instead, it starts from the beginning of a child sub-tree and ends
at the end of the same or a later child sub-tree.

For example, Fig. 9.27 shows the DOM tree of the page in Fig. 9.26
(with some parts omitted). In this tree, each data record is wrapped in
five TR nodes with their sub-trees under the same parent TBODY. The
two data records are in the two dash-lined boxes. It is unlikely that a data
record starts from TD* and ends at TD# (Fig. 9.27).

The second observation makes it possible to design an efficient algo-
rithm to identify data records because it limits the tags from which a data
record may start and end in a DOM tree.

9.8 Extraction Based on a Single List Page: Flat Data Records 359

Fig. 9.27. The DOM tree of the page segment in Fig. 9.26

9.8.2 Mining Data Regions

This first step mines every data region in a Web page that contains a list of
data records (a set instance). Finding data regions (or individual data re-

Fig. 9.26. An example of a page segment

HTML

HEAD
BODY

TR
 |
TD

TD TD TD TD

TR TR
 |
TD

TR TR TR
|

 TD

TR
 |
TD

TR
 |
TD

TR
 |
TD

TABLE P

TR

TD* TD TD TD

TD TD TD# TD

TABLE

TBODY

data
record 1

data
record 2

360 9 Structured Data Extraction: Wrapper Generation

cords in them) directly is, however, hard. We first mine generalized nodes
(defined below). A sequence of adjacent generalized nodes forms a data
region. From each data region, we identify the actual data records (dis-
cussed in Sect. 9.8.3). Below, we define generalized nodes and data re-
gions using the DOM (tag) tree:

Definition: A generalized node (a node combination) of length r consists
of r (r ≥ 1) nodes in the DOM tree with the following two properties:

 (1) the nodes all have the same parent;
 (2) the nodes are adjacent.

We introduce the generalized node to capture the situation that a data
record is contained in several sibling HTML tag nodes rather than one. For
example, in Fig. 9.27, we see that each notebook is contained in five table
rows (or five TR nodes). We call each node in the HTML tag tree a tag
node to distinguish it from a generalized node.

Definition: A data region is a collection of two or more generalized nodes
with the following properties:
(1) the generalized nodes all have the same parent;
(2) the generalized nodes all have the same length;
(3) the generalized nodes are all adjacent;
(4) the similarity between adjacent generalized nodes is greater than a

fixed threshold.

For example, in Fig. 9.27, we can form two generalized nodes. The first
one consists of the first five children TR nodes of TBODY, and the second
one consists of the next five children TR nodes of TBODY. We should
note that although the generalized nodes in a data region have the same
length (the same number of children nodes of a parent node in the tag tree),
their lower level nodes in their sub-trees can be quite different. Thus, they
can capture a wide variety of regularly structured objects. We also note
that a generalized node may not represent a final data record (see Sect.
9.8.3), but will be used to find the final data records.

To further explain different kinds of generalized nodes and data regions,
we make use of an artificial DOM/tag tree in Fig. 9.28. For notational con-
venience, we do not use actual HTML tag names but ID numbers to denote
tag nodes in a tree. The shaded areas are generalized nodes. Nodes 5 and 6
are generalized nodes of length 1 and they together define the data region
labeled 1 if the similarity condition (4) is satisfied. Nodes 8, 9 and 10 are
also generalized nodes of length 1 and they together define the data region
labeled 2 if the similarity condition (4) is satisfied. The pairs of nodes (14,
15), (16, 17) and (18, 19) are generalized nodes of length 2. They together
define the data region labeled 3 if the similarity condition (4) is satisfied. It

9.8 Extraction Based on a Single List Page: Flat Data Records 361

should be emphasized that a data region includes the sub-trees of the com-
ponent nodes, not just the component nodes alone.

Fig. 9.28. An illustration of generalized nodes and data regions

Comparing Generalized Nodes

In order to find each data region in a Web page, the mining algorithm
needs to find the following: (1) Where does the first generalized node of a
data region start? For example, in Region 2 of Fig. 9.28, it starts at node 8.
(2) How many tag nodes or components does a generalized node in each
data region have? For example, in Region 2 of Fig. 9.28, each generalized
node has one tag node (or one component).

Let the maximum number of tag nodes that a generalized node can have
be K, which is normally a small number (< 10). In order to answer (1), we
can try to find a data region starting from each node sequentially. To an-
swer (2), we can try one node, two node combination, …, K node combi-
nation. That is, we start from each node and perform all 1-node
comparisons, all 2-node comparisons, and so on (see the example below).
We then use the comparison results to identify each data region.

The number of comparisons is actually not very large because:

• Due to the two observations in Sect. 9.8.1, we only need to perform
comparisons among the children nodes of a parent node. For example, in
Fig. 9.28, we do not compare node 8 with node 13.

• Some comparisons done for earlier nodes are the same as for later nodes
(see the example below).

We use Fig. 9.29 to illustrate the comparison. There are 10 nodes below
the parent node p. We start from each node and perform string (or tree)
comparison of all possible combinations of component nodes. Let the
maximum number of components that a generalized node can have be 3.

1

3

10

2

7 8 9

Region 2

5 6

Region 1

4

11 12

14 15 20 16 17 19 18 13

Region 3

362 9 Structured Data Extraction: Wrapper Generation

Fig. 9.29. Combination and comparison

Start from node 1: We compute the following string or tree comparisons.

• (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)
• (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10)
• (1-2-3, 4-5-6), (4-5-6, 7-8-9).
(1, 2) means that the tag string of node 1 is compared with the tag string
of node 2. The tag string of a node includes all the tags of the sub-tree of
the node. (1-2, 3-4) means that the combined tag string of nodes 1 and 2
is compared with the combined tag string of nodes 3 and 4.

Start from node 2: We only compute:

• (2-3, 4-5), (4-5, 6-7), (6-7, 8-9)
• (2-3-4, 5-6-7), (5-6-7, 8-9-10).

We do not need to do 1-node comparisons because they have been done
when we started from node 1 above.

Start from node 3: We only need to compute:

• (3-4-5, 6-7-8).

Again, we do not need to do 1-node comparisons. Also, 2-node compari-
sons are not necessary as they were done when we started at node 1.

We do not need to start from any other node after node 3 because all the
computations have been done.

The Overall Algorithm

The overall algorithm (called MDR) is given in Fig. 9.30. It traverses the
tag tree from the root downward in a depth-first fashion (lines 5 and 6).
Node is any tree node. K is the maximum number of tag nodes in a gener-
alized node (10 is sufficient). τ is the similarity threshold. The node com-
parison can be done either using string edit distance or tree matching (e.g.,
STM). The similarity threshold can be set empirically.

Line 1 says that the algorithm will not search for data regions if the
depth of the sub-tree at Node is 2 or 1 as it is unlikely that a data region is
formed with only a single level of tag(s).

2 1 3 4 6 5 7 8 9 10

p

9.8 Extraction Based on a Single List Page: Flat Data Records 363

At each internal node, the function CombComp() (line 2) performs
string (tree) comparisons of various combinations of the children sub-trees,
which have been discussed above. The function IdenDRs() (line 3) uses the
comparison results to find similar children node combinations (using the
similarity threshold τ) to obtain generalized nodes and data regions (Da-
taRegions) under Node (i.e., among the children of Node). That is, it de-
cides which combinations represent generalized nodes and where the be-
ginning and end are for each data region. DataRegions consists of a set of
data regions, and each data region contains a list of tag nodes organized as
generalized nodes of the region. IdenDRs() is discussed further below.
Line 4 says that if some nodes are not covered by discovered data regions,
the algorithm will go down the tree further from these nodes to see
whether they contain data regions (lines 5 and 6).

We note that a generalized node may not be a data record, but may con-
tain more than one data record. Figure 9.31 illustrates the point. This data
region has eight data records. Each row has two. However, each row will
be reported as a generalized node because rows 1−4 are similar. We will
explain how to find data records from each generalized node shortly.

Fig. 9.31. A possible configuration of data records

 Algorithm MDR(Node, K, τ)
 1 if TreeDepth(Node) >= 3 then
 2 CombComp(Node.Children, K);
 3 DataRegions ← IdenDRs(Node, K, τ);
 4 if (UncoveredNodes ← Node.Children − UDR∈DataRegionsDR) ≠ ∅ then
 5 for each ChildNode ∈ UncoveredNodes do
 6 DataRegions ← DataRegions ∪ MDR(ChildNode, K, τ);
 7 return DataRegions
 8 else return ∅

Fig. 9.30. The MDR algorithm

row 1

row 2

row 3

row 4

1 2

3 4

5 6

8 7

364 9 Structured Data Extraction: Wrapper Generation

Let us come back to the function IdenDRs(), which is not hard to design
and it is omitted. Interested readers can refer to [341]. We only describe
two issues that the function needs to consider.

1. It is clear from Fig. 9.28 that there may be several data regions under a
single parent node Node. Generalized nodes in different data regions
may have different number of tag node components.

2. A property about similar strings (or trees) is that if a set of strings
(trees), s1, s2, s3, …., sn, is similar to one another, then a combination of
any number of them is also similar to another combination of them of
the same number. IdenDRs should only report generalized nodes of the
smallest length that cover a data region. For Fig. 9.31, it only reports
each row as a generalized node rather than a combination of two rows
(rows 1-2, and rows 3-4).

The computation of the algorithm is dominated by string (or tree) com-
parison. Assume that the total number of nodes in the tag tree is N, the
number of comparisons is in the order of O(NK2). Since K is normally very
small, the computation requirement of the algorithm is low. Visual infor-
mation (see Sect. 9.8.5) and simple heuristics can be applied to reduce the
number of string (tree) comparisons substantially.

9.8.3 Identifying Data Records in Data Regions

As we have discussed above, a generalized node may consist of multiple
data records. Figure 9.31 shows an example, where each row is a general-
ized node that contains two data records. To find data records from each
generalized node in a data region, the following observation is useful:

• If a generalized node contains two or more data records, these data re-
cords must be similar in terms of their tag strings.

This is clear because we assume that a data region contains descriptions of
similar data records. Identifying data records from each generalized node
in a data region is relatively easy because they are nodes (together with
their sub-trees) at the same level as the generalized node, or nodes at a
lower level of the DOM/tag tree. This can be done in two steps:

1. Produce one rooted tree for each generalized node: An artificial root
node is created first, and all the components (which are sub-trees) of the
generalized node are then put as its children.

2. Call the MDR algorithm using the tree built in step 1: Due to the obser-
vation above, this step will find the data records if exist. Otherwise, the
generalized node is a data record. Two issues needs to be considered.

9.8 Extraction Based on a Single List Page: Flat Data Records 365

• The discovered data records should covered all the data items in the
original generalized node.

• Each data record should not be too small, e.g., a single number or a
piece of text, which is likely to be an entry in a spreadsheet table.

Further details can be found in [341, 601], where handling non-
contiguous data records is also discussed. For example, two books are de-
scribed in two table rows. One row lists the names of the two books in two
cells, and the next row lists the other pieces of information about the books
also in two cells. This results in the following sequence in the HTML code:
name 1, name 2, description 1, description 2.

9.8.4 Data Item Alignment and Extraction

Once data records in each data region are discovered, they are aligned to
produce an extraction pattern that can be used to extract data from the cur-
rent page and also other pages that use the same encoding template. We
use the partial tree alignment algorithm to perform the task in two steps:
1. Produce a rooted tree for each data record: An artificial root node is cre-

ated first. The sub-trees of the data record are then put as its children.
2. Align the resulting trees: The trees of all the data records in each data

region are aligned using the partial tree alignment method in Sect. 9.6.2.
After alignments are done, the final seed tree can be used as the extrac-
tion pattern, or be turned into a regular expression.

Conflict Resolution: In tree matching and alignment, it is possible that
multiple matches can give the same maximum score, but only one match is
correct. Then, we need to decide which one. For example, in Fig. 9.32,
node c in tree A can match either the first or the last node c in tree B.

Fig. 9.32. Two trees with more than one possible match: which is correct?

To deal with this problem, we can use data content similarity. Data
items that share some common substrings are more likely to match. In
many cases, a data item contains both the attribute name and the attribute
value. For example, “shopping in 24 hours” and “shopping within a week”.

g c

b a

p

c

b a

p

c

B A

366 9 Structured Data Extraction: Wrapper Generation

The data content similarity can in fact be considered in the simple tree
matching (STM) algorithm in Fig. 9.19 with minor changes to line 1 and
line 11. Data contents (data items) should be included as leaves of the
DOM trees. When data items are matched, their match score is computed.
In [601], the longest common subsequence (LCS) is used, but cosine
similarity should work too. Let q be the number of words in the LCS of the
two data items, and m be the maximal number of words contained in them.
Their matching score is computed with q/m.

9.8.5 Making Use of Visual Information

It is quite clear that many visual features that are designed to help people
locate and understand information in a Web page can help data extraction.
We have already shown that visual cues can be used to construct DOM
trees. In fact, they can be exploited everywhere. Here are some examples:

• Reduce the number of string or tree comparisons. If two sub-trees are
visual too different, they do not need to be compared.

• Confirm the boundary of data records using the space gap between data
records. It is usually the case that gaps between data records are larger
than gaps between items within a data record.

• Determine item alignment. Visual alignment (left, right or center) of
items can help determine whether two data items should match. Relative
positions of the data items in each data record are very helpful too.

• Identify data records based on their contour shapes. This method was
exploited to segment data records from search engine results [612].

9.8.6 Some Other Techniques

Both string comparison and tree comparison based methods have been
used to solve the data extraction problem. The task described in Sect. 9.8.2
can be done either based on strings or trees. A pure string based method
called was proposed in [91]. It finds patterns from the HTML tag string,
and then uses the patterns to extract data. The center star method is used to
align multiple strings. A more sophisticated string based method, which
also deals with nested records, was proposed in [530]. The main problem
with string based methods is that they can find many patterns and it is hard
to determine which one is correct. Some patterns may cross boundaries of
data records. In [91], the user needs to choose the right pattern for extrac-
tion. In [530], multiple pages containing similar data records and other
methods are used to choose the right pattern. This problem is not a major

9.9 Extraction Based on a Single List Page: Nested Data Records 367

issue for tree based methods because of tree structures, which eliminate
most alternatives. The observations made in Sect. 9.8.1 were also very
helpful. In [312], a method based on constraints and the EM algorithm is
proposed, which needs to use some information from detail pages to seg-
ment data records. Note that a data record usually (not always) has a link
to its detail page, which contains the detail description of the object (e.g., a
product) represented by the data record.

Visual information is extensively used in [612] to segment snippets
(data records) of returned pages from search engines. It uses the contour
shape on the left of each snippet, distance from the left boundary of the
page, and also the type of each line in a snippet (e.g., text line, link line,
empty line, etc.) to determine the similarity of candidate data records.

9.9 Extraction Based on a Single List Page: Nested Data
Records

The problem with the method in Sect. 9.8 is that it is not suitable for nested
data records, i.e., data records containing nested lists. Since the number of
elements in a list of each data record can be different, using a fixed thresh-
old to determine the similarity of data records will not work.

The problem, however, can be dealt with as follows. Instead of travers-
ing the DOM tree top down, we can traverse it post-order. This ensures
that nested lists at lower levels are found first based on repeated patterns
before going to higher levels. When a nested list is found, its records are
collapsed to produce a single pattern which replaces the list of data re-
cords. When comparisons are made at a higher level, the algorithm only
sees the pattern. Thus it is treated as a flat data record. This solves the
fixed threshold problem above. We introduce an algorithm below, which is
based on the NET system in [351]. A running example is also given to il-
lustrate the process.

The NET algorithm is given in Fig. 9.33. It is basically a post-order tree
traversal algorithm. The observations in Sect. 9.8.1 are still applicable
here. The function TraverseAndMatch() performs the post-order traversal.
During the process, each nested list is collapsed. The function PutDataIn-
Tables() (line 3) outputs the extracted data to the user in relational tables (a
page may have multiple data regions, and data in each region are put in a
separate table). Line 3 can be easily done if the function TraverseAnd-
Match() saves the nodes whose children form data records.

Line 1 of TraverseAndMatch() says that the algorithm will not search
for data records if the depth of the sub-tree from Node is 2 or 1 as it is
unlikely that a data record is formed with only a single level of tag(s). This

368 9 Structured Data Extraction: Wrapper Generation

parameter can be changed. The Match() function performs tree matching
on child sub-trees of Node and pattern generation. τ is the threshold for a
match of two trees that are considered sufficiently similar.

Match(): The Match() function is given in Fig. 9.34. Figure 9.35 shows a
running example. In this figure, Ni represents an internal node, and tj
represents a terminal (leaf) node with a data item. We use the same shape
or shading to indicate matching nodes. We explain the algorithm below.

Given the input node Node, line 1 obtains all its children to be matched.
In our example, Children of p are t1, N1, N2, N3, N4, t2, N5, N6, N7, N8,
and N9 (with their sub-trees). Lines 2–4 set every pair of child nodes to be
matched. The matching is done by TreeMatch(), which uses algorithm

Algorithm NET(Root, τ)
1 TraverseAndMatch(Root, τ);
2 for each top level node Node whose children have aligned data records do
3 PutDataInTables(Node);
4 endfor

Function TraverseAndMatch (Node, τ)
1 if Depth(Node) ≥ 3 then
2 for each Child ∈ Node.Children do
3 TraverseAndMatch(Child, τ);
4 endfor
5 Match(Node, τ);
6 endif

Fig. 9.33. The NET algorithm

Function Match(Node, τ)
1 Children ← Node.Children;
2 while Children ≠ ∅ do
3 ChildFirst ← select and remove the first child from Children;
4 for each ChildR in Children do
5 if TreeMatch(ChildFirst, ChildR) > τ then
6 AlignAndLink();
7 Children ← Children – {ChildR}
8 endfor
9 if some alignments (or links) have been made with ChildFirst then
10 GenNodePattern(ChildFirst)
11 endwhile
12 If consecutive child nodes in Children are aligned then
13 GenRecordPattern(Node)

Fig. 9.34. The Match function

9.9 Extraction Based on a Single List Page: Nested Data Records 369

STM() in Fig. 9.19. AlignAndLink() (line 6) aligns and links all matched
data items (leaf nodes) in ChildFirst and ChildR. The links are directional,
i.e., from earlier data items to later (matched) data items. If ChildR
matches ChildFirst, ChildR is removed from Chirdren so that it will not be
matched again later (line 7). For our example, after lines 4−11, the result-
ing matches and links (dashed lines) are given in Fig. 9.35. Assume they
all satisfy the match condition in line 5.

In lines 9−10, if some alignments (or links) have been made, the Gen-
NodePattern() function generates a node pattern for all the nodes (includ-
ing their sub-trees) that match ChildFirst. This function first gets the set of
matched nodes ChildR’s, and then calls PartialTreeAlignment() in Fig.
9.23 to produce a pattern which is the final seed tree. Note that Partial-
TreeAlignment() can be simplified here because most alignments have
been done. Only insertions and matching of unaligned items are needed. A
node pattern can also be represented as a regular expression.

In lines 12−13, it collapses the sub-trees to produce a global pattern for
the data records (which are still unknown). Notice that lines 9−10 already
produced the pattern for each child sub-tree. The GenRecordPattern() func-
tion simply produces a regular expression pattern for the list of data re-
cords. This is essentially a grammar induction problem [243].

Grammar induction in our context is to infer a regular expression given
a finite set of positive and negative example strings. However, we only
have a single positive example (a list of hidden data records). Fortunately,
structured data in Web pages are usually highly regular which enables heu-
ristic methods to generate “simple” regular expressions. Here, we intro-
duce such a simple method, which depends on three assumptions:

1. The nodes in the first data record at each level must be complete, e.g., in
Fig. 9.35, nodes t1, N1 and N2 must all be present.

t1

 p

 N3 N4

t6 t7 t8

 N1 t2

t3 t4

N5

t9 t10

N7 N6

t12 t13t11

N8 N9

t14 t15 t16

N2

t5

Fig. 9.35. A running example: All matched items are linked

370 9 Structured Data Extraction: Wrapper Generation

2. The first node of every data record at each level must be present, e.g., at
the level of t1 and t2, they both must be present, and at the next level,
N1, N3, N5, N7 and N8 must be present. Note that the level here is in
the hierarchical data organizational sense (not the HTML code sense).

3. Nodes within a single flat data record (no nesting) do not match one an-
other, e.g., N1 and N3 do not appear in the same data record.

The GenRecordPattern() function is given in Fig. 9.36. It generates a
regular expression pattern.

Function GenRecordPattern(Node)
1 String ← Assign a distinctive symbol to each set of matched children of Node;
2 Initilize a data structure for NFA N = (Q, Σ, δ, q0, F), where Q is the set of

states, Σ is the symbol set containing all symbols appeared in String, δ is the
transition relation that is a partial function from Q × (Σ ∪ {ε}) to Q, and F is
the set of accept states, Q ← {q0} (q0 is the start state), δ ← ∅ and F ← ∅;

3 qc ← q0; // qc is the current state
4 for each symbol s in String in sequence do
5 if ∃ a transition δ(qc, s) = qn then
6 qc ← qn // transit to the next state;
7 else if ∃ δ(qi, s) = qj, where qi, qj ∈ Q then // s appeared before
8 if ∃ δ(qf, ε) = qi, where δ(qi, s) = qj and f ≥ c then
9 TransitTo(qc, qf)
10 else TransitTo(qc, qi)
11 qc ← qj
12 else create a new state qc+1 and a transition δ(qc, s) = qc+1,
 i.e., δ ← δ ∪ {((qc, ε), qc+1)}
13 Q ← Q ∪ {qc+1};
14 qc ← qc+1
15 if s is the last symbol in String then
16 Assign the state with the largest subscript the accept state qr, F = {qr};
17 TransitTo(qc, qr);
18 endfor
19 generate a regular expression based on the NFA N;
20 Substitute all the node patterns into the regular expression.

Function TransitTo(qc, qs)
1 while qc ≠ qs do
2 if ∃ δ(qc, ε) = qk and k>c then
3 qc ← qk

4 else create a transition δ(qc, ε) = qc+1, i.e., δ ← δ ∪ {((qc, ε), qc+1)};
5 qc ← qc+1
6 endwhile

Fig. 9.36. Generating regular expressions

9.9 Extraction Based on a Single List Page: Nested Data Records 371

Line 1 in Fig. 9.36 simply produces a string for generating a regular ex-
pression. For our example, we obtain the following:

 t1 N1 N2 N3 N4 t2 N5 N6 N7 N8 N9
 String: a b c b c a b c b b c

Lines 2−3 initialize a NFA (non-deterministic finite automaton). Lines
4−18 traverses String from left to right to construct the NFA. For our ex-
ample, we obtain the final NFA in Fig. 9.37.

Fig. 9.37. The generated NFA and its regular expression

Line 19 produces a regular expression from the NFA, which is shown in
Fig. 9.37 on the right.

Line 20 produces the final pattern (Fig. 9.38) by substituting the node
patterns into the regular expression. Here, we use node t1 as the pattern
(the seed tree) for nodes t1 and t2, the N1 sub-tree as the pattern for all the
linked sub-trees rooted at N1, N3, N5, N7 and N8. The N2 sub-tree is the
pattern of the sub-trees rooted at N2, N4, N6 and N9.

Fig. 9.38. The regular expression produced from Fig. 9.35

Some additional notes about the algorithm are in order:

• Each child node here represents a sub-tree (e.g., N1, N2, etc). Assump-
tion 1 does not require lower level nodes of each sub-tree in the first
data record to be complete (no missing items). We will see an example
in Fig. 9.40 and Fig. 9.41.

• Regular expressions produced by the algorithm do not allow disjunc-
tions (i.e., A|B) except (A|ε), which means that A is optional. Such regu-
lar expresses are called union-free regular expressions. However, dis-
junctions are possible at lower level matches of the sub-trees. We will
discuss the issue of disjunction again in Sect. 9.11.2.

• Function GenRecordPattern() in Fig. 9.37 assumes that under Node
there is only one data region, which may not be true. The algorithm can

t1 N2

t5

N1

t3 t4

? ++

(a (b c?)+)+
a b

ε

ε

c
ε

q0 q1 q3 q4

372 9 Structured Data Extraction: Wrapper Generation

be easily extended to take care of multiple data regions under Node. In
fact, the NET() algorithm here is a simplified version to present the
main ideas. For practical use, it can be significantly enhanced to remove
most assumptions if not all.

Finally, the function PutDataInTables() (line 3 of NET() in Fig. 9.33)
simply outputs data items in a table, which is straightforward after the data
record patterns are found. For the example in Fig. 9.35, the following data
table is produced (only terminal nodes contain data):

Fig. 9.39. The output data table for the example in Fig. 9.35

Fig. 9.42. The output data table for the example in Fig. 9.40

Let us use a smaller but more complete example (Fig. 9.40) to show that
generating a pattern of a lower level list makes it possible for a higher level
matching. At the level of N4−N5 (which has the parent N2), t3−t5 and
t4−t6 are matched (assume they satisfy the match condition, line 5 of Fig.
9.34). They are aligned and linked (dash lines). N4 and N5 are data records
at this level (nested in N2 in this case), in which t7 is optional. N4 and N5

t1 t3 t4 t5
t1 t6 t7 t8
t2 t9 t10 t11
t2 t12 t13
t2 t14 t15 t16

N3

t8 t9

t2

 N2

 N4 N5

N1

 N3

t8 t9

t2

N2

 N5 +

t5 t6

t1 N6

Fig. 9.40. Aligned data nodes are linked

N6

t3 t4 t5 t6 t7 t7

N1

Fig. 9.41. Alignment after collapsing

t1

?

t1 t3 t4
t1 t5 t6 t7
t2 t8 t9

9.10 Extraction Based on Multiple Pages 373

are then collapsed to produce a pattern data record using GenNodePattern()
first and then GenRecordPattern(), which does not do anything in this case.
t7 is marked with a “?”, indicating that it is optional. The pattern data re-
cord is N5 (selected based on the PartialTreeAlignment() function). The
sub-tree at N4 is then omitted in Fig. 9.41. N5 is marked with a “+” indi-
cating that there is one or more such data records and that the sub-tree of
N5 is the pattern. We can see in Fig. 9.41 that the sub-trees rooted at N2
and N3 can now match. The final output data table is given in Fig. 9.42.

9.10 Extraction Based on Multiple Pages

We now discuss the second extraction problem described in Sect. 9.4.1.
Given multiple pages with the same encoding template, the system finds
patterns from them to be used to extract data from other similar pages. The
collection of input pages can be a set of list pages or detail pages. Below,
we first see how the techniques described so far can be applied in this set-
ting, and then describe a technique specifically designed for this setting.

9.10.1 Using Techniques in Previous Sections

We discuss extraction of list pages and detail pages separately.

Given a Set of List Pages

Since the techniques described in previous sections are for a single list
page, they can obviously be applied to multiple list pages. The pattern dis-
covered from a single page can be used to extract data from the rest of the
pages. Multiple list pages may also help improve the extraction. For exam-
ple, patterns from all input pages may be found separately and merged to
produce a single refined pattern. This can deal with the problem that a sin-
gle page may not contain the complete information.

Given a Set of Detail Pages

In some applications, one needs to extract data from detail pages as they
contain more information. For example, in a list page, the information on
each product is usually quite brief, e.g., containing only the name, image,
and price. However, if an application also needs the product description
and customer reviews, one has to extract them from detail pages.

For extraction from detail pages, we can treat each page as a data record
and apply the algorithms described in Sect. 9.8 and/or Sect. 9.9. For in-

374 9 Structured Data Extraction: Wrapper Generation

stance, to apply the NET algorithm, we can simply construct a rooted tree
as input to NET as follows: (1) create an artificial root node, and (2) make
the DOM tree of each page as a child sub-tree of the artificial root.

9.10.2 RoadRunner Algorithm

We now describe the RoadRunner algorithm [117], which is designed spe-
cifically for problem 2. Given a set of pages, each containing one or more
data records (i.e., the pages can be list pages or detail pages), the algorithm
compares the pages to find similarities and differences, and in the process
generating a union-free regular expression (i.e., a regular expression
without disjunctions) extractor/wrapper. The approach works as follows:

• To start, it takes a random page as the regular expression wrapper W.
• The wrapper W is then refined by matching it sequentially with the

HTML code of each remaining page pi. It generalizes W by solving
mismatches between the wrapper W and the page pi. A mismatch occurs
when some token in pi does not match the grammar of the wrapper.

There are two types of mismatches:

1. Text string mismatches: They indicate data fields or items.
2. Tag mismatches: They indicate
• optional items, or
• iterators (a list of repeated patterns):

In this case, a mismatch occurs at the beginning of a repeated pattern
and the end of a list. The system finds the last token of the mismatch
position and identifies some candidate repeated patterns from the
wrapper and the page pi by searching forward. It then compares the
candidates with the upward portion of the page pi to confirm.

The algorithm is best explained with an example, which is given in Fig.
9.43. In this figure, page 1 on the left (in HTML code) is the initial wrap-
per. Page 2 on the right is a new page to be matched with page 1.

Let us look at some matches and mismatches. Lines 1−3 of both pages
are the same and thus match. Lines 4 of both pages are text strings and are
different. They are thus data items to be extracted. We go down further.
Lines 6 of the pages do not match. Line 6 of page 1 matches line 7 of page
2. Thus, is likely to be optional. Line 11 of page 1 and line
12 of page 2 give another mismatch. Since they are text strings, they are
thus data items to be extracted. Line 17 of page 1 and line 18 of page 2 are
also data items. Another mismatch occurs at line 19 of page 1 and line 20

9.11 Some Other Issues 375

of page 2. Further analysis will find that we have a list here. The final re-
fined regular expression wrapper is given at the bottom of Fig. 9.43.

Fig. 9.43. A wrapper generation example

The match algorithm is exponential in the input string length as it has to
explore all possibilities. A set of heuristics is introduced to lower the com-
plexity by limiting the space to explore and to backtrack. In [26], a more
efficient method is given based on sophisticated tag path analysis.

9.11 Some Other Issues

We now briefly discuss a few other issues that are important to automatic
extraction techniques.

9.11.1 Extraction from Other Pages

Once the encoding template pattern is found, it can be used to extract data
from other pages that contain data encoded in the same way. There are
three ways to perform the extraction:

- Wrapper (initially Page 1): - Sample (page 2)

1: <HTML> parsing 1: <HTML>
2: Books of: 2: Books of:
3: 3:
4: Paul Smith string mismatch 4: Mike Jones
5: 5:
6: tag mismatch (?) 6:
 7:
7: 8:
8-10: <I>Title:</I> 9-11: <I>Title:</I>
11: Web Mining string mismatch (#text) 12: Databases
12: 13:
13: 14:
14-16: <I>Title:</I> 15-17: <I>Title:</I>
17: Data Mining string mismatch (#text) 18: HTML Premier
18: 19:
19: tag mismatch (+) 20:
20: </HTML> 21-23: <I>Title:</I>
 terminal tag search and 24: Javascript
 square matching 25:
 26:
- Wrapper after solving mismatches: 27: </HTML>

 <HTML>Books of:#text
 ()?

 (<I>Title:</I>#text)+
 <HTML>

376 9 Structured Data Extraction: Wrapper Generation

• Finite-state machines: An encoding template pattern is usually repre-
sented as a regular expression. A nondeterministic finite-state automa-
ton can be constructed to match occurrences of the pattern in the input
string representing a Web page. In the process, data items are extracted.

• Pattern matching: It is also possible to directly match the string or tree
pattern against the input to extract data. This approach is more flexible
than finite-state machines because pattern matching allows partial
matching. For example, in the page where the pattern is discovered, an
optional item does not occur, but it occurs in some other pages. Pattern
matching can deal with this easily. In the process, the pattern can be en-
hanced as well by inserting the new optional item in it.

• Extracting each page independently: The above two approaches can be
problematic if the Web site use many different templates to encode its
data. If we start to extract after only finding one pattern, then the data
encoded using other templates will not be extracted. One solution to this
is to find patterns from each page and extract the page using only the
discovered patterns from the page. However, handling each page indi-
vidually is inefficient.

Detecting new templates: To detect new templates without sacrificing ef-
ficiency of mining extraction patterns from each page, a pre-screening
strategy may be applied. In most applications, the user is interested in only
a particular kind of data, e.g., products, research publications, or job post-
ings. It is usually possible to design some simple and efficient heuristics to
check whether a page contains such data. If so, a full blown extraction is
performed using already generated patterns. If no data is extracted from the
page, it is an indication that the page is encoded with a different template.
A new mining process can be initiated to discover the new template.

9.11.2 Disjunction or Optional

In automatic extraction, it can be difficult to recognize disjunctions. For
example, for the three digital cameras in Fig. 9.44, it is easy to know that
“On Sale” is an optional item. However, for the prices (including “Out of
stock”), it is hard to decide whether they are optional items or disjuncts of
a disjunction. The HTML codes for the three fields are given below,

(1) $250.00
(2) <i> $300.00 </i>
(3) <i> Out of stock </i>.

If they are treated as optional items, they are put in three different col-
umns in the output table, but if they are disjuncts, they are put in the same

9.11 Some Other Issues 377

column. In this example, it is easy for a human user to see that they are dis-
juncts, i.e., (#text) | (<i> #text </i>) | (<i> #text</i>).

Fig. 9.44. Disjuncts or optional items

There are two main pieces of information that can be used to determine
whether they are optional or disjuncts:

1. Visual information: If they are in the same relative location with respect
to their objects, then they are more likely to be disjuncts. In the above
example, the three items are all at the same relative location.

2. Data type information: If the data items are of the same type, they are
more likely to be disjuncts. “$250.00” and “$300.00” are of the same
type, but “Out of stock” is not.

In many cases, it can be hard to decide. Fortunately, disjunctive cases
are rare on the Web. Even if an extraction system does not deal with dis-
junction, it does not cause a major problem. For example, if “Out of stock”
is identified as optional, it is probably acceptable.

9.11.3 A Set Type or a Tuple Type

Sometimes it can also be difficult to determine whether a list is a tuple type
or a set type. For example, if all the lists of a set type have the same num-
ber of elements, it is hard to know if they are in fact attributes of a tuple.
For instance, the following are three colors of a jacket with different
prices. Clearly, they represent a set instance with a list of three tuples:

<tr><td>Blue:</td> <td> $5.00 </td></tr>
<tr><td>Yellow:</td> <td> $6.50 </td></tr>
<tr><td>Pink:</td> <td> $10.99 </td></tr>.

However, the following specifications of a particular product are obviously
the attributes of the product. Without knowing the semantics of the en-
coded data, it is difficult to know that the above three are a set instance and
the following two are attributes of a tuple:

<tr><td>weight:</td> <td> 30 kg </td></tr>
<tr><td>height:</td> <td> 5 m </td></tr>.

(1) (2) (3)

Digital camera 4mp

 $250.00

Digital camera 5mp

$300.00
On Sale

Digital camera 3mp

Out of stock

378 9 Structured Data Extraction: Wrapper Generation

If multiple lists of the same type are available, we may have some addi-
tional information to make the decision. For instance, one pair of shoes has
three colors, and another has four colors. We can be fairly confident that
different sets of colors represent set instances (or lists). In the second ex-
ample, if all products have both height and width, it is more likely that they
are attributes. However, these heuristics do not always hold. In some cases,
it is hard to decide without understanding of the data semantics.

9.11.4 Labeling and Integration

Once the data is extracted from a page/site and put in tables, it is desirable
to label each column (assigning an attribute name to it). Some preliminary
studies have been reported in [27, 530]. However, the problem is still very
much open. Furthermore, the extracted data from multiple sites may need
to be integrated. There are two main integration problems. The first one is
schema matching, which matches columns of data tables. The second one
is data value/instance match. For example, in one site, Coca Cola is
called “Coke”, but in another site it is called “Coca Cola”. The problem is:
how does the system know that they are the same semantically? In Chap.
10, we will study some data integration techniques.

9.11.5 Domain Specific Extraction

In most applications, the user is only interested in some specific data ob-
jects, e.g., products sold online, and for each object, only some specific
items are needed, e.g., product name, image, and price. Domain specific
information can be exploited to simplify and also to speed up the extrac-
tion dramatically. Such information can be utilized in at least two ways.

1. Quickly identify pages that may contain required data. For example, it is
fairly easy to design some domain heuristics to determine whether a
page contains a list of products (a list page). One heuristic is to detect
repeated images and repeated prices in some fixed order and interval.
Such heuristics are usually very efficient to execute and can be used to
filter out those pages that are unlikely to contain required data. The ex-
traction algorithm, which is slower, will only run on those pages that are
very likely to contain target data.

2. Identifying target items in a data record. Based on the characteristics of
target items, it may be easy to identify and label the target items. For
example, it is often easy to find product names and product images
based on simple heuristics. If heuristics are not reliable, machine learn-

Bibliographic Notes 379

ing methods may be applied to learn models to identify target items. For
example, in [620], an extended conditional random fields method is
used to learn an extraction model, which is then used to extract target
items from new data records.

9.12 Discussion

Finally, we discuss the main advantages and disadvantages of wrapper in-
duction and automatic data extraction. The key advantage of wrapper in-
duction is that it extracts only the data that the user is interested in. Due to
manual labeling, there is no schema matching problem. However, data
value or instance matching is still needed. The main disadvantages are that
it is not scalable to a large number of sites due to significant manual ef-
forts, and that maintenance is very costly if sites change frequently.

The main advantages of automatic extraction are that it is scalable to a
huge number of sites, and that there is little maintenance cost. The main
disadvantage is that it can extract a large amount of unwanted data because
the system does not know what is interesting to the user. Also, in some ap-
plications, the extracted data from multiple sites need integration, i.e., their
schemas as well as values need to be matched, which are difficult tasks.
However, if the application domain is narrow, domain heuristics may be
sufficient to filter out unwanted data and to perform the integration tasks.

In terms of extraction accuracy, it is reasonable to assume that wrapper
induction is more accurate than automatic extraction, although there is no
reported large scale study comparing the two approaches.

Bibliographic Notes

Web data extraction techniques can be classified into three main catego-
ries: (1) wrapper programming languages and visual platforms, (2) wrap-
per induction, and (3) automatic data extraction. The first approach pro-
vides some specialized pattern specification languages and visual
platforms to help the user construct extraction programs. Systems that fol-
low this approach include WICCAP [613], Wargo [457], Lixto [41], etc.

The second approach is wrapper induction, which uses supervised learn-
ing to learn data extraction rules from a set of manually labeled positive
and negative examples. A theoretical work on wrapper learning based on
the PAC learning framework was done by Kushmerick [295]. Example
wrapper induction systems include WIEN [296], Softmealy [244], Stalker

380 9 Structured Data Extraction: Wrapper Generation

[399], WL2 [108], Thresher [241], IDE [599], [250], etc. Most existing
systems are based on inductive learning from a set of labeled examples.
IDE [599] employs a simple instance-based learning technique, which per-
forms active learning at the same time so that the user only needs to label a
very small number of pages. Related ideas are also used in [90] and [241].
Most existing wrapper induction systems built wrappers based on similar
pages from the same site. Zhu et al. [620, 621] reported a system that
learns from labeled pages from multiple sites in a specific domain. The re-
sulting wrapper can be used to extract data from other sites. This avoids
the labor intensive work of building a wrapper for each site.

The third approach is automatic extraction. In [163], Embley et al. stud-
ied the automatic identification of data record boundaries given a list page.
The technique uses a set of heuristic rules and domain ontologies. In [75],
Buttler et al. proposed additional heuristics to perform the task without us-
ing domain ontologies. The MDR algorithm discussed in this chapter was
proposed by Liu et al. [341]. It uses string edit distance in pattern finding
(incidentally, Lloyd Allison has a great page on string edit distance). An
algorithm based on the visual information was given by Zhao et al. [612]
for extracting search engine results. These systems, however, do not align
or extract data items from data records. Chang et al. [91] reported a semi-
automatic system called IEPAD to find extraction patterns from a list page
to extract data items. The DeLa system by Wang et al. [530] works in the
same framework. The DEPTA system by Zhai and Liu [600] works in a
different way. It first segments data records, and then aligns and extracts
data items in the data records using the partial tree alignment algorithm.
Both DEPTA and IEPAD do not deal with nested data records, which are
dealt with in NET [351] and DeLa [530].

The RoadRunner system, which needs multiple pages as input, was pro-
posed by Crescenzi et al. [117]. Its theoretical foundation was given by
Grumbach and Mecca [210]. Sects. 9.1 and 9.4 of this chapter are influ-
enced by this paper. The work of RoadRunner was improved by Arasu and
Garcia-Molina in their EXALG system [26]. Both systems need multiple
input pages with a common schema/template and assume that these pages
are given. The pages can be either detail pages or list pages. The method
proposed in [312] works in a similar setting.

10 Information Integration

In Chap. 9, we studied data extraction from Web pages. The extracted data
is put in tables. For an application, it is, however, often not sufficient to ex-
tract data from only a single site. Instead, data from a large number of sites
are gathered in order to provide value-added services. In such cases, ex-
traction is only part of the story. The other part is the integration of the ex-
tracted data to produce a consistent and coherent database because differ-
ent sites typically use different data formats. Intuitively, integration means
to match columns in different data tables that contain the same type of in-
formation (e.g., product names) and to match values that are semantically
identical but represented differently in different Web sites (e.g., “Coke”
and “Coca Cola”). Unfortunately, limited integration research has been
done so far in this specific context. Much of the Web information integra-
tion research has been focused on the integration of Web query interfaces.
This chapter will have several sections on their integration. However,
many ideas developed are also applicable to the integration of the extracted
data because the problems are similar.

Web query interfaces are used to formulate queries to retrieve needed
data from Web databases (called the deep Web). Figure 10.1 shows two
query interfaces from two travel sites, expedia.com and vacation.com. The
user who wants to buy an air ticket typically tries many sites to find the
cheapest ticket. Given a large number of alternative sites, he/she has to ac-
cess each individually in order to find the best price, which is tedious. To
reduce the manual effort, we can construct a global query interface that
allows uniform access to disparate relevant sources. The user can then fill
in his/her requirements in this single global interface and all the underlying
sources (or databases) will be automatically filled and searched. The re-
trieved results from multiple sources also need to be integrated. Both inte-
gration problems, i.e., integration of query interfaces and integration of re-
turned results, are very challenging due to the heterogeneity of Web sites.

Clearly, integration is not peculiar only to the Web. It was, in fact, first
studied in the context of relational databases and data warehouse. Hence,
this chapter first introduces most integration related concepts using tradi-
tional data models (e.g., relational) and then shows how the concepts are
tailored to Web applications and how Web specific problems are handled.

382 10 Information Integration

Fig. 10.1. Two examples of Web query interfaces

10.1 Introduction to Schema Matching

Information/data integration has been studied in the database community
since the early 1980s [40, 146, 455]. The fundamental problem is schema
matching, which takes two (or more) database schemas to produce a map-
ping between elements (or attributes) of the two (or more) schemas that
correspond semantically to each other. The objective is to merge the sche-
mas into a single global schema. This problem arises in building a global
database that comprises several distinct but related databases. One applica-
tion scenario in a company is that each department has its database about
customers and products that are related to the operations of the department.
Each database is typically designed independently and possibly by differ-
ent people to optimize database operations required by the functions of the
department. This results in different database schemas in different depart-
ments. However, to consolidate the data about customers or company op-
erations across the organization in order to have a more complete under-
standing of its customers and to better serve them, integration of databases
is needed. The integration problem is clearly also important on the Web as
we discussed above, where the task is to integrate data from multiple sites.

There is a large body of literature on the topic. Most techniques have
been proposed to achieve semi-automatic matching in specific domains
(see the surveys in [146, 265, 455, 491]). Unfortunately, the criteria and
methods used in match operations are almost all based on domain heuris-
tics which are not easily formulated mathematically. Thus, to build a
schema matching system, we need to produce mapping heuristics which
reflect our understanding of what the user considers to be a good match.

Schema matching is challenging for many reasons. First of all, schemas
of identical concepts may have structural and naming differences. Schemas
may model similar but not identical contents, and may use different data
models. They may also use similar words for different meanings.

10.1 Introduction to Schema Matching 383

Although it may be possible for some specific applications, in general, it
is not possible to fully automate all matches between two schemas because
some semantic information that determines the matches between two
schemas may not be formally specified or even documented. Thus, any
automatic algorithm can only generate candidate matches that the user
needs to verify, i.e., accept, reject or change. Furthermore, the user should
also be allowed to specify matches for elements that the system is not able
to find satisfactory match candidates. Let us see a simple example.

Example 1: Consider two schemas, S1 and S2, representing two customer
relations, Cust and Customer.

S1 S2
Cust Customer

CNo CustID
CompName Company
FirstName Contact
LastName Phone

We can represent the mapping with a similarity relation, ≅, over the
power sets of S1 and S2, where each pair in ≅ represents one element of the
mapping. For our example schemas, we may obtain

 Cust.CNo ≅ Customer.CustID
 Cust.CompName ≅ Customer.Company
 {Cust.FirstName, Cust.LastName} ≅ Customer.Contact ▀

There are various types of matching based on the input information [455].

1. Schema-level only matching: In this type of matching, only the schema
information (e.g. names and data types) is considered. No data instance
is available.

2. Domain and instance-level only matching: In this type of match, only
instance data and possibly the domain of each attribute are provided. No
schema is available. Such cases occur quite frequently on the Web,
where we need to match corresponding columns of the hidden schemas.

3. Integrated matching of schema, domain and instance data: In this
type of match, both schemas and instance data (possibly domain infor-
mation) are available. The match algorithm can exploit clues from all of
them to perform matching.

There are existing approaches to all above types of matching. We will fo-
cus on the first two types. The third type usually combines the results of
techniques from the first two, which we discuss in Sect. 10.5. Before going
to the details, we first discuss some pre-processing tasks that usually need
to be done before matching.

384 10 Information Integration

10.2 Pre-Processing for Schema Matching

For pre-processing, issues such as concatenated words, abbreviations, and
acronyms are dealt with. That is, they need to be normalized before being
used in matching [227, 358, 559].

Prep 1 (Tokenization): This process breaks an item, which can be a
schema element (attribute) or attribute value, into atomic words. Such
items are usually concatenated words. Delimiters (such as “-”, “_”, etc.)
and case changes of letters are used to suggest the breakdown. For ex-
ample, we can break “fromCity” into “from City”, and “first-name” into
“first name”. A domain dictionary of words is typically maintained to
help the breakdown. Note that if “from”, “city”, “first” and “name” are
not in the dictionary, they will be added to the dictionary. Existing dic-
tionary words are also utilized to suggest the breakdown. For example,
“deptcity” will be split into “dept” and “city” if “city” is a word. The
dictionary may be constructed automatically, which consists of all the
individual words appeared in the given input used in matching, e.g.,
schemas, instance data and domains. The dictionary is updated as the
processing progresses. However, the tokenization step has to be done
with care. For example, we have “Baths” and “Bathrooms” if we split
“Bath” with “Room” it could be a mistake because “Rooms” could have
a very different meaning (the number of rooms in the house). To be
sure, we need to ensure that “Bathroom” is not an English word, for
which an online English dictionary may be employed.

Prep 2 (Expansion): It expands abbreviations and acronyms to their full
words, e.g., from “dept” to “departure”. The expansion is usually done
based on the auxiliary information provided by the user or collected
from other sources. Constraints may be imposed to ensure that the ex-
pansion is likely to be correct. For example, we may require that the
word to be expanded is not in the English dictionary, with at least three
letters, and having the same first letter as the expanding word. For ex-
ample, “CompName” is first converted to (Comp, Name) in tokeniza-
tion, and then “Comp” is expanded to “Company”.

Prep 3 (Stopword removal and stemming): These are information re-
trieval pre-processing methods (see Chap. 6). They can be performed to
attribute names and domain values. A domain specific stopword list
may also be constructed manually. This step is useful especially in lin-
guistic based matching methods discussed below.

Prep 4 (Standardization of words): Irregular words are standardized to a
single form (e.g., using WordNet [175]), “colour”→ “color”, “Children”
→ “Child”.

10.3 Schema-Level Matching 385

10.3 Schema-Level Matching

A schema level matching algorithm relies on information about schema
elements, such as name, description, data type and relationship types (such
as part-of, is-a, etc.), constraints and schema structures. Before introduc-
ing some matching methods using such information, let us introduce the
notion of match cardinality, which describes the number of elements in
one schema that match the number of elements in the other schema.

In general, given two schemas, S1 and S2, within a single match in the
match relation one or more elements of S1 can match one or more elements
of S2. We thus have 1:1, 1:m, m:1 and m:n matches. 1:1 match means that
one element of S1 corresponds to one element of S2, and 1:m means that
one element of S1 corresponds to a set of m (m > 1) elements of S2.

Example 2: Consider the following schemas:
S1 S2
Cust Customer

CustomID CustID
Name FirstName
Phone LastName

We can find the following 1:1 and 1:m matches:
1:1 CustomID CustID
1:m Name FirstName, LastName ▀

m:1 match is similar to 1:m match; m:n match is considerably more com-
plex. An example of an m:n match is to match Cartesian coordinates with
polar coordinates. There is little work on such complex matches. Most ex-
isting approaches are for 1:1 and 1:m matches.

We now describe some general matching approaches that employ vari-
ous types of information available in schemas. There are two main types of
information in schemas, natural language words and constraints. Thus,
there are two main types of approaches to matching.

10.3.1 Linguistic Approaches

They are used to derive match candidates based on the names, comments
or descriptions of schema elements [107, 133, 144, 145, 227, 358, 559].

Name Match

N1 − Equality of names: The same name in different schemas often has the
same semantics.

386 10 Information Integration

N2 − Synonyms: The names of two elements from different schemas are
synonyms, e.g., Customer ≅ Client. This requires the use of thesaurus
and/or dictionaries such as WordNet. In many cases, domain depend-
ent or enterprise specific thesaurus and dictionaries are required.

N3 − Equality of hypernyms: A is a hypernym of B if B is a kind of A. If
X and Y have the same hypernym, they are likely to match. For exam-
ple, “Car” is-a “vehicle” and “automobile” is-a “vehicle”. Thus, we
have Car ≅ vehicle, automobile ≅ vehicle, and Car ≅ automobile.

N4 − Common substrings: Edit distance and similar pronunciation may be
used. For example, CustomerID ≅ CustID, and ShipTo ≅ Ship2.

N5 − Cosine similarity: Some names are natural language words or phrases
(after pre-processing). Then, text similarity measures are useful. Co-
sine similarity is a popular similarity measure used in information re-
trieval (see Chap. 6). This method is also very useful for Web query
interface integration since the labels of the schema elements are natu-
ral language words or phrases (see the query interfaces in Fig. 10.1)

N6 − User provided name matches: The user may provide a domain de-
pendent match dictionary (or table), a thesaurus, and/or an ontology.

Description Match

In many databases, there are comments to schema elements, e.g.,

S1: CNo // customer unique number
S2: CustID // id number of a customer

These comments can be compared based on the cosine similarity as well.

D1 – Use the cosine similarity to compare comments after stemming and
stopword removal.

10.3.2 Constraint Based Approaches

Constraints such as data types, value ranges, uniqueness, relationship types
and cardinalities, etc., can be exploited in determining candidate matches
[327, 358, 382, 424].

C1: An equivalence or compatibility table for data types and keys that s-
pecifies compatibility constraints for two schema elements to match can
be provided, e.g., string ≅ varchar, and (primary key) ≅ unique.

10.4 Domain and Instance-Level Matching 387

Example 3: Consider the following two schemas:
S1 S2
Cust Customer

CNo: int, primary key CustID: int, unique
CompName: varchar (60) Company: string
CTname: varchar (15) Contact: string
StartDate: date Date: date

Constraints can suggest that “CNo” matches “CustID”, and “StartDate”
may match “Date”. “CompName” in S1 may match “Company” in S2 or
“Contact” in S2. Likewise, “CTname” in S1 may match “Company” or
“Contact” in S2. In both cases, the types match. Although in these two
cases, we are unable to find a unique match, the approach helps limit the
number of match candidates and may be combined with other matchers
(e.g., name and instance matchers). For structured schemas, hierarchical
relationships such as is-a and part-of relationships may be utilized to help
match. ▀

In the context of the Web, the constraint information above is often not
explicitly available because Web databases are for general public who are
unlikely to know what an int, string or varchar is. Thus, these types are
never shown in Web pages. However, some information may be inferred
from the domain or instance information, which we discuss next.

10.4 Domain and Instance-Level Matching

In this type of matching, value characteristics are exploited to match
schema elements [53, 145, 327, 531, 558]. For example, the two attribute
names may match according to the linguistic similarity, but they may have
different domain value characteristics. Then, they may not be the same but
homonyms. For example, Location in a real estate sell may mean the ad-
dress, but could also mean some specific locations, e.g., lakefront property,
hillside property, etc.

In many applications, data instances are available, which is often the
case in the Web database context. In some applications, although the in-
stance information is not available, the domain information of each attrib-
ute may be obtained. This is the case for Web query interfaces. Some at-
tributes in the query interface contain a list of possible values (the domain)
for the user to choose from. No type information is explicitly given, but it
can often be inferred. We note that the set of value instances of an attribute
can be treated in the similar way as a domain. Thus, we will only deal with
domains below.

388 10 Information Integration

Let us look at two types of domains or types of values: simple domains
and composite domains. The domain similarity of two attributes, A and B,
is the similarity of their domains: dom(A) and dom(B).

Definition (Simple Domain): A simple domain is a domain in which
each value has only a single component, i.e., the value cannot be decom-
posed.

A simple domain can be of any type, e.g., year, time, money, area, month,
integer, real, string, etc.

Data Type: If there is no type specification at the schema level, we iden-
tify the data type from the domain values. Even if there is a type specifica-
tion at the schema level for each attribute, we can still refine the type to
find more characteristic patterns. For example, the ISBN number of a book
may be specified as a string type in a given schema. However, due to its
fixed format, it is easy to generate a characteristic pattern from a set of
ISBN numbers, e.g., a regular expression. Other examples include phone
numbers, post codes, money, etc. Such specialized patterns are more useful
in matching compatible attribute types.

We describe two approaches for type identification: semi-automatic
[559, 563] and automatic [145, 327] approaches.

Semi-automatic approach: This is done via pattern matching. The pattern
for each type may be expressed as a regular expression, which is defined
by a human expert. For example, the regular expression for the time type
can be defined as “[0−9]{2}:[0−9]{2}" or “dd:dd” (d for digit from 0-9)
which recognizes time of the form “03:15”. One can use such regular ex-
pressions to recognize integer, real, string, month, weekday, date, time,
datetime (combination of date and time), etc. To identify the data type, we
can simply apply all the regular expression patterns to determine the type.

In some cases, the values themselves may contain some information on
the type. For example, values that contain “$” or “US$” indicate the mone-
tary type. For all values that we cannot infer their types, we can assume
their domains are of string type with an infinite cardinality.

Automated approach: Machine learning techniques, e.g., grammar induc-
tion, may be used to learn the underlying grammar/pattern of the values of
an attribute, and then use the grammar to match attribute values of the
other schemas. This method is particularly useful for value of fixed format,
e.g., zip codes, phone numbers, zip codes, ISBNs, date entries, or money-
related entries, if their regular expressions are not specified by the user.

10.4 Domain and Instance-Level Matching 389

The following methods may be used in matching:
DI 1 – Data types are used as constraints. The method C1 above is appli-

cable here. If the data/domain types of two attributes are not compati-
ble, they should not be matched. We can use a table specifying the de-
gree of compatibility between a set of predefined generic data types, to
which data types of schema elements are mapped in order to determine
their similarity.

DI 2 – For numerical data, value ranges, averages and variances can be
computed to access the level of similarity.

DI 3 – For categorical data, we can extract and compare the set of values in
the two domains to check whether the two attributes from different
schemas share some common values. For example, if an attribute from
S1 contains many “Microsoft” entries and an attribute in S2 also contains
some “Microsoft”’s, then we can propose them as a match candidate.

DI 4 – For alphanumeric data, string-lengths and alphabetic/non-alphabetic
ratios are also helpful.

DI 5 – For textual data, information retrieval methods such as the cosine
measure may be used to compare the similarity of all data values in the
two attributes.

DI 6 – Schema element name as value is another match indicator, which
characterizes the cases where matches relate some data instances of a
schema with a set of elements (attributes) in another schema. For exam-
ple, in the airfare domain one schema uses “Economy” and “Business”
as instances (values) of the attribute “Ticket Class”, while in another in-
terface, “Economy” and “Business” are attributes with the Boolean
domain (i.e., “Yes” and “No”). This kind of match can be detected if the
words used in one schema as attribute names are among the values of
attributes in another schema [133, 563].

Definition (Composite Domain and Attribute): A composite domain d
of arity k is a set of ordered k-tuples, where the ith component of each tu-
ple is a value from the ith sub-domain of d, denoted as di. Each di is a sim-
ple domain. The arity of domain d is denoted as αrity(d) (= k). An attrib-
ute is composite if its domain is composite.

A composite domain is usually indicated by its values that contained de-
limiters of various forms. The delimiters can be punctuation marks (such
as “,”, “-”, “/”, “_”, etc) and white spaces and some special words such as
“to”. To detect a composite domain, we can use these delimiters to split a
composite domain into simple sub-domains. In order to ensure correctness,
we may also want to require that a majority of (composite) values can be
consistently split into the same number of components. For example, the
date can be expressed as a composite domain with MM/DD/YY.

390 10 Information Integration

DI 7 – The similarity of a simple domain and a composite domain is de-
termined by comparing the simple domain with each sub-domain of the
composite domain. The similarity of composite domains is established
by comparing their component sub-domains.

We note that splitting a composite domain can be quite difficult in the Web
context. For example, without sufficient auxiliary information (e.g., infor-
mation from other sites) it is not easy to split the following: “Dell desktop
PC 1.5GHz 1GB RAM 30GB disk space”

10.5 Combining Similarities

Let us call a program that assesses the similarity of a pair of elements from
two different schemas based on a particular match criterion a matcher. It
is typically the case that the more indicators we have the better results we
can achieve, because different matchers have their own advantages and
also shortcomings. Combining schema-level and instance-level approach
will produce better results than each type of approaches alone. This com-
bination can be done in various ways.

Given the set of similarity values, sim1(u, v), sim2(u, v), …, simn(u, v), of
a set of n matchers that compared two schema elements u (from S1) and v
(from S2), one of the following strategies can be used to combine their
similarity values.

1. Max: This strategy returns the maximal similarity value of any matcher.
It is thus optimistic. Let the combined similarity be CSim. Then

CSim(u, v) = max{sim1(u, v), sim2(u, v), …, simn(u, v)} (1)

2. Weighted Sum: This strategy computes a weighted sum of similarity
values of the individual matchers. It needs relative weights which corre-
spond to the expected importance of the matchers:

CSim(u, v) = λ1*sim1(u, v) + λ2sim2(u, v) + … +λn*simn(u, v), (2)

where λi is a weight coefficient, and usually determined empirically.
3. Weighted Average: This strategy computes a weighted average of

similarity values of the individual matchers. It also needs relative
weights that correspond to the expected importance of the matchers.

n
vuSimvuSimvuSimvuCSim nn),(...),(),(),(2211 λλλ +++

=
,
 (3)

where λi is a weight coefficient and is determined experimentally.

10.6 1:m Match 391

4. Machine Learning: This approach uses a classification algorithm, e.g.,
a decision tree, a naïve Bayesian classifier, or SVM, to determine
whether two schema elements match each other. In this case, the user
needs to label a set of training examples, which is described by a set of
attributes and a class. The attributes can be the similarities. Each train-
ing example thus represents the similarity values of a pair of schema
elements. The class of the example is either Yes or No, which indicates
whether the two elements match or not as decided by the user.

There are many other possible approaches. In practice, which method to
use involves a significant amount of experimentation and parameter
tuning. Note that the combination can also be done in stages for different
types of matches. For example, we can combine the instance based simi-
larities first using one method, e.g., Max, and then combine schema based
similarities using another method, e.g., Weighted Average. After that, the
final combined similarity computation may use Weighted Sum.

10.6 1:m Match

The approaches presented above are for 1:1 matches. For 1:m match, other
techniques are needed [133, 563, 559]. There are mainly two types of 1:m
matches.
Part-of Type: Each relevant schema element on the many side is a part of

the element on the one side. For example, in one schema, we may have
an attribute called “Address”, while in another schema, we may have
three attributes, “Street”, “City” and “State”. In this case, “Street”,
“City” or “State” is a part of “Address”. That is, the combination of
“Street”, “City” or “State” forms “Address”. Thus, it is a 1:m match.

Is-a Type: Each relevant schema element on the many side is a specializa-
tion of the schema element on the one side. The content of the attribute
on the one side is the union or sum of the contents of the attributes on
the many side. For example, “HomePhone” and “CellPhone” in S2 are
specializations of “Phone” in S1. Another example is the (number of)
“Passengers” in Fig. 10.3 (page 397), and the (number of) “Adults”,
the (number of) “Seniors”, and the (number of) “Children” in Fig. 10.1
in the airline ticket domain.

Identifying Part-of 1:m Matches: For each attribute A in interface S1, we
first check if it is a composite attribute as described above. If A is a com-
posite attribute, we find a subset of schema elements in S2 that has a 1:1
correspondence with the sub-attributes of A. For a real application, we may
need additional conditions to make the decision (see Sect. 10.8.1).

392 10 Information Integration

Identify Is-a 1:m Matches: In the case of part-of 1:m mappings, the do-
mains of the sub-attributes are typically different. In contrast, the identifi-
cation of is-a 1:m mappings of attributes requires that the domain of each
corresponding sub-attribute be similar to that of the general attribute.
Name matching of schema elements is useful here. For example, in the
case of “Phone” in S1 and “HomePhone” and “CellPhone” in S2, the name
similarity can help decide 1:m mapping. However, this strategy alone is
usually not sufficient, e.g., “Passengers” in S1 and “Adults”, “Seniors”
and “Children” in S2 have no name similarity. Additional information is
needed. We will show an example in Sect. 10.8.1.

Using the auxiliary information provided by the user is also a possibil-
ity. It is not unreasonable to ask the user to provide some information
about the domain. For example, a domain ontology that includes a set of
concepts and their relationships such as the following (Fig. 10.2) will be of
great help:

Part-of(“street”, “address”) Is-a(“home phone”, “phone”)
Part-of(“city”, “address”) Is-a(“cell phone”, “phone”)
Part-of(“state”, “address”) Is-a(“office phone”, “phone”)
Part-of(“country”, “address”) Is-a(“day phone”, “phone”)

Fig. 10.2. Part-of(X, Y) − X is a part of Y, and Is-a(X, Y) − X is a Y.

10.7 Some Other Issues

10.7.1 Reuse of Previous Match Results

We have mentioned in several places that auxiliary information in addition
to the input schemas and data instances, such as dictionaries, thesauri, and
user-provided ontology information are very useful in schema matching.
The past matching results can also be stored and reused for future matches
[356, 455]. Reuse is important because many schemas are very similar to
each other and to previously matched schemas. Given a new schema S to
be matched with a set of existing schemas E, we may not need to match S
with every existing schema in E. There are two slightly different scenarios:

1. Matching of a large number of schemas: If we have a large number of
schemas to match, we may not need to perform all pair-wise matches,
which have n(n+1)/2 of them with n being the number of input sche-
mas. Since most schemas are very similar, the n(n+1)/2 number of
matches are not necessary.

10.7 Some Other Issues 393

2. Incremental schema matching: In this scenario, given a set of schemas
that has already been matched, when a new schema S needs to be
matched with existing matched schemas E, we may not want to use S to
match every schema in E using pair-wise matching. This is the same
situation as the first case above. If the original match algorithm is not
based on pair-wise match, we may not want to run the original algo-
rithm on all the schemas to just match this single schema with them.

For both cases, we want to use old matches to facilitate the discovery of
new matches. The key idea is to exploit the transitive property of similar-
ity relationship. For example, “Cname” in S1 matches “CustName” in S2 as
they are both customer names. If “CTname” in the new schema S matches
“Cname” in S1, we may conclude that “CTname” matches “CustName” in
S2. The transitive property has also been used to deal with some difficult
matching cases. For example, it may be difficult to map a schema element
A directly to a schema element B, but easy to map both A and B to the
schema element C in another schema. This helps us decide that A corre-
sponds to B [144, 559, 563].

In the incremental case, we can also use a clustering-based method.
For example, if we already have a large number of matches, we can group
them into clusters and find a centroid to represent each cluster, in term of
schema names and domains. When a new schema needs to be matched, the
schema is compared with the centroid rather than with each individual
schema in the cluster.

10.7.2 Matching a Large Number of Schemas

The techniques discussed so far are mainly for pair-wise matching of
schemas. However, in many cases, we may have a large number of sche-
mas. This is the case for many Web applications because there are many
Web databases in any domain or application. With a large number of
schemas, new techniques can be applied. We do not need to depend solely
on pair-wise matches. Instead, we can use statistical approaches such as
data mining to find patterns, correlations and clusters to match the sche-
mas. In the next section, we will see two examples in which clustering and
correlation methods are applied.

10.7.3 Schema Match Results

In pair-wise matching, for each element v in S2, the set of matching ele-
ments in S1 can be decided by one of the following methods [144].

394 10 Information Integration

1. Top N candidates: The top N elements of S1 that have the highest simi-
larities are chosen as match candidates. In most cases, N = 1 is the natu-
ral choice for 1:1 correspondences. Generally, N > 1 is useful in interac-
tive mode, i.e., the user can select among several match candidates.

2. MaxDelta: The S1 element with the maximal similarity is determined as
match candidate plus all S1 elements with a similarity differing at most
by a tolerance value t, which can be specified either as an absolute or
relative value. The idea is to return multiple match candidates when
there are several S1 elements with almost the same similarity values.

3. Threshold: All S1 elements with the final combined similarity values
exceeding a given threshold t are selected.

10.7.4 User Interactions

Due to the difficulty of schema matching, extensive user interaction is of-
ten needed in building an accurate matching system for both parameter
tuning and resolving uncertainties

Building the Match System: There are typically many parameters and
thresholds in an integration system, e.g., similarity values, weight coeffi-
cients, and decision thresholds, which are usually domain-specific or even
attribute specific. Before the system is used to match other schemas, inter-
active experiments are needed to tune the parameters by trial-and-errors.

After Matching: Although the parameters are fixed in the system build-
ing, their values may not be perfect. Matching mistakes and failures will
still occur: (1) some matched attributes may be wrong (false positive); (2)
some true matches may not be found (false negative). User interactions are
needed to correct the situations and to confirm the correct matches.

10.8 Integration of Web Query Interfaces

The preceding discussions are generic to database integration and Web
data integration. In this and the next sections, we focus on integration in
the Web context. The Web consists of the surface Web and the deep
Web. The surface Web can be browsed using any Web browser, while the
deep Web consists of databases that can only be accessed through param-
eterized query interfaces. With the rapid expansion of the Web, there are
now a huge number of deep web data sources. In almost any domain, one
can find a large number of them, which are hosted by e-commerce sites.
Each of such sources usually has a keyword based search engine or a query

10.8 Integration of Web Query Interfaces 395

interface that allows the user to fill in some information in order to retrieve
the needed data. We have seen two query interfaces in Fig. 10.1 for finding
airline tickets. We want to integrate multiple interfaces in order to provide
the user a global query interface [153, 227] so that he/she does not need
to manually query each individual source to obtain more complete infor-
mation. Only the global interface needs to be filled with the required in-
formation. The individual interfaces are filled and searched automatically.

We focus on query interface integration mainly because there is exten-
sive research in this area, although the returned instance data integration is
also of great importance and perhaps even more important due to the fact
that the number of sites that provide such structured data is huge and most
of them do not have query interfaces but only keyword search or can only
be browsed by users (see Chap. 9).

Since query interfaces are different from traditional database schemas,
we first define a schema model.

Schema Model of Query Interfaces: In each domain, there is a set of
concepts C = {c1, c2, …, cn} that represents the essential information of the
domain. These concepts are used in query interfaces to enable the user to
restrict the search for some specific instances or objects of the domain. A
particular query interface uses a subset of the concepts S ⊆ C. A concept i
in S may be represented in the interface with a set of attributes (or fields)
fi1, fi2, ..., fik. In most cases, each concept is only represented with a single
attribute. Each attribute is labeled with a word or phrase, called the label
of the attribute, which is visible to the user. Each attribute may also have a
set of possible values that the user can use in search, which is its domain.

All the attributes with their labels in a query interface are called the
schema of the query interface [227, 608]. Each attribute also has a name
in the HTML code. The name is attached to a TEXTBOX (which takes the
user input). However, this name is not visible to the user. It is attached to
the input value of the attribute and returned to the server as the attribute of
the input value. The name is often an acronym that is less useful than the
label for schema matching. For practical schema integration, we are not
concerned with the set of concepts but only the label and name of each at-
tribute and its domain.

Most ideas for schema matching in traditional databases are applicable
to Web query interfaces as the schema of a query interface is similar to a
schema in databases. However, there are also some important differences
[67, 92].

1. Limited use of acronyms and abbreviations: Data displayed in Web
pages are for the general public to view and must be easy to understand.
Hence, the use of acronyms and abbreviations is limited to those very

396 10 Information Integration

obvious ones. Enterprise-specific acronyms and abbreviations seldom
appear. In the case of a company database, abbreviations are frequently
used, which are often hard to understand by human users and difficult to
analyze by automated systems. To a certain extent, this feature makes
information integration on the Web easier.

2. Limited vocabulary: In the same domain, there are usually a limited
number of essential attributes that describe each object in the domain.
For example, in the book domain, we have the title, author, publisher,
ISBN number, etc. For each attribute, there is usually limited ways to
express the attribute. The chosen label (describing a data attribute, e.g.,
“departure city”) needs to be short, and easily understood by the general
public. Therefore, there are not many ways to express the same attrib-
utes. Limited vocabulary also makes statistical approaches possible.

3. A large number of similar databases: There are often a large number
of sites that offer the same services or sell the same products, which re-
sult in a large number of query interfaces and make it possible to use
statistical methods. This is not the case in a company because the num-
ber of related databases is small. Integration of databases from multiple
companies seldom happens.

4. Additional structure: The attributes of a Web interface are usually or-
ganized in some meaningful ways. For example, related attributes are
grouped and put together physically (e.g., “first name” and “last name”
are usually next to each other), and there may also be a hierarchical or-
ganization of attributes. Such structures also help integration as we will
see later. In the case of databases, attributes usually have no structure.

Due to these differences, schema matching of query interfaces can exploit
new methods. For example, data mining techniques can be employed as we
will see in the next few sub-sections. Traditional schema matching ap-
proaches in the database context are usually based on pair-wise matching.

Similar to schema integration, query interface integration also requires
mapping of corresponding attributes of all the query interfaces.

Example 4: For the two query interfaces in Fig. 10.3, the attribute corre-
spondences are:

Interface 1 (S1) Interface 2 (S2)
 Leaving from From
 Going to To
 Departure date Departure date
 Return date Return date
 Passengers: Number of tickets
 Time
 Preferred cabin

10.8 Integration of Web Query Interfaces 397

Fig. 10.3. Two query interfaces from the domain of airline ticket reservation

The last two attributes from Interface 1 do not have matching attributes in
Interface 2. ▀

The problem of generating the mapping is basically the problem of iden-
tifying synonyms in the application domain. However, it is important to
note that the synonyms here are domain dependent. A general-purpose se-
mantic lexicon such as WordNet or any thesaurus is not sufficient for the
identification of most domain-specific synonyms. For example, it is diffi-
cult to infer from WordNet or any thesaurus that “Passengers” is synony-
mous to “Number of tickets” in the context of airline ticket reservation.
Domain-specific lexicons are not generally available as they are expensive
to build. In this section, we discuss three query interface matching tech-
niques. We also describe a method for building a global interface.

10.8.1 A Clustering Based Approach

This technique is a simplified version of the work in [559]. Given a large
set of schemas from query interfaces in the same application domain, this
technique utilizes a data mining method, clustering, to find attribute
matches of all interfaces. Three types of information are employed,
namely, attribute labels, attribute names and value domains. Let the set of
interface schemas be {S1, S2, …, Sn}. The technique works in five steps:

1. Pre-processing the data. It uses the methods given in Sect. 10.2.
2. Computing all pair-wise attribute similarities of u (∈ Si) and v (∈ Sj), i ≠

j. This produces a similarity matrix.
3. Identify initial 1:m matches.
4. Cluster schema elements based on the similarity matrix. This step dis-

covers 1:1 matches.
5. Generate the final 1:m matches of attributes.

We now discuss each step in turn except the first step.

398 10 Information Integration

Computing all Pair-Wise Attribute Similarities: Let u be an attribute of
Si and v be an attribute of Sj (i ≠ j). This step computes all linguistic simi-
larities (denoted by LingSim(u, v)) and domain similarities (denoted
DomSim(u, v)). The aggregated similarity (denoted by AS(u, v)) is:

),,(),(),(vuDomSimvuLingSimvuAS dsls ∗+∗= λλ (4)

where λls and λds are weight coefficients reflecting the relative importance
of each component similarity.

The linguistic similarity is based on both attribute labels and attribute
names, which give two similarity values, lSim(u, v) and nSim(u, v), repre-
senting label and name similarities respectively. Both similarities are com-
puted using the cosine measure as discussed in N5 of Sect. 10.3.1. The two
similarities are then combined through a linear combination method simi-
lar to Equation (4) above.

Domain similarity of two simple domains dv and du is computed based
on the data type similarity (denoted by typeSim(dv, du) and values similar-
ity (denoted by valueSim(dv, du)). The final DomSim is again a linear com-
bination of the two values. For the type similarity computation, if the types
of domains dv and du are the same, typeSim(dv, du) = 1 and 0 otherwise. If
typeSim(dv, du) = 0, then valueSim(dv, du) = 0.

For two domains dv and du of the same type, the algorithm further evalu-
ates their value similarity. Let us consider two character string domains.
Let the set of values in dv be {t1, t2, …, tn} and the set of values in du be
{q1, q2, …, qk}. valueSim(dv, du) is computed as follows:

1. Calculate all pair-wise value (i.e., (ti, qj)) similarities using the cosine
measure with one value from each domain.

2. Choose the pair with the maximum similarity among all pairs and delete
the corresponding two values from dv and du. For a pair to be consid-
ered, its similarity must be greater than a threshold valueτ.

3. Repeat step 2 on all remaining values in the domains until no pair of
values has a similarity greater thanτ.

Let the pairs of values chosen be P. valueSim(dv, du) is then computed
using the Dice function [136]:

.
||||

||2),(
uv

uv dd
PddvalueSim
+

= (5)

For two numeric domains, their value similarity is the proportion of the
overlapping range of the domains. For an attribute whose domain is un-
known, it is assumed that its domain is dissimilar to the domain of any
other attribute, be it finite or infinite.

10.8 Integration of Web Query Interfaces 399

Identify a Preliminary Set of 1:m Mappings: To identify 1:m mappings,
the technique exploits the hierarchical organization of the interfaces. The
hierarchical organization is determined using the layout and the proximity
of attributes as they are likely to be physically close to each other.

Part-of type: To identify the initial set of aggregate 1:m mappings of at-
tributes, it first finds all composite attributes in all interfaces as discussed
in Sect. 10.4. For each composite attribute e in S, in every interface other
than S, denoted by X, it looks for a set of attributes f = {f1, f2, … fr} (r > 1)
with the same parent p, such that the following conditions hold:

1. fi's are siblings, i.e., they share the same parent p. The sibling informa-
tion is derived from the physical proximity in the interface.

2. The label of the parent p of fi's is highly similar to the label of e.
3. The domains of fi’s have a 1-to-1 mapping with a subset of the sub-

domains of e based on the high domain similarities.

If there exists such a f in interface X, a 1:m mapping of the part-of type
is identified between e and attributes in f.

Is-a type: The identification of is-a 1:m attribute mappings requires that the
domain of each corresponding sub-attribute on the m side be similar to that
of the general attribute on the one side. More precisely, for each non-
composite attribute h in an interface, we look for a set of attributes f = {f1,
f2, … fr} (r > 1) in another interface X, that meets the following conditions:

1. fi's are siblings of the same parent p, and p does not have any children
other than fi's.

2. The label of the parent p is highly similar to the label of h.
3. The domain of each fi is highly similar to the domain of h.

If the conditions are met, a 1:m mapping of the is-a type is identified be-
tween h and attributes in f.

Cluster the Schema Elements based on the Similarity Matrix: Step 2
produces a similarity matrix M. Let the total number of simple domains in
the set of all given query interfaces S be w. We then have a w×w symmet-
ric similarity matrix. M[i, j] is the aggregated similarity of two attributes i
and j. For attributes in the same interface, M[i, j] is infinite, which indicate
that they should not be put together into a cluster.

The clustering algorithm used is the hierarchical agglomerative cluster-
ing algorithm. The stopping criterion is a similarity threshold. That is,
when there is no pair of clusters has the similarity greater than the thresh-
old, the algorithm stops. Each output cluster contains a set of 1:1 attribute
mappings from different interfaces.

400 10 Information Integration

Obtain Additional 1:m Mapping: The preliminary set of 1:m correspon-
dences may not have found all such mappings. The clustering results may
suggest additional 1:m mappings. The transitivity property can be used
here. For example, assume that a composite attribute e maps to two attrib-
utes f1 and f2 in another interface in step 3 and the clustering results suggest
that f1 and f2 map to h1 and h2 in yet another interface. Then, e also matches
h1 and h2.

10.8.2 A Correlation Based Approach

This technique also makes use of a large number of interfaces. It is based
on the technique in [229]. For pre-processing, the methods discussed in
Sect. 10.2 are applied. The approach is based on co-occurrences of schema
attributes and the following observations:

1. In an interface, some attributes may be grouped together to form a big-
ger concept. For example, “first name” and “last name” compose the
name of a person. This is called the grouping relationship, denoted by
a set, e.g., {first name, last name}. Attributes in such a group often co-
occur in schemas, i.e., they are positively correlated.

2. An attribute group rarely co-occurs in schemas with their synonym at-
tribute groups. For example, “first name” and “last name” rarely co-
occur with name in the same query interface. Thus, {first name, last
name} and {name} are negatively correlated. They represent 2:1
match. Note that a group may contain only one attribute.

Based on the two observations, a correlation-based method to schema
matching is in order. Negatively correlated groups represent synonym
groups or matching groups.

Given a set of input schemas S = {S1, S2, …, Sn} in the same application
domain, where each schema Si is a transaction of attributes, we want to
find all the matches M = {m1, …, mv}. Each mj is a complex matching gj1 =
gj2 = … = gjw, where each gjk is an positively correlated attribute group and

i
n
ijk Sg 1=⊆ U . Each mj represents the synonym relationship of attribute

groups gj1 ,..., gjw. The approach for finding M consists of three steps:

1. Group discovery: This step mines co-occurring or positively correlated
attribute groups. It is done by first finding the set of all 2-attribute
groups (i.e., each group contains only two attributes), denoted by L2,
that are positively correlated according to the input schema set S (one
data scan is needed). A 2-attribute group {a, b} is considered positively
correlated if cp(a, b) is greater than a threshold value τp, where cp is a
positive correlation measure. The algorithm then extends 2-attribute

10.8 Integration of Web Query Interfaces 401

groups to 3-attribute groups L3. A 3-attribute group g is considered posi-
tively correlated if every 2-attribute subset of g is in L2. In general, a k-
attribute group g is in Lk if every (k−1)-attribute sub-group of g is in Lk-1.
This is similar to candidate generation in the Apriori algorithm for asso-
ciation rule mining (see Chap. 2). However, the method here does not
scan the data after all 2-attribute groups have been generated.

Example 5: Let L2 = {{a, b}, {b, c}, {a, c}, {c, d}, {d, f}}, which con-
tains all 2-attribute groups that are discovered from the data. {a, b, c} is
in L3, but {a, c, d} is not because {a, d} is not in L2. ▀

2. Match discovery: This step mines negatively correlated groups includ-
ing those singleton groups. Each discovered positively correlated group
is first added into those transactions in S that contain some attributes of
the group. That is, for a schema Si and a group g, if Si ∩ g ≠ ∅, then Si =
Si ∪ {g}. The final augmented transaction set S is then used to mine
negatively correlated groups; which are potential matching groups. The
procedure for finding all negatively correlated groups is exactly the
same as the above procedure for finding positively correlated groups.
The only difference is that a different measure is used to determine
negative correlations, which will be discussed shortly. A 2-attribute
group {a, b} is considered negatively correlated if cn(a, b) is greater than
a threshold value τn, where cn is a negative correlation measure.

3. Matching selection: The discovered negative correlations may contain
conflicts due to the idiosyncrasy of the data. Some correlations may also
subsume others. For instance, in the book domain, the mining result may
contain both {author} = {first name, last name}, denoted by m1 and {sub-
ject} = {first name, last name}, denoted by m2. Clearly, m1 is correct, but
m2 is not. Since {subject} = {author} is not discovered, which should be
due to transitivity of synonyms, m1 and m2 cannot be both correct. This
causes a conflict. A match mj semantically subsumes a match mk, de-
noted by mj f mk, if all the semantic relationships in mk are contained
in mj. For instance, {arrival city} = {destination} = {to} f {arrival city} =
{destination} because the synonym relationship in the second match is
subsumed by the first one. Also, {author} = {first name, last name} f
{author} = {first name} because the second match is part of the first.

We now present a method to choose the most confident and consistent
matches and to remove possibly false ones. Between conflicting matches,
we want to select the most negatively correlated one because it is more
likely to be a group of genuine synonyms. Thus, a score function is
needed, which is defined as the maximum negative correlation values of all
2-attribute groups in the match:

402 10 Information Integration

score(mj, cn) = max cn(gjr, gjt), gjr, gjt ∈ mj, jr ≠ jt. (6)

Combining the score function and semantic subsumption, the matches
are ranked based on the following rules:

1. If score(mj, cn) > score(mk, cn), mj is ranked higher than mk.
2. If score(mj, cn) = score(mk, cn) and mj f mk, mj is ranked higher than mk.
3. Otherwise, mj and mk are ranked arbitrarily.

Figure 10.4 gives the MatchingSelection() function. After the highest
ranked match mt in an iteration is selected, the inconsistent parts in the re-
maining matches are removed (lines 6−10). The final output is the selected
n-ary complex matches with no conflict. Note that ranking is redone in
each iteration instead of sorting all the matches in the beginning, because
after removing some conflicting parts, the ranking may change.

Function MatchingSelection(M, cn)
1 R ← ∅ // R stores the selected n-ary complex matches
2 while M ≠ ∅ do
4 Let mt be the highest ranked match in M //select the top ranked match
5 R ← R ∪ {mt}
6 for each mj ∈ M do
7 mj ← mj – mt; // remove the conflicting part
8 if |mj | < 2 then
9 M ← M – {mj} // delete mj if it contains no matching
10 endfor
11 endwhile
12 return R

Fig. 10.4. The MatchingSelection function

Correlation Measures: There are many existing correlation tests in statis-
tic, e.g., χ2 test and lift, etc. However, it was found that these methods were
not suitable for this application. Hence, a new negative correlation measure
corrn for two attributes Ap and Aq was proposed, which is called the H-
measure. Let us use a contingency table (Fig. 10.5) to define it. fij in the
figure is the co-occurrence frequency count of the corresponding cell:

 Ap ¬Ap
Aq f11 f10 f1+
¬Aq f01 f00 f0+

 f+1 f+0 f++

Fig. 10.5. Contingency table for test of correlation

10.8 Integration of Web Query Interfaces 403

.),(),(
11

1001

++

==
ff
ffAAHAAcorr qpqpn (7)

The positive correlation measure corrp is defined as (τd is a threshold):

⎜⎜
⎜

⎝

⎛ <−
=

++

otherwise.0

),(1),(
11

dqp
qpp f

fAAHAAcorr τ (8)

10.8.3 An Instance Based Approach

This method is based on the technique given in [531]. It matches query in-
terfaces and also the query results. It assumes that:

1. a global schema (GS) for the application domain is given, which repre-
sents the key attributes of the domain, and

2. a number of sample data instances under the domain global schema are
also available.

This technique only finds 1:1 attribute matches. We use IS to denote the
query interface schema and RS the returned result schema. Let us use an
example to introduce the key observation exploited in this technique. Fig-
ure 10.6 shows an example of an online bookstore. The part labeled Data
Attributes is the global schema with six attributes {Title, Author, Pub-
lisher, ISBN, Publication Date, Format}. The part labeled Interface is the
query interface with five input elements/attributes. When the keyword
query “Harry Potter” is submitted through the Title attribute in the inter-
face, a result page is returned which contains the answer to the query (la-
beled Result Page), which shows three book instances.

Three types of semantic correspondence represented by different lines
(dotted, dashed and solid) are also shown in Fig. 10.6. They are respec-
tively, the correspondence between attributes of the global schema and
those of the query interface, the correspondence between the attributes of
the global schema and those of the instance values in the result page, and
the correspondence between attributes in the query interface and those of
the instance values in the result pages.

Observation: When a proper query is submitted to the right element of the
query interface, the query words are very likely to reappear in the corre-
sponding attribute of the returned results. However, if an improper query is
submitted to the Web database there are often few or no returned results.

404 10 Information Integration

Fig. 10.6. An example of a Web database with its query interface and a result page

In the example shown in Fig. 10.6, the site retrieves only three matches
for the query “Harry Potter” when submitted through the “Author” attribute,
while it retrieves 228 matches for the same query when submitted to the Ti-
tle attribute. If “Harry Potter” is submitted to the “ISBN” attribute, there is
no returned result. Intuitively, the number of times that query words reap-
pear in the returned results gives us a good indication what attributes
match in the interface schema, the global schema, and the result schema.

To obtain the number of reappearing occurrences, each value from the
given instances can be submitted to each interface element while keeping
default values for the other elements. For each TEXTBOX element in the
query interface, all attribute values from the given instances are tried ex-
haustively. For each SELECT element, its domain values are limited to a
set of fixed options. Then, an option similar to a value in the given in-
stances is found and submitted. Here, “similar” means that the attribute
value and the option value have at least one common word. Note that this
approach assumes that a data extraction system is available to produce a
table from a returned result page (see Chap. 9). Each column has a hidden
attribute (i.e., of the result schema).

By counting the number of times that the query words re-occur in each
column of the result table, a 3-dimensional occurrence matrix (OM) can
be constructed. The three dimensions are: global schema (GS) attributes,
query interface schema (IS) attributes and result schema (RS) attributes.
Each cell OM[i, j, k] contains the sum of the occurrence counts obtained
from kth attribute of RS of all the sample query words from the ith attrib-
ute of GS when the query words are submitted to the jth attribute of IS.

Refine Search

Your Search:

Harry Potter
Title:

Author:

any
Format:

ISBN:

Search

Query Interface

…

Format

ISBN

Publish Date

Publisher

Author

Title

Data Attributes

Search Results

A Comprehensive Guide to Harry Potter
Paperback | Jan 2001|Carson Dellosa Publishing company, Incor-
porated

Beatrix Potter to Harry Potter: Portraits of Children’s
Writers
Julia Eccleshare Hardcover | Sep 2002 | National Portrait Gallery
God, Devil and Harry Potter
John Killinger Hardcover | Dec 2002 | St. Martin’s Press, LLC

Result Page

10.8 Integration of Web Query Interfaces 405

Intra-Site Schema Matching: We now briefly describe how to match at-
tributes in IS and GS, IS and RS, and GS and RS based on the projected
matrices of OM, i.e., OMIG(M×N), OMIR(M×L), and OMGR(N×L), where N is the
number of attributes in the global schema, M is the number of elements in
the interface schema, and L is the number of columns in the result table.
An example OMIG(5×4) matrix is shown in Fig. 10.7 with the correct match-
ing highlighted, GS = {TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS =
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.

We observe from Fig. 10.7 that the highest occurrence count may not
represent a correct match. For example, the cell for AuthorIS and Publish-
erGS (534) has the highest value in the matrix but AuthorIS and PublisherGS
do not correspond to each other. In general, for a cell mij, its value in com-
parison with those of other cells in its row i and its column j is more im-
portant than its absolute count.

 TitleGS AuthorGS PublisherGS ISBNGS

AuthorIS 93 498 534 0
TitleIS 451 345 501 0

PublisherIS 62 184 468 2
KeywordIS 120 248 143 275

ISBNIS 0 0 0 258

Fig. 10.7. An example of a OMIG(M×N) matrix with all matches highlighted

The algorithm in [531] uses the mutual information measure (MI) to
determine correct matches. The mutual information, which measures the
mutual dependence of two variables, is defined as follows:

.
)Pr()Pr(

),Pr(log),Pr(),(2 yx
yxyxyxMI = (9)

In our context, x and y are attributes from IS and GS respectively. The
probabilities, Pr(x, y), Pr(x) and Pr(y), can be easily computed using the
OMIG(M×N) matrix.

The algorithm simply computes the mutual information of every pair of
attributes based on the counts in the matrix such as the one in Fig. 10.7. A
corresponding mutual information matrix (called MI matrix) is then
constructed (not shown here). To find 1-1 matches of the two schemas, the
algorithm chooses each cell in the MI matrix whose value is the largest
among all the values in the same row and the same column. The
corresponding attributes of the cell forms a final match.

The paper also has a similar method for finding matches from multiple
Web databases, which is called inter-site schema matching.

406 10 Information Integration

10.9 Constructing a Unified Global Query Interface

Once a set of query interfaces in the same domain is matched, we can
automatically construct a well-designed global query interface that con-
tains all the (or the most significant) distinct attributes of all source inter-
faces. To build a “good” global interface, three requirements are identified
in [154].

1. Structural appropriateness: As noted earlier, elements of query inter-
faces are usually organized in groups (logical units) of related attributes
so that semantically related attributes are placed in close vicinity. For
example, “Adults”, “Seniors”, and “Children” of the interfaces shown in
Fig. 10.1 are placed together. In addition, multiple related groups of at-
tributes are organized as super-groups (e.g., “Where and when do you
want to go?” in Fig. 10.1). This leads to a hierarchical structure for in-
terfaces (see Fig. 10.8), where a leaf in the tree corresponds to an attrib-
ute in the interface, an internal node corresponds to a (super)group of at-
tributes and the order among the sibling nodes within the tree resembles
the order of attributes in the interface (from left to right). The global
query interface should reflect this hierarchical structure of the domain.

2. Lexical appropriateness: Labels of elements should be chosen so as to
convey the meaning of each individual element and to underline the hi-
erarchical organization of attributes (e.g., the three attributes together
with the parent attribute “Number of Passengers” in Fig. 10.1).

3. Instance appropriateness: The domain values for each attribute in the
global interface must contain the values of the source interfaces.

We will give a high level description of the algorithms in [153, 154] that
build the global interface by merging given interfaces based on the above
three requirements. The input to the algorithms consists of (1) a set of
query interfaces and (2) a global mapping of corresponding attributes in
the query interfaces. It is assumed that mapping is organized in clusters as
discussed in Sect. 10.8.1. Each cluster contains all the matched attributes
from different interfaces. We note that the domain model discovery idea in
[227] can be seen as another approach to building global interfaces.

10.9.1 Structural Appropriateness and the Merge Algorithm

Structural appropriateness means to satisfy grouping constraints and ances-
tor-descendant relationship constraints of the attributes in individual inter-
faces. These constraints guide the merging algorithm to produce the global
interface, which has one attribute for each cluster.

10.9 Constructing a Unified Global Query Interface 407

Fig. 10.8. Three input query interfaces (S1, S2, and S3) and the derived global
query interface (GS).

Grouping Constraints: Recall that semantically related attributes within
an interface are usually grouped together. Grouping constraints require that
these attributes should also appear together in the global interface.

As the global interface has an attribute for each cluster, the problem is to
partition all the clusters into semantically meaningful subsets (or groups),
which are employed to organize attributes in the global interface. For in-
stance, for the example in Fig. 10.8, the following sets of clusters are pro-
duced, {c_deptCity, c_destCity}, {c_deptYear, c_deptTime, c_deptDay,
c_depMonth}, and {c_Senior, c_Adult, c_Child, c_Infant}, where c_X is a
cluster representing X (e.g., c_deptCity and c_destCity are clusters repre-
senting departure cities and destination cities, respectively).

The partition is determined by considering each maximal set of adjacent
sibling leaves in the schema tree of each source interface whose parent is
not the root. The leaves whose parent is the root are not considered be-
cause no reliable information can be derived. These structural constraints
are collected from all source interfaces in order to infer the way that attrib-
utes are organized in the global interface. All those sets (or groups) of clus-
ters whose intersection is not empty are merged to form the final groups,
which are sequences of attribute clusters that preserve adjacency con-
straints in all interfaces. For example, {c_Adult, c_Senior, c_Child},
{c_Adult, c_Child}, {c_Adult, c_Child, c_Infant} are merged to produce
the final group, [c_Senior, c_Adult, c_Child, c_Infant], which preserves all

S1 S2 GS

Where … travel?
Departing From
Going To

When Do You Want to Go?
Departure Date

depMonth
depDay
depTime

Return Date

Number of Passengers
Adults
Seniors
Children

retMonth
retDay
retTime

From
To

Depart
leaveMonth
leaveDay

Return

Passengers
Adults
Children

retMonth
retDay

From
Depart

To

dep_Month
dep_Day
dep_Year

Return

Travelers
Adult
Child
Infant

ret_Month
ret_Day
ret_Year

Where … travel?
Departing From
Going To

When Do You Want to Go?
Departure Date

depTime

Return Date

Travelers
Adults
Seniors
Children

retMonth
retDay
retTime

Cabin

dep_Year

ret_Year

Cabin

S3

Infant

depMonth
depDay

408 10 Information Integration

adjacency constraints. Such a sequence does not always exist. In such a
case, a sequence that accommodates most adjacency constraints is sought.

Ancestor-Descendant Relationships: In hierarchical modeling of data the
same information can be represented in various ways. For instance, the re-
lationship between “Authors” and “Books” can be captured as either ”Au-
thors” having “Books”, which makes “Books” a descendant of “Authors”,
or “Books” having “Authors”, which makes “Books” an ancestor of “Au-
thors”. This, however, was not found to be a problem [153]. No such con-
flicting cases were found from a study of 300 query interfaces in eight ap-
plication domains.

Merge Algorithm: The merge algorithm merges two interfaces at a time
to produce the final global interface schema. One of them is the current
global interface G. At the beginning, the schema tree with the most levels
is chosen as the initial global schema G. Then each other interface is se-
quentially merged with G. During each merge, G is refined and expanded.
The algorithm works in a bottom-up fashion. The merging between leaves
is produced based on the clusters. The mapping between internal nodes is
based on mappings of their children, which may be either leaf nodes or in-
ternal nodes. To meaningfully insert leaves without a match in the correct
position, the algorithm relies on groups computed above to infer each leaf
position. In our example, we start by merging S1 and S3. S1 is the initial
global interface G. Within each group, it is easy to see the position of “In-
fant”, “ret_Year” and “dep_Year” (see Fig. 10.8 on the right). “Cabin” is
inserted at the end since leaf children of the root are discarded before
merging and then added as children of the root of the integrated schema
tree. Additional details can be found in [153].

10.9.2 Lexical Appropriateness

After the interfaces are merged, the attributes in the integrated interface
need to be labeled so that (1) the labels of the attributes within a group are
consistent and (2) the labels of the internal nodes are consistent with re-
spect to themselves and to the leaf nodes [154].

It can be observed in the query interface of Fig. 10.1 that between the
labels of the attributes grouped together there are certain commonalities.
For instance, “Adults”, “Seniors” and “Children” are all plurals, whereas
“Leaving” and “Returning” are gerunds. Ideally, the groups within the
global interface should have the same uniformity property. Since the at-
tributes may be from different interfaces, a group of attributes within the
unified interface might not correspond to any group in a single interface,

10.9 Constructing a Unified Global Query Interface 409

which makes it hard to assign consistent labels. To deal with the problem,
a strategy called intersect-and-union is used, which finds groups with
non-empty intersection from different interfaces and then unions them.

Example 6: Consider the example of the three interfaces in Fig. 10.8 with
their passenger related groups organized as the table below. It is easy to
see a systematic way of building a consistent solution.

Cluster/Interface c_Adult c_Senior c_Child c_Infant
S1 Adults Seniors Children
S2 Adults Children
S3 Adult Child Infant

Notice that by combining the labels given by S1 and S2 a consistent nam-
ing assignment, namely, “Seniors”, “Adults” and “Children”, can be
achieved because the two sets share labels (i.e., “Adults” and “Children”)
that are consistent with the labels in both sets. This strategy can be itera-
tively applied until a label is assigned to each attribute in the group.

To deal with minor variations, more relaxed rules for combining attrib-
ute labels can be used, e.g., requiring that the set of tokens of the labels to
be equal after removal of stopwords (e.g., “Number of Adults” has the
same set of tokens as “Adults Number”, i.e. {Number, Adults}) and stem-
ming. If a consistent solution for the entire group cannot be found, consis-
tent solutions for subsets of attributes are constructed.

The assignment of consistent labels to the internal nodes uses a set of
rules [154] that tries to select a label for each node in such a way that it is
generic enough to semantically cover the set of its descendant leaf nodes.
For example, the label “Travelers” is obtained in the integrated interface in
Fig. 10.8 as follows. First, we know that “Passengers” is more generic
than “Number of Passengers” and thus semantically covers both {Seniors,
Adults, Children} and {Adults, Children}. Then, “Travelers” is found to be
a hypernym of “Passengers“ (using WordNet) and thus semantically cov-
ers the union of {Seniors, Adults, Children} and {Adults, Children, Infant}
which is the desired set {Seniors, Adults, Children, Infant}

10.9.3 Instance Appropriateness

Finally, we discuss how to determine the domain for each attribute in the
global schema (interface). A domain has two aspects: the type and the set
of values. To determine the domain type of a global attribute, compatibility
rules are needed [230]. For instance, if all attributes in a cluster have a fi-
nite (infinite) domain then the global attribute will have a finite (infinite)
domain. If in the cluster there are both finite and infinite domains, then the

410 10 Information Integration

domain of the global attribute will be hybrid (i.e., users can either select
from a list of pre-compiled values or fill in a new value). As a case in
point, the “Adults” attribute on the global interface derived from the two
interface in Fig. 10.1 will have a finite domain, whereas the attribute “Go-
ing to” will have a hybrid domain.

The set of domain values of a global attribute is given by the union of
the domains of the attributes in the cluster. Computing the union is not al-
ways easy. For example, the values of the domains may have different
scale/unit (e.g., the price may be in US$ or in Euro). Moreover, the same
value may be specified in various ways (e.g., “Chicago O’Hare” vs.
“ORD”). Currently, the problem is dealt with using user-provided auxiliary
thesauruses [230].

Bibliographic Notes

Schema integration has been studied in the database community since the
early 1980s. The main contributions are described in the surveys by Batini
et al [40], Doan and Halevy [146], Kalfoglou and Schorlemmer [265], Lar-
son et al. [306], Kashyap and Sheth [269], Rahm and Bernstein [455],
Sheth and Larson [488], and Shvaiko and Euzenat [491]. The database in-
tegration aspects of this chapter are mainly based on the survey paper by
Rahm and Bernstein [455]. Many ideas are also taken from Clifton et al.
[105], Cohen [107], Do and Rahm [144], Dhamankar et al. [133], Embley
et al. [162], Madhavan et al. [358], Xu and Embley [563], and Yan et al.
[566]. Web data integration is considerably more recent. Various ideas on
Web information integration in the early part of the chapter are taken from
papers by He and Chang [227, 229], and Wu et al. [559].

On Web query interface integration, which perhaps received the most
attention in the research community, several methods have been studied in
the chapter, which are based on the works of Dragut et al. [153, 154], He
and Chang [227, 229], He et al. [230], Wang et al. [531], and Wu et al.
[559]. Before matching can be performed, the Web interfaces have to be
found and extracted first. This extraction task was investigated by Zhang et
al. [609] and He et al. [231].

Another area of research is the ontology, taxonomy or catalog integra-
tion. Ontologies (taxonomies or catalogs) are tree structured schemas.
They are similar to query interfaces as most interfaces have some hierar-
chical structures. More focused works on ontology integration include
those by Agrawal and Srikant [13], Doan et al. [147], Gal et al. [190],
Zhang and Lee [602]. Wache et al. gave a survey of the area in [527].

11 Opinion Mining

In Chap. 9, we studied structured data extraction from Web pages. Such
data are usually records retrieved from underlying databases and displayed
in Web pages following some fixed templates. The Web also contains a
huge amount of information in unstructured texts. Analyzing these texts is
of great importance and perhaps even more important than extracting
structured data because of the sheer volume of valuable information of al-
most any imaginable types contained in them. In this chapter, we only fo-
cus on mining of opinions on the Web. The task is not only technically
challenging because of the need for natural language processing, but also
very useful in practice. For example, businesses always want to find public
or consumer opinions on their products and services. Potential customers
also want to know the opinions of existing users before they use a service
or purchase a product. Moreover, opinion mining can also provide valuable
information for placing advertisements in Web pages. If in a page people
express positive opinions or sentiments on a product, it may be a good idea
to place an ad of the product. However, if people express negative opinions
about the product, it is probably not wise to place an ad of the product. A
better idea may be to place an ad of a competitor’s product.

The Web has dramatically changed the way that people express their
opinions. They can now post reviews of products at merchant sites and ex-
press their views on almost anything in Internet forums, discussion groups,
blogs, etc., which are commonly called the user generated content or
user generated media. This online word-of-mouth behavior represents
new and measurable sources of information with many practical applica-
tions. Techniques are now being developed to exploit these sources to help
businesses and individuals gain such information effectively and easily.

The first part of this chapter focuses on three mining tasks of evaluative
texts (which are documents expressing opinions):
1. Sentiment classification: This task treats opinion mining as a text clas-

sification problem. It classifies an evaluative text as being positive or
negative. For example, given a product review, the system determines
whether the review expresses a positive or a negative sentiment of the
reviewer. The classification is usually at the document-level. No details
are discovered about what people liked or didn’t like.

412 11 Opinion Mining

1. Featured-based opinion mining and summarization: This task goes
to the sentence level to discover details, i.e., what aspects of an object
that people liked or disliked. The object could be a product, a service, a
topic, an individual, an organization, etc. For example, in a product re-
view, this task identifies product features that have been commented on
by reviewers and determines whether the comments are positive or
negative. In the sentence, “the battery life of this camera is too short,”
the comment is on the “battery life” and the opinion is negative. A struc-
tured summary will also be produced from the mining results.

2. Comparative sentence and relation mining: Comparison is another
type of evaluation, which directly compares one object against one or
more other similar objects. For example, the following sentence com-
pares two cameras: “the battery life of camera A is much shorter than
that of camera B.” We want to identify such sentences and extract com-
parative relations expressed in them.

The second part of the chapter discusses opinion search and opinion
spam. Since our focus is on opinions on the Web, opinion search is natu-
rally relevant, and so is opinion spam. An opinion search system enables
users to search for opinions on any object. Opinion spam refers to dishon-
est or malicious opinions aimed at promoting one’s own products and ser-
vices, and/or at damaging the reputations of those of one’s competitors.
Detecting opinion spam is a challenging problem because for opinions ex-
pressed on the Web, the true identities of their authors are often unknown.

The research in opinion mining only began recently. Hence, this chapter
should be treated as statements of problems and descriptions of current re-
search rather than a report of mature techniques for solving the problems.
We expect major progresses to be made in the coming years.

11.1 Sentiment Classification

Given a set of evaluative texts D, a sentiment classifier classifies each
document d ∈ D into one of the two classes, positive and negative. Posi-
tive means that d expresses a positive opinion. Negative means that d ex-
presses a negative opinion. For example, given some reviews of a movie,
the system classifies them into positive reviews and negative reviews.

The main application of sentiment classification is to give a quick de-
termination of the prevailing opinion on an object. The task is similar but
also different from classic topic-based text classification, which classifies
documents into predefined topic classes, e.g., politics, science, sports, etc.
In topic-based classification, topic related words are important. However,

11.1 Sentiment Classification 413

in sentiment classification, topic-related words are unimportant. Instead,
sentiment words that indicate positive or negative opinions are important,
e.g., great, excellent, amazing, horrible, bad, worst, etc.

The existing research in this area is mainly at the document-level, i.e.,
to classify each whole document as positive or negative (in some cases, the
neutral class is used as well). One can also extend such classification to
the sentence-level, i.e., to classify each sentence as expressing a positive,
negative or neutral opinion. We discuss several approaches below.

11.1.1 Classification Based on Sentiment Phrases

This method performs classification based on positive and negative senti-
ment words and phrases contained in each evaluative text. The algorithm
described here is based on the work of Turney [521], which is designed to
classify customer reviews.

This algorithm makes use of a natural language processing technique
called part-of-speech (POS) tagging. The part-of-speech of a word is a
linguistic category that is defined by its syntactic or morphological behav-
ior. Common POS categories in English grammar are: noun, verb, adjec-
tive, adverb, pronoun, preposition, conjunction and interjection. Then,
there are many categories which arise from different forms of these catego-
ries. For example, a verb can be a verb in its base form, in its past tense,
etc. In this book, we use the standard Penn Treebank POS Tags as shown
in Table 11.1. POS tagging is the task of labeling (or tagging) each word in
a sentence with its appropriate part of speech. For details on part-of-speech
tagging, please refer to the report by Santorini [472]. The Penn Treebank
site is at http://www.cis.upenn.edu/~treebank/home.html.

The algorithm given in [521] consists of three steps:

Step 1: It extracts phrases containing adjectives or adverbs. The reason for
doing this is that research has shown that adjectives and adverbs are
good indicators of subjectivity and opinions. However, although an iso-
lated adjective may indicate subjectivity, there may be an insufficient
context to determine its semantic (or opinion) orientation. For exam-
ple, the adjective “unpredictable” may have a negative orientation in an
automotive review, in such a phrase as “unpredictable steering”, but it
could have a positive orientation in a movie review, in a phrase such as
“unpredictable plot”. Therefore, the algorithm extracts two consecutive
words, where one member of the pair is an adjective/adverb and the
other is a context word.

Two consecutive words are extracted if their POS tags conform to any
of the patterns in Table 11.2. For example, the pattern in line 2 means

414 11 Opinion Mining

that two consecutive words are extracted if the first word is an adverb
and the second word is an adjective, but the third word (which is not ex-
tracted) cannot be a noun. NNP and NNPS are avoided so that the names
of the objects in the review cannot influence the classification.

Table 11.2. Patterns of tags for extracting two-word phrases from reviews

 First word Second word Third word
 (Not Extracted)
1. JJ NN or NNS anything
2. RB, RBR, or RBS JJ not NN nor NNS
3. JJ JJ not NN nor NNS
4. NN or NNS JJ not NN nor NNS
5. RB, RBR, or RBS VB, VBD, VBN, or VBG anything

Example 1: In the sentence “this camera produces beautiful pictures”,
“beautiful pictures” will be extracted as it satisfies the first pattern. ▀

Step 2: It estimates the semantic orientation of the extracted phrases using
the pointwise mutual information measure given in Equation 1:

 Table 11.1. Penn Treebank part-of-speech tags (excluding punctuation)

Tag Description Tag Description
CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordi-

nating conjunction
SYM Symbol

JJ Adjective TO to
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNS Noun, plural VBP Verb, non-3rd person singular pre-

sent
NNP Proper noun, singular VBZ Verb, 3rd person singular present
NNPS Proper noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

11.1 Sentiment Classification 415

.
)Pr()Pr(

)Pr(log),(
21

21
221 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∧
=

termterm
termtermtermtermPMI (1)

Here, Pr(term1 ∧ term2) is the co-occurrence probability of term1 and
term2, and Pr(term1)Pr(term2) gives the probability that the two terms co-
occur if they are statistically independent. The ratio between Pr(term1 ∧
term2) and Pr(term1)Pr(term2) is thus a measure of the degree of statisti-
cal dependence between them. The log of this ratio is the amount of in-
formation that we acquire about the presence of one of the words when
we observe the other.

The semantic/opinion orientation (SO) of a phrase is computed based
on its association with the positive reference word “excellent” and its as-
sociation with the negative reference word “poor”:

SO(phrase) = PMI(phrase, “excellent”) − PMI(phrase, “poor”). (2)

The probabilities are calculated by issuing queries to a search engine and
collecting the number of hits. For each search query, a search engine
usually gives the number of relevant documents to the query, which is
the number of hits. Thus, by searching the two terms together and sepa-
rately, we can estimate the probabilities in Equation 1. Turney [521]
used the AltaVista search engine because it has a NEAR operator, which
constrains the search to documents that contain the words within ten
words of one another, in either order. Let hits(query) be the number of
hits returned. Equation 2 can be rewritten as:

.
)excellent""()"poor" phrase(
)poor""()excellent"" phrase(log)(2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

hitsNEARhits
hitsNEARhitsphraseSO (3)

To avoid division by zero, 0.01 is added to the hits.

Step 3: Given a review, the algorithm computes the average SO of all
phrases in the review, and classifies the review as recommended if the
average SO is positive, not recommended otherwise.

Final classification accuracies on reviews from various domains range
from 84% for automobile reviews to 66% for movie reviews.

11.1.2 Classification Using Text Classification Methods

The simplest approach to sentiment classification is to treat the problem as
a topic-based text classification problem. Then, any text classification al-
gorithm can be employed, e.g., naïve Bayesian, SVM, kNN, etc.

416 11 Opinion Mining

The approach was experimented by Pang et al. [428] using movie re-
views of two classes, positive and negative. It was shown that using a uni-
gram (a bag of individual words) in classification performed well using ei-
ther naïve Bayesian or SVM. Test results using 700 positive reviews and
700 negative reviews showed that these two classification algorithms
achieved 81% and 82.9% accuracy respectively with 3-fold cross valida-
tion. However, neutral reviews were not used in this work, which made the
problem easier. No stemming or stopword removal was applied.

11.1.3 Classification Using a Score Function

A custom score function for review sentiment classification was given by
Dave et al. [122]. The algorithm consists of two steps:

Step 1: It scores each term in the training set using the following equation,

,
)'|Pr()|Pr(
)'|Pr()|Pr()(

CtCt
CtCttscore

ii

ii
i +

−
= (4)

where ti is a term and C is a class and C′ is its complement, i.e., not C,
and Pr(ti|C) is the conditional probability of term ti in class C. It is com-
puted by taking the number of times that a term ti occurs in class C re-
views and dividing it by the total number of terms in the reviews of class
C. A term’s score is thus a measure of bias towards either class ranging
from −1 and 1.

Step 2: To classify a new document di = t1…tn, the algorithm sums up the
scores of all terms and uses the sign of the total to determine the class.
That is, it uses the following equation for classification,

⎩
⎨
⎧ >

=
otherwise,'

0)(
)(

C
devalC

dclass i
i (5)

where

∑=
j

ji tscoredeval)()(. (6)

Experiments were conducted based on a large number of reviews (more
than 13000) of seven types of products. The results showed that the bi-
grams (consecutive two words) and trigrams (consecutive three words) as
terms gave (similar) best accuracies (84.6%−88.3%), on two different re-
view data sets. No stemming or stopword removal was applied.

In this paper, the authors experimented with many alternative classifica-
tion techniques, e.g., naïve Bayesian, SVM, and several algorithms based

11.2 Feature-Based Opinion Mining and Summarization 417

on other score functions. They also tried some word substitution strategies
to improve generalization, e.g.,

• replace product names with a token (“_productname”);
• replace rare words with a token (“_unique”);
• replace category-specific words with a token (“_producttypeword”);
• replace numeric tokens with NUMBER.
Some linguistic modifications using WordNet, stemming, negation, and
collocation were tested too. However, they were not helpful, and usually
degraded the classification accuracy.

In summary, the main advantage of document level sentiment classifica-
tion is that it provides a prevailing opinion on an object, topic or event.
The main shortcomings of the document-level classification are:

• It does not give details on what people liked or disliked. In a typical
evaluative text such as a review, the author usually writes specific as-
pects of an object that he/she likes or dislikes. The ability to extract such
details is useful in practice.

• It is not easily applicable to non-reviews, e.g., forum and blog postings,
because although their main focus may not be evaluation or reviewing
of a product, they may still contain a few opinion sentences. In such
cases, we need to identify and extract opinion sentences.

There are several variations of the algorithms discussed in this section
(see Bibliographic Notes). Apart from these learning based methods, there
are also manual approaches for specific applications. For example, Tong
[517] reported a system that generates sentiment timelines. The system
tracks online discussions about movies and displays a plot of the number
of positive sentiment and negative sentiment messages (Y-axis) over time
(X-axis). Messages are classified by matching specific phrases that indicate
sentiments of the author towards the movie (e.g., “great acting”, “wonder-
ful visuals”, “uneven editing”, “highly recommend it”, and “it sucks”). The
phrases were manually compiled and tagged as indicating positive or nega-
tive sentiments to form a lexicon. The lexicon is specific to the domain
(e.g., movies) and must be built anew for each new domain.

11.2 Feature-Based Opinion Mining and Summarization

Although studying evaluative texts at the document level is useful in many
cases, it leaves much to be desired. A positive evaluative text on a particu-
lar object does not mean that the author has positive opinions on every as-
pect of the object. Likewise, a negative evaluative text does not mean that

418 11 Opinion Mining

the author dislikes everything about the object. For example, in a product
review, the reviewer usually writes both positive and negative aspects of
the product, although the general sentiment on the product could be posi-
tive or negative. To obtain such detailed aspects, we need to go to the sen-
tence level. Two tasks are apparent [245]:

1. Identifying and extracting features of the product that the reviewers
have expressed their opinions on, called product features. For instance,
in the sentence “the picture quality of this camera is amazing,” the prod-
uct feature is “picture quality”.

2. Determining whether the opinions on the features are positive, negative
or neutral. In the above sentence, the opinion on the feature “picture
quality” is positive.

11.2.1 Problem Definition

In general, the opinions can be expressed on anything, e.g., a product, an
individual, an organization, an event, a topic, etc. We use the general term
“object” to denote the entity that has been commented on. The object has a
set of components (or parts) and also a set of attributes (or properties).
Thus the object can be hierarchically decomposed according to the part-of
relationship, i.e., each component may also have its sub-components and
so on. For example, a product (e.g., a car, a digital camera) can have dif-
ferent components, an event can have sub-events, a topic can have sub-
topics, etc. Formally, we have the following definition:

Definition (object): An object O is an entity which can be a product, per-
son, event, organization, or topic. It is associated with a pair, O: (T, A),
where T is a hierarchy or taxonomy of components (or parts), sub-
components, and so on, and A is a set of attributes of O. Each compo-
nent has its own set of sub-components and attributes.

Example 2: A particular brand of digital camera is an object. It has a set of
components, e.g., lens, battery, view-finder, etc., and also a set of
attributes, e.g., picture quality, size, weight, etc. The battery component al-
so has its set of attributes, e.g., battery life, battery size, battery weight, etc.
 ▀

Essentially, an object is represented as a tree. The root is the object it-
self. Each non-root node is a component or sub-component of the object.
Each link represents a part-of relationship. Each node is also associated
with a set of attributes. An opinion can be expressed on any node and any
attribute of the node.

11.2 Feature-Based Opinion Mining and Summarization 419

Example 3: Following Example 2, one can express an opinion on the
camera (the root node), e.g., “I do not like this camera”, or on one of its at-
tributes, e.g., “the picture quality of this camera is poor”. Likewise, one can
also express an opinion on one of the camera’s components, e.g., “the bat-
tery of this camera is bad”, or an opinion on the attribute of the compo-
nent, “the battery life of this camera is too short.” ▀

To simplify our discussion, we use the word “features” to represent
both components and attributes, which allows us to omit the hierarchy. Us-
ing features for products is also quite common in practice. For an ordinary
user, it is probably too complex to use a hierarchical representation of
product features and opinions. We note that in this framework the object
itself is also treated as a feature.

Let the evaluative text (e.g., a product review) be r. In the most general
case, r consists of a sequence of sentences r = 〈s1, s2, …, sm〉.

Definition (explicit and implicit feature): If a feature f appears in evalua-
tive text r, it is called an explicit feature in r. If f does not appear in r
but is implied, it is called an implicit feature in r.

Example 4: “battery life” in the following sentence is an explicit feature:

“The battery life of this camera is too short”.

“Size” is an implicit feature in the following sentence as it does not appear
in the sentence but it is implied:

“This camera is too large”.

Definition (opinion passage on a feature): The opinion passage on fea-
ture f of an object evaluated in r is a group of consecutive sentences in r
that expresses a positive or negative opinion on f.

It is common that a sequence of sentences (at least one) in an evaluative
text together expresses an opinion on an object or a feature of the object.
Also, it is possible that a single sentence expresses opinions on more than
one feature:

“The picture quality is good, but the battery life is short”.

Most current research focuses on sentences, i.e., each passage consisting
of a single sentence. Thus, in our subsequent discussion, we use sentences
and passages interchangeably.

Definition (explicit and implicit opinion): An explicit opinion on feature
f is a subjective sentence that directly expresses a positive or negative
opinion. An implicit opinion on feature f is an objective sentence that
implies a positive or negative opinion.

420 11 Opinion Mining

Example 5: The following sentence expresses an explicit positive opinion:

“The picture quality of this camera is amazing.”

The following sentence expresses an implicit negative opinion:

“The earphone broke in two days.”

Although this sentence states an objective fact (assume it is true), it implic-
itly expresses a negative opinion on the earphone. ▀

Definition (opinion holder): The holder of a particular opinion is a per-
son or an organization that holds the opinion.

In the case of product reviews, forum postings and blogs, opinion holders
are usually the authors of the postings, although occasionally some authors
cite or repeat the opinions of others. Opinion holders are more important in
news articles because they often explicitly state the person or organization
that holds a particular view. For example, the opinion holder in the sen-
tence “John expressed his disagreement on the treaty” is “John”.

We now put things together to define a model of an object and a set of
opinions on the object. An object is represented with a finite set of fea-
tures, F = {f1, f2, …, fn}. Each feature fi in F can be expressed with a finite
set of words or phrases Wi, which are synonyms. That is, we have a set of
corresponding synonym sets W = {W1, W2, …, Wn} for the n features.
Since each feature fi in F has a name (denoted by fi), then fi ∈ Wi. Each au-
thor or opinion holder j comments on a subset of the features Sj ⊆ F. For
each feature fk ∈ Sj that opinion holder j comments on, he/she chooses a
word or phrase from Wk to describe the feature, and then expresses a posi-
tive or negative opinion on it.

This simple model covers most but not all cases. For example, it does
not cover the situation described in the following sentence: “the view-
finder and the lens of this camera are too close”, which expresses a nega-
tive opinion on the distance of the two components. We will follow this
simplified model in the rest of this chapter.

This model introduces three main practical problems. Given a collection
of evaluative texts D as input, we have:

Problem 1: Both F and W are unknown. Then, in opinion mining, we need
to perform three tasks:

Task 1: Identifying and extracting object features that have been com-
mented on in each evaluative text d ∈ D.

Task 2: Determining whether the opinions on the features are positive,
negative or neutral.

11.2 Feature-Based Opinion Mining and Summarization 421

Task 3: Grouping synonyms of features, as different people may use dif-
ferent words or phrases to express the same feature.

Problem 2: F is known but W is unknown. This is similar to Problem 1,
but slightly easier. All the three tasks for Problem 1 still need to be per-
formed, but Task 3 becomes the problem of matching discovered fea-
tures with the set of given features F.

Problem 3: W is known (then F is also known). We only need to perform
Task 2 above, namely, determining whether the opinions on the known
features are positive, negative or neutral after all the sentences that con-
tain them are extracted (which is simple).

Clearly, the first problem is the most difficult to solve. Problem 2 is
slightly easier. Problem 3 is the easiest, but still realistic.

Example 6: A cellular phone company wants to mine customer reviews on
a few models of its phones. It is quite realistic to produce the feature set F
that the company is interested in and also the set of synonyms of each fea-
ture (although the set might not be complete). Then there is no need to per-
form Tasks 1 and 3 (which are very challenging problems). ▀

Output: The final output for each evaluative text d is a set of pairs. Each
pair is denoted by (f, SO), where f is a feature and SO is the semantic or
opinion orientation (positive or negative) expressed in d on feature f. We
ignore neutral opinions in the output as they are not usually useful.

Note that this model does not consider the strength of each opinion, i.e.,
whether the opinion is strongly negative (or positive) or weakly negative
(or positive), but it can be added easily (see [548] for a related work).

There are many ways to use the results. A simple way is to produce a
feature-based summary of opinions on the object. We use an example to
illustrate what that means.

Example 7: Assume we summarize the reviews of a particular digital
camera, digital_camera_1. The summary looks like that in Fig. 11.1.

In Fig. 11.1, “picture quality” and (camera) “size” are the product fea-
tures. There are 123 reviews that express positive opinions about the pic-
ture quality, and only 6 that express negative opinions. The <individual re-
view sentences> link points to the specific sentences and/or the whole
reviews that give positive or negative comments about the feature.

With such a summary, the user can easily see how the existing custom-
ers feel about the digital camera. If he/she is very interested in a particular
feature, he/she can drill down by following the <individual review sen-
tences> link to see why existing customers like it and/or what they are not

422 11 Opinion Mining

satisfied with. The summary can also be visualized using a bar chart. Fig-
ure 11.2(A) shows the feature-based opinion summary of a digital camera.

In the figure, the bars above the X-axis in the middle show the percent-
ages of positive opinions on various features (given at the top), and the
bars below the X-axis show the percentages of negative opinions on the
same features.

Fig. 11.2. Visualization of feature-based opinion summary and comparison

Digital_camera_1:

 Feature: picture quality
 Positive: 123 <individual review sentences>
 Negative: 6 <individual review sentences>
 Feature: size
 Positive: 82 <individual review sentences>
 Negative: 10 <individual review sentences>
 …

Fig. 11.1. An example of a feature-based summary of opinions

Picture Battery Size WeightZoom positive

negative Digital Camera 1

Picture Battery Size Weight Zoom positive

negative Digital Camera 1 Digital Camera 2

(A) Feature-based summary of opinions on a digital camera

(B) Opinion comparison of two digital cameras

11.2 Feature-Based Opinion Mining and Summarization 423

Comparing the opinion summaries of a few competing products is even
more interesting. Figure 11.2(B) shows a visual comparison of consumer
opinions on two competing digital cameras. We can clearly see how con-
sumers view different features of each product. Digital camera 1 is clearly
superior to digital camera 2. Specifically, most customers have negative
opinions about the picture quality, battery and zoom of digital camera 2.
However, on the same three features, customers are mostly positive about
digital camera 1. Regarding size and weight, customers have similar opin-
ions on both cameras. Thus, the visualization enables users to clearly see
how the cameras compare with each other along each feature dimension. ▀

Below, we discuss four other important issues.

Separation of Opinions on the Object itself and its Features: It is often
useful to separate opinions on the object itself and opinions on the features
of the object. The opinion on the object itself reflects the general sentiment
of the author (or the opinion holder) on the object, which is what sentiment
classification tries to discover at the document level.

Granularity of Analysis: Let us go back to the general representation of
an object with a component tree and each component with a set of attrib-
utes. We can study opinions at any level.

At level 1: We identify opinions on the object itself and its attributes.
At level 2: We identify opinions on the major components of the object,

and also opinions on the attributes of the components.

At other levels, similar tasks can be performed. However, in practice,
analysis at level 1 and level 2 are usually sufficient.

Example 8: Given the following review of a camera (the object),
“I like this camera. Its picture quality is amazing. However, the bat-
tery life is a little short”,

in the first sentence, the positive opinion is at level 1, i.e., a positive opin-
ion on the camera itself. The positive opinion on the picture quality in the
second sentence is also at level 1 as “picture quality” is an attribute of the
camera. The third sentence expresses a negative opinion on an attribute of
the battery (at level 2), which is a component of the camera. ▀

Opinion Holder Identification: In some applications, it is useful to iden-
tify and extract opinion holders, i.e., persons or organizations that have ex-
pressed certain opinions. As we mentioned earlier, opinion holders are
more useful for news articles and other types of formal documents, in
which the person or organization that expressed an opinion is usually
stated in the text explicitly. However, such holders need to be identified by

424 11 Opinion Mining

the system. In the case of the user-generated content on the Web, the opin-
ion holders are often the authors of discussion posts, bloggers, or review-
ers, whose login ids are often known although their true identities in the
real-world may be unknown. We will not discuss opinion holders in the
chapter further due to our focus on the user-generated content on the Web.
Interested readers, please refer to [276].

Opinioned Object Identification and Pronoun Resolution: In product
reviews, the reviewed objects are usually known. However, this is not the
case for opinions expressed in blogs and discussions. For example, in the
following post “I have a Canon S50 camera purchased from Amazon. It
takes great photos.”, two interesting questions can be asked: (1) what ob-
ject does the post praise? and (2) what “it” means in the second sentence?
Clearly, we know that the post praises “Canon S50 camera”, which is the
problem of opinioned object identification, and we also know that “it”
here means “Canon S50 camera” too, which is the problem of pronoun
resolution. However, to automatically discover answers to the questions is
a very challenging problem. So far, little work has been done.

11.2.2 Object Feature Extraction

Current research on feature extraction is mainly carried out from online
product reviews. We focus on such reviews in this subsection as well.

It is a common practice for online merchants (e.g., amazon.com) to ask
their customers to review the products that they have purchased. There are
also dedicated review sites like epinions.com. There are three main review
formats on the Web. Different review formats may need different tech-
niques to perform the feature extraction task.

Format 1 − Pros, cons and the detailed review: The reviewer is asked to
describe pros and cons separately and also write a detailed review. An
example of such a review is given in Fig. 11.3.

Format 2 − Pros and cons: The reviewer is asked to describe pros and
cons separately, but there is not a separate detailed review as in format
1. That is, the details are in pros and cons. An example of such a review
is given in Fig. 11.4.

Format 3 − Free format: The reviewer can write freely, i.e., no separation
of pros and cons. An example of such a review is given in Fig. 11.5.

For formats 1 and 2, opinion (or semantic) orientations (positive or nega-
tive) of the features are known because pros and cons are separated. Only
product features need to be identified. For format 3, we need to identify
both product features and opinion orientations.

11.2 Feature-Based Opinion Mining and Summarization 425

In both formats 2 and 3, reviewers typically use full sentences. How-
ever, for format 1, pros and cons tend to be very brief. For example, in Fig.
11.3, under pros, we have “Great photos, easy to use, take videos”, which
are elaborated in the detailed review.

Let us deal with pros and cons of format 1 first. The detailed reviews of
format 1 are not used as they are elaborations of pros and cons. Analyzing
short sentence segments in pros and cons produces more accurate results.
Detailed reviews of format 1 are the same as reviews of format 3.

11.2.3 Feature Extraction from Pros and Cons of Format 1

We now describe a supervised pattern learning approach to extract product
features from pros and cons in the reviews of format 1. These patterns are

My SLR is on the shelf
by camerafun4. Aug 09 ‘04
Pros: Great photos, easy to use, very small
Cons: Battery usage; included memory is stingy.
I had never used a digital camera prior to purchasing this Canon A70. I
have always used a SLR … Read the full review

Fig. 11.3. An example of a review of format 1.

“It is a great digital still camera for this century”
September 1 2004.

Pros:
It’s small in size, and the rotatable lens is great. It’s very easy to use, and
has fast response from the shutter. The LCD …

Cons:
It almost has no cons. It could be better if the LCD is bigger and it’s going
to be best if the model is designed to a smaller size.

Fig. 11.4. An example of a review of format 2.

GREAT Camera., Jun 3, 2004
Reviewer: jprice174 from Atlanta, Ga.
I did a lot of research last year before I bought this camera... It kinda hurt
to leave behind my beloved nikon 35mm SLR, but I was going to Italy, and
I needed something smaller, and digital.
The pictures coming out of this camera are amazing. The 'auto' feature
takes great pictures most of the time. And with digital, you're not wasting
film if the picture doesn't come out. …

Fig. 11.5. An example of a review of format 3.

426 11 Opinion Mining

generated from label sequential rules (LSR) (see Sect. 2.9.2). This me-
thod is based on the algorithm in [247, 347].

A product feature can be expressed with a noun, adjective, verb or ad-
verb. The labels and their POS tags used in mining LSRs are: {$feature,
NN}, {$feature, JJ}, {$feature, VB} and {$feature, RB}, where $feature de-
notes a feature to be extracted, and NN stands for noun, VB for verb, JJ for
adjective, and RB for adverb. They represent both explicit features and
implicit feature indicators. We call a word that indicates an implicit feature
an implicit feature indicator. For example, in the sentence “this camera
is too heavy”, “heavy” is an adjective and is an implicit feature indicator
for feature “weight”.

The feature extraction technique is based on the following observation:

• Each sentence segment in pros and cons contains only one feature. Sen-
tence segments are separated by commas, periods, semi-colons, hy-
phens, ‘&’’s, ‘and’’s, ‘but’’s, etc.

Example 9: Pros in Fig. 11.3 can be separated into three segments:
great photos 〈photo〉
easy to use 〈use〉
very small 〈small〉 ⇒ 〈size〉.

Cons in Fig. 11.3 can be separated into two segments:

battery usage 〈battery〉
included memory is stingy 〈memory〉 ▀

We can see that each segment describes a product feature, which is
listed within 〈 〉. Notice that 〈small〉 is an implicit feature indicator and
〈size〉 is the implicit feature.

One point to note is that an explicit feature may not be a noun or noun
phrase. Verbs can be explicit features as well, e.g., “use” in “easy to use”.
In general, 60−70% of the features are explicit noun features. A small pro-
portion of explicit features are verbs. 20−30% of the features are implicit
features represented by their indicators. Let us now describe the method.

Given a set of reviews, this method consists of the following three steps:
1. Training data preparation for LSR mining: It consists of 4 sub-steps:
• Part-Of-Speech (POS) tagging and sequence generation: For each

sentence segment, the algorithm first performs POS tagging, and then
produces a sequence. For example, the sentence segment,

 “Included memory is stingy”.

is turned into a sequence with POS tags:

〈{included, VB}{memory, NN}{is, VB}{stingy, JJ}〉.

11.2 Feature-Based Opinion Mining and Summarization 427

• Replace the actual feature words with {$feature, <tag>}, where $fea-
ture represents a feature. This replacement is necessary because dif-
ferent products have different features, and the replacement ensures
that we can find general language patterns to extract any product fea-
ture. After replacement, the above example becomes:
〈{included, VB}{$feature, NN}{is, VB}{stingy, JJ}〉.

• Use an n-gram to produce shorter segments from long ones: For ex-
ample, the above sequence will generate two trigram sequences:

〈{included, VB}{$feature, NN}{is, VB}〉
〈{$feature, NN}{is, VB}{stingy, JJ}〉.

 Trigrams are usually sufficient. The reason for using n-grams rather
than full sentences is because most product features can be found
based on local information and POS tags. Using long sentences tend
to generate a large number of spurious rules.

• Perform word stemming: This reduces a word to its stem (see Sect.
6.5.2).

After the four-step pre-processing, the resulting sentence (trigram) seg-
ments are saved in a sequence database for label sequential rule mining.
In this file, each line contains one processed sequence.

2. Label sequential rule mining: A LSR mining system is applied to find
all rules that involve a feature, i.e., $feature. An example rule is:

 〈{easy, JJ }{to}{*, VB}〉 → 〈{easy, JJ}{to}{$feature, VB}〉.

Note that both POS tags and words may appear in a rule. A suitable
minimum confidence and minimum support should be used, which can
be chosen based on experiments. The right-hand-side of the rule is also
called a language pattern.

3. Feature extraction: The resulting language patterns are used to match
each sentence segment in a new review to extract product features. That
is, the word in the sentence segment that matches $feature in a language
pattern is extracted. Three situations are considered in extraction:

• If a sentence segment satisfies multiple rules, we search for a match-
ing rule in the following order: {$feature, NN}, {$feature, JJ}, {$fea-
ture, VB} and {$feature, RB}. The reason for this ordering is that noun
features appear more frequently than other types. For rules of the
same tag, the rule with the highest confidence is used since higher
confidence indicates higher predictive accuracy.

428 11 Opinion Mining

• For sentence segments that no rules apply, nouns or noun phrases
produced by a POS tagger are extracted as features if such nouns or
noun phrases exist.

• For a sentence segment with only a single word (e.g., “heavy” and
“big”), this pattern-based method does not apply. In such cases, the
single words are treated as (implicit or explicit) features.

After extraction, we need to deal with several other important problems:

Mapping to Implicit Features: There are many types of implicit feature
indicators. Adjectives are perhaps the most common type. Many adjectives
modify or describe some specific attributes or properties of objects. For
example, the adjective “heavy” usually describes the attribute “weight” of
an object. “Beautiful” is normally used to describe (positively) the attribute
“look” or “appearance” of an object. By no means, however, does this say
that these adjectives only describe such attributes. Their exact meaning can
be domain dependent. For example, “heavy” in the sentence “the traffic is
heavy” does not describe the “weight” of the traffic.

One way to map indicator words to implicit features is to manually
compile a list of such mappings during training data annotation, which can
then be used in the same domain in the future. However, it is not clear
whether this is an effective approach as little research has been done.

Grouping Synonyms: It is common that people use different words or
phrases to describe the same feature. For example, “photo” and “picture”
refer to the same feature in digital camera reviews. Identifying and group-
ing synonyms is essential for practical applications. Although WordNet
[175] and other thesaurus dictionaries help to some extent, they are far
from sufficient due to the fact that many synonyms are domain dependent.
For example, “picture” and “movie” are synonyms in movie reviews.
However, they are not synonyms in digital camera reviews as “picture” is
more related to “photo” while “movie” refers to “video”.

Liu et al. [347] made an attempt using synonyms in WordNet. Carenini
et al. [80] proposes a more sophisticated method based on several similar-
ity metrics that require the taxonomy of features to be given. The system
merges each discovered feature to a feature node in the taxonomy. The
similarity metrics are defined based on string similarity, synonyms and
other distances measured using WordNet. Experimental results based on
digital camera and DVD reviews show promising results. Clearly, many
ideas and techniques described in Chap. 10 for information integration are
applicable here.

Granularity of Features: In the sentence segment “great photos”, it is
easy to decide that “photo” is the feature. However, in “battery usage”, we

11.2 Feature-Based Opinion Mining and Summarization 429

can use either “battery usage” or “battery” as the feature. As we discussed
in Sect. 11.2.1, each object has a component/part tree and each component
node has a set of attributes. In a practical application, we need to determine
the right level of analysis. If it is too general, it may not be useful. If it is
too specific, it may result in a large number of features and also make the
extraction very difficult and inaccurate.

11.2.4 Feature Extraction from Reviews of Formats 2 and 3

Pros and cons of format 1 mainly consist of short phrases and incomplete
sentences. The reviews of formats 2 and 3 usually consist of complete sen-
tences. To extract features from such reviews, the above algorithm can also
be applied. However, some preliminary experiments show that it is not ef-
fective because complete sentences are more complex and contain a large
amount of irrelevant information. Below, we describe an unsupervised
method for finding explicit features that are nouns and noun phrases. This
method requires a large number of reviews, and consists of two steps:

1. Finding frequent nouns and noun phrases. Nouns and noun phrases (or
groups) are identified by using a POS tagger. We then count their fre-
quency and only keep the frequent ones. A frequency threshold can be
decided experimentally. The reason for using this approach is that most
product features are nouns, and those nouns that are frequently talked
about are usually genuine and important features. Irrelevant contents
(see Fig. 11.5) in reviews are often diverse, i.e., they are quite different
in different reviews. When people comment on product features, the vo-
cabulary that they use converges. Those nouns that are infrequent are
likely to be non-features or less important features.

2. Finding infrequent features by making use of sentiment words. Senti-
ment words (also called opinion words) are usually adjectives and ad-
verbs that express positive or negative opinions, e.g., great, amazing,
bad, and expensive. The idea is as follows: The same opinion word can
be used to describe different objects. Opinion words that modify fre-
quent features can be used to find infrequent features. For example,
“picture” is found to be a frequent feature, and we have the sentence,

“The pictures are absolutely amazing.”

We also know that “amazing” is a positive opinion word (to be dis-
cussed in Sect. 11.2.5). Then “software” may also be extracted as a fea-
ture from the following sentence,

“The software is amazing.”

430 11 Opinion Mining

because the two sentences follow the same language pattern and “soft-
ware” in the sentence is also a noun.

This two-step approach is based on the work of Hu and Liu [245]. At
the time this book was written, the shopping site Froogle of the search en-
gine Google implemented a method similar to step 1 of the algorithm.
However, it does not restrict frequent terms to be nouns or noun phrases.

The precision of step 1 of the above algorithm was improved by Pope-
scu and Etzioni in [447]. Their algorithm tries to remove those noun
phrases that may not be product features. It evaluates each noun phrase by
computing a PMI score between the phrase and meronymy discrimina-
tors associated with the product class, e.g., a scanner class. The meronymy
discriminators for the scanner class are, “of scanner”, “scanner has”,
“scanner comes with”, etc., which are used to find components or parts of
scanners by searching on the Web (see [166] also). The PMI measure is a
simplified version of the measure given in Sect. 11.1.1:

,
)()(

)(),(
dhitsfhits

dfhitsdfPMI ∧
= (7)

where f is a candidate feature identified in step 1 and d is a discriminator.
Web search is used to find the number of hits. The idea of this approach is
clear. If the PMI value of a candidate feature is too low, it may not be a
component of the product because f and d do not co-occur frequently. The
algorithm also distinguishes components/parts from attributes/properties
using WordNet’s is-a hierarchy (which enumerates different kinds of
properties) and morphological cues (e.g., “-iness”, “-ity” suffixes).

Finally, we note that many information extraction techniques are also
applicable, e.g., conditional random fields (CRF) [298], hidden Markov
models (HMM) [185], and many others. However, no comparative evalua-
tion of these methods on this problem has been reported so far.

11.2.5 Opinion Orientation Classification

For reviews of format 3, we need to classify each sentence that contains a
product feature as positive, negative or neutral. This classification may
also be needed for reviews of format 2 because although pros and cons are
separated in format 2, some sentences containing features are neutral.

We describe two main techniques below. The accuracy is usually rea-
sonable (greater than 80%) if the sentences are either positive or negative,
but if neutral sentences are included, the accuracy often drops signifi-
cantly. Sentences containing negations also pose difficulties.

11.2 Feature-Based Opinion Mining and Summarization 431

1. Using sentiment words and phrases: As explained above, sentiment
words and phrases are words and phrases that express positive or nega-
tive sentiments (or opinions). They are mostly adjectives and adverbs,
but can be verbs and nouns too. Researchers have compiled sets of such
words and phrases for adjectives, adverbs, verbs, and nouns respec-
tively. Each set is usually obtained through a bootstrapping process:

• Manually find a set of seed positive and negative words. Separate
seed sets are prepared for adjectives, adverbs, verbs and nouns.

• Grow each of the seed set by iteratively searching for their synonyms
and antonyms in WordNet until convergence, i.e., until no new words
can be added to the set. Antonyms of positive (or negative) words will
be added to the negative (or positive) set.

• Manually inspect the results to remove those incorrect words. Al-
though this step is time consuming, it is only an one-time effort.

Apart from a set of opinion words, there are also idioms, which can be
classified as positive, negative and neutral as well. Many language pat-
terns also indicate positive or negative sentiments. They can be manu-
ally compiled and/or discovered using pattern discovery methods.

Using the final lists of positive and negative words, phrases, idioms
and patterns, each sentence that contains product features can be classi-
fied as follows: Sentiment words and phrases in the sentence are identi-
fied first. A positive word or phrase is assigned a score of +1 and a
negative word or phrase is assigned a score of −1. All the scores are then
summed up. If the final total is positive, then the sentence is positive,
otherwise it is negative. If a negation word is near a sentiment word, the
opinion is reversed. A sentence that contains a “but” clause (sub-
sentence that starts with “but”, “however”, etc.) indicates a sentiment
change for the feature in the clause.

This method is based on the techniques given by Hu and Liu [245],
and Kim and Hovy [276]. In [447], Popescu and Etzioni proposed a
more complex method, which makes use of syntactical dependencies
produced by a parser. Yu and Hatzivassiloglou [584] presented a
method similar to that in Sect. 11.1.1 but used a large number of seeds.
Recall that Turney [521] used only two seeds (see Sect. 11.1.1), “excel-
lent” for positive and “poor” for negative. The sentence orientation is
determined by a threshold of the average score of the words in the sen-
tence. It is not clear which method performs better because there is little
comparative evaluation.

Note that the opinion orientations of many words are domain and/or
sentence context dependent. Such situations are usually hard to deal
with. It can be easy in some cases. For example, “small” can be positive

432 11 Opinion Mining

or negative. However, if there is a “too” before it, it normally indicates a
negative sentiment, e.g., “this camera is too small for me”.

2. The methods described in Sect. 11.1 for sentiment classification are ap-
plicable here. Using supervised learning, we need to prepare a set of
manually labeled positive, negative and neutral sentences as the training
data. If sentiment words and phrases, idioms and patterns are used also
as attributes, the classification results can be further improved. Sen-
tences containing negations and clauses starting with “but”, “however”,
etc., need special handling since one part of the sentence may be posi-
tive and another part may be negative, e.g., “The pictures of this camera
are great, but the camera itself is a bit too heavy.”

In summary, although many classification techniques have been proposed,
little comparative study of these techniques has been reported. A promis-
ing approach is to combine these techniques to produce a better classifier.

11.3 Comparative Sentence and Relation Mining

Directly expressing positive or negative opinions on an object is only one
form of evaluation. Comparing the object with some other similar objects
is another. Comparison is perhaps a more convincing way of evaluation.
For example, when a person says that something is good or bad, one often
asks “compared to what?” Thus, one of the most important ways of evalu-
ating an object is to directly compare it with some other similar objects.

Comparisons are related to but also different from typical opinions.
They have different semantic meanings and different syntactic forms.
Comparisons may be subjective or objective. For example, a typical opin-
ion sentence is “the picture quality of camera x is great.” A subjective
comparison is “the picture quality of camera x is better than that of camera
y.” An objective comparison is “camera x is 20 grams heavier than cam-
era y”, which may be a statement of a fact and may not have an implied
opinion on which camera is better.

In this section, we study the problem of identifying comparative sen-
tences and comparative relations (defined shortly) in text documents, e.g.,
consumer reviews, forum discussions and news articles. This problem is
also challenging because although we can see that the above example sen-
tences all contain some indicators, i.e., “better” and “longer”, many sen-
tences that contain such words are not comparisons, e.g., “in the context of
speed, faster means better”. Similarly, many sentences that do not contain
such indicators are comparative sentences, e.g., “cellphone X has blue-
tooth, but cellphone Y does not,” and “Intel is way ahead of AMD.”

11.3 Comparative Sentence and Relation Mining 433

11.3.1 Problem Definition

A comparative sentence is a sentence that expresses a relation based on
similarities or differences of more than one object. The comparison in a
comparative sentence is usually expressed using the comparative or the
superlative form of an adjective or adverb. The comparative is used to
state that one thing has more (bigger, smaller) “value” than the other. The
superlative is used to say that one thing has the most (the biggest, the
smallest) “value”. The structure of a comparative consists normally of the
stem of an adjective or adverb, plus the suffix -er, or the modifier “more”
or “less” before the adjective or adverb. For example, in “John is taller
than James”, “taller” is the comparative form of the adjective “tall”. The
structure of a superlative consists normally of the stem of an adjective or
adverb, plus the suffix -est, or the modifier “most” or “least” before the
adjective or adverb. In “John is the tallest in the class”, “tallest” is the
superlative form of the adjective “tall”.

A comparison can be between two or more objects, groups of objects,
one object and the rest of the objects. It can also be between an object and
its previous or future versions.

Types of Important Comparisons: We can classify comparisons into
four main types. The first three types are gradable comparisons and the
last one is the non-gradable comparison. The gradable types are defined
based on the relationships of greater or less than, equal to, and greater or
less than all others.

1. Non-equal gradable comparisons: Relations of the type greater or less
than that express an ordering of some objects with regard to some of
their features, e.g., “the Intel chip is faster than that of AMD”. This type
also includes user preferences, e.g., “I prefer Intel to AMD”.

2. Equative comparisons: Relations of the type equal to that state two ob-
jects are equal with respect to some of their features, e.g., “the picture
quality of camera A is as good as that of camera B”

3. Superlative comparisons: Relations of the type greater or less than all
others that rank one object over all others, e.g., “the Intel chip is the
fastest”.

4. Non-gradable comparisons: Sentences that compare features of two or
more objects, but do not grade them. There are three main types:
• Object A is similar to or different from object B with regard to some

features, e.g., “Coke tastes differently from Pepsi”.
• Object A has feature f1, and object B has feature f2 (f1 and f2 are usu-

ally substitutable), e.g., “desktop PCs use external speakers but lap-
tops use internal speakers”.

434 11 Opinion Mining

• Object A has feature f, but object B does not have, e.g., “cell phone A
has an earphone, but cell phone B does not have”.

Gradable comparisons can be classified further into two types: adjectival
comparisons and adverbial comparisons. Adjectival comparisons
involve comparisons of degrees associated with adjectives, e.g., in “John is
taller than Mary,” and “John is the tallest in the class”. Adverbial
comparisons are similar but usually occur after verb phrases, e.g., “John
runs faster than James,” and “John runs the fastest in the class”.

Given an evaluative text d, comparison mining consists of two tasks:

1. Identify comparative passages or sentences from d, and classify the
identified comparative sentences into different types or classes.

2. Extract comparative relations from the identified sentences. This in-
volves the extraction of entities and their features that are being com-
pared, and the comparative keywords. Relations in gradable adjectival
comparisons can be expressed with

 (<relationWord>, <features>, <entityS1>, <entityS2>, <type>)

where:
relationWord: The comparative keyword used to express a compara-

tive relation in a sentence.
features: a set of features being compared.
entityS1 and entityS2: Sets of entities being compared. Entities in en-

tityS1 appear to the left of the relation word and entities in en-
tityS2 appear to the right of the relation word.

type: non-equal gradable, equative or superlative.

Example 10: Consider the comparative sentence “Canon’s optics is bet-
ter than those of Sony and Nikon.” The extracted relation is:

 (better, {optics}, {Canon}, {Sony, Nikon}, non-equal gradable). ▀

We can also design relation representations for adverbial comparisons
and non-gradable comparisons. In this section, however, we only focus on
adjectival gradable comparisons as there is little study on relation extrac-
tion of the other types. For simplicity, we will use comparative sentences
and gradable comparative sentences interchangeably from now on.

Finally, we note that there are other types of comparatives in linguistics
that are used to express different types of relations. However, they are rela-
tively rare in evaluative texts and/or less useful in practice. For example, a
meta-linguistic comparative compares the extent to which a single object
has one property to a greater or lesser extent than another property, e.g.,
“Ronaldo is angrier than upset” (see [150, 274, 313, 393]).

11.3 Comparative Sentence and Relation Mining 435

11.3.2 Identification of Gradable Comparative Sentences

This is a classification problem. A machine learning algorithm is applica-
ble to solve this problem. The main issue is what attributes to use.

An interesting phenomenon about comparative sentences is that such a
sentence usually has a comparative keyword. It is shown in [256] that us-
ing a set of 83 keywords, 98% of the comparative sentences (recall = 98%)
can be identified with a precision of 32% using the authors’ data set. Let us
see what the keywords are:

1. Comparative adjectives (with the POS tag of JJR) and comparative
adverbs (with the POS tag of RBR), e.g., more, less, better, longer and
words ending with -er.

2. Superlative adjectives (with the POS tag of JJS) and superlative ad-
verbs (with the POS tag of RBS), e.g., most, least, best, tallest and
words ending with -est.

3. Words like same, similar, differ and those used with equative as, e.g.,
same as, as well as, etc.

4. Others, such as favor, beat, win, exceed, outperform, prefer, ahead,
than, superior, inferior, number one, up against, etc.

Note that those words with POS tags of JJR, RBR, JJS and RBS are not
used as keywords themselves. Instead, their POS tags, JJR, RBR, JJS and
RBS, are treated as four keywords only. There are four exceptions: more,
less, most, and least are treated as individual keywords because their us-
ages are diverse, and using them as individual keywords enables the sys-
tem to catch their individual usage patterns for classification.

Since keywords alone are able to achieve a very high recall, the follow-
ing learning approach is used in [255] to improve the precision:

• Use the set of keywords to filter out those sentences that are unlikely to
be comparative sentences (do not contain any keywords). The remaining
set of sentences R forms the candidate set of comparative sentences.

• Work on R to improve the precision, i.e., to classify the sentences in R
into comparative and non-comparative sentences, and then into different
types of comparative sentences.

It is also observed in [255] that comparative sentences have strong patterns
involving comparative keywords, which is not surprising. These patterns
can be used as attributes in learning. To discover these patterns, class se-
quential rule (CSR) mining (see Sect. 2.9.3) was used. Each training ex-
ample used for mining CSRs is a pair (si, yi), where si is a sequence and yi
is a class, yi ∈ {comparative, non-comparative}.

436 11 Opinion Mining

Training Data Preparation: The sequences in the training data are gener-
ated from sentences. Since we want to find patterns surrounding specific
keywords, we use keywords as pivots to produce sequences.

Let the set of pivots be P. We generate the training sequence database as
follows:

1. For each sentence, only words within the radius of r of the keyword
pivot pi ∈ P are used to form a sequence. In [256], r is set to 3. Each
pivot in a sentence forms a separate sequence.

2. Each word is then replaced with its POS tag. The actual words are not
used because the contents of sentences may be very different, but their
underlying language patterns can be the same. Using POS tags allow us
to capture content independent patterns. There is an exception. For each
keyword (except those represented by JJR, RBR, JJS and RBS), the ac-
tual word and its POS tag are combined together to form a single item.
The reason for this is that some keywords have multiple POS tags de-
pending on their use. Their specific usages can be important in deter-
mining whether a sentence is a comparative sentence or not. For exam-
ple, the keyword “more” can be a comparative adjective (more/JJR) or a
comparative adverb (more/RBR) in a sentence.

3. A class is attached to each sequence according to whether the sentence
is a comparative or non-comparative sentence.

Example 11: Consider the comparative sentence “this/DT camera/NN
has/VBZ significantly/RB more/JJR noise/NN at/IN iso/NN 100/CD than/IN
the/DT nikon/NN 4500/CD.” It has the keywords “more” and “than”. The
sequence involving “more” put in the training set is:

(〈{NN}{VBZ}{RB}{more/JJR}{NN}{IN}{NN}〉, comparative)

CSR Generation: Using the training data, CSRs can be generated. Recall
that a CSR is an implication of the form, X → y, where X is a sequence and
y is a class. Due to the fact that some keywords appear very frequently in
the data and some appear rarely, multiple minimum supports are used in
mining. The minimum item support for each keyword is computed with
freq*τ, where τ is set to 0.1 (freq is the actual frequency of its occurrence).
See Sect. 2.7.2 or Sect. 2.8.2 in Chap. 2 for details on mining with multiple
minimum supports.

In addition to the automatically generated rules, some manually com-
piled rules are also used in [255, 256], which are more complex and diffi-
cult to generate by current rule mining techniques.

Classifier Building: There are many ways to build classifiers using the
discovered CSRs, we describe two methods:

11.3 Comparative Sentence and Relation Mining 437

1. Treat all CSRs as a classifier. A CSR simply expresses the conditional
probability that a sentence is a comparison if it contains the sequence
pattern X. These rules can thus be used for classification. That is, for
each test sentence, the algorithm finds all the rules satisfied by the sen-
tence, and then chooses the rule with the highest confidence to classify
the sentence. This is basically the “use the strongest rule” method dis-
cussed in Sect. 3.5.1 in Chap. 3.

2. Use CSRs as attributes to create a data set and then learn a naïve Baye-
sian (NB) classifier (or any other types of classifiers) (see Sect. 3.5.2 in
Chap. 3). The data set uses the following attribute set:

Attribute Set = {X | X is the sequential pattern in CSR X → y} ∪
 {Z | Z is the pattern in a manual rule Z → y}.

The class is not used but only the sequence pattern X (or Z) of each rule.
The idea is that these patterns are predictive of the classes. A rule’s pre-
dictability is indicated by its confidence. The minimum confidence of
60% is used in [255].

Each sentence forms an example in the training data. If the sentence
has a particular pattern in the attribute set, the corresponding attribute
value is 1, and is 0 otherwise. Using the resulting data, it is straightfor-
ward to perform NB learning. Other learning methods can be used as
well, but according to [255], NB seems to perform better.

Classify Comparative Sentences into Three Types: This step classifies
comparative sentences obtained from the last step into one of the three
types or classes, non-equal gradable, equative, and superlative. For this
task, the keywords alone are already sufficient. That is, we use the set of
keywords as the attribute set for machine learning. If the sentence has a
particular keyword in the attribute set, the corresponding attribute value is
1, and otherwise it is 0. SVM gives the best results in this case.

11.3.3 Extraction of Comparative Relations

We now discuss how to extract relation entries/items. Label sequential
rules are again used for this task. The algorithm presented below is based
on the work in [256], which makes the following assumptions:

1. There is only one relation in a sentence. In practice, this is violated only
in a very small number of cases.

2. Entities or features are nouns (includes nouns, plural nouns and proper
nouns) and pronouns. These cover most cases. However, a feature can
sometimes be a noun used in its verb form or some action described as a

438 11 Opinion Mining

verb (e.g., “Intel costs more”; “costs” is a verb and a feature). Such
comparisons are adverbial comparisons and are not considered in [256].

Sequence Data Generation: A sequence database for mining is created as
follows: Since we are interested in predicting and extracting items repre-
senting entityS1 (denoted by $entityS1), entityS2 (denoted by $entityS2),
and features (denoted by $feature), which are all called labels, we first
manually mark/label such words in each sentence in the training data. For
example, in the sentence “Intel/NNP is/VBZ better/JJR than/IN amd/NN”,
the proper noun “Intel” is labeled with $entityS1, and the noun “amd” is
labeled with $entityS2. The two labels are then used as pivots to generate
sequence data. For every occurrence of a label in a sentence, a separate se-
quence is created and put in the sequence database. A radius of 4 is used in
[256]. The following position words are also added to keep track of the
distance between two items in a generated pattern:

1. Distance words = {l1, l2, l3, l4, r1, r2, r3, r4}, where li means distance
of i to the left of the pivot, and ri means the distance of i to the right of
pivot.

2. Special words #start and #end are used to mark the start and the end of a
sentence.

Example 12: The comparative sentence “Canon/NNP has/VBZ better/JJR
optics/NNS than/IN Nikon/NNP” has $entityS1 “Canon”, $feature “optics”
and $entityS2 “Nikon”. The three sequences corresponding to the two enti-
ties and one feature put in the database are:

〈{#start}{l1}{$entityS1, NNP}{r1}{has, VBZ}{r2}{better, JJR}
{r3}{$feature, NNS}{r4}{thanIN}〉

〈{#start}{l4}{$entityS1, NNP}{l3}{has, VBZ}{l2}{better, JJR} {l1}
{$feature, NNS}{r1}{thanIN}{r2}{entityS2, NNP}{r3} {#end}〉

〈{has, VBZ}{l4}{better, JJR}{l3}{$feature, NNS}{l2}{thanIN}
{l1}{$entityS2, NNP}{r1}{#end}〉.

The keyword “than” is merged with its POS tag to form a single item.

LSR Generation: After the sequence database is built, a rule mining sys-
tem is applied to generate label sequential rules. Note that only those rules
that contain one or more labels (i.e., $entityS1, $entityS2, and $feature)
will be generated. An example of a LSR rule is as follows

Rule 1: 〈{*, NN}{VBZ}{JJR}{thanIN}{*, NN}〉 →
 〈{$entityS1, NN}{VBZ}{JJR}{thanIN}{$entityS2, NN}〉.

Relation Item Extraction: The generated LSRs are used to extract rela-
tion items from each input (or test) sentence. One strategy is to use all the

11.4 Opinion Search 439

rules to match the sentence and to extract the relation items using the rule
with the highest confidence. For example, the above rule will label and ex-
tract “coke” as entityS1, and “pepsi” as entityS2 from the following sen-
tence:

 〈{coke, NN}{is, VBZ}{definitely, RB}{better, JJR}{thanIN}{pepsi, NN}〉.

There is no feature in this sentence. The relationWord is simply the key-
word that identifies the sentence as a comparative sentence. In this case, it
is “better.” A similar but more complex method is used in [256].

Again, many other methods can also be applied to the extraction, e.g.,
conditional random fields, hidden Markov models, and others. Results in
[256] show that the LSR-based method outperforms conditional random
fields. Further research and more comprehensive evaluations are needed to
assess the strengths and weaknesses of these methods.

11.4 Opinion Search

Like the general Web search, one can also crawl the user-generated content
on the Web and provide an opinion search service. The objective is to en-
able users to search for opinions on any object. Let us look at some typical
opinion search queries:

1. Search for opinions on a particular object or feature of an object, e.g.,
customer opinions on a digital camera or the picture quality of a digital
camera, or public opinions on a political topic. Recall that the object can
be a product, organization, topic, etc.

2. Search for opinions of a person or organization (i.e., opinion holder) on
a particular object or feature of the object. For example, one may search
for Bill Clinton’s opinion on abortion or a particular aspect of it. This
type of search is particularly relevant to news documents, where indi-
viduals or organizations who express opinions are explicitly stated. In
the user-generated content on the Web, the opinions are mostly ex-
pressed by authors of the postings.

For the first type of queries, the user may simply give the name of the ob-
ject and/or some features of the object. For the second type of queries, the
user may give the name of the opinion holder and also the name of the ob-
ject. Clearly, it is not appropriate to simply apply keyword matching for ei-
ther type of queries because a document containing the query words may
not have opinions. For example, many discussion and blog posts do not
contain opinions, but only questions and answers on some objects. Opin-
ionated documents or sentences need to be identified before search is per-

440 11 Opinion Mining

formed. Thus, the simplest form of opinion search can be keyword-based
search applied to the identified opinionated documents/sentences.

As for ranking, traditional Web search engines rank Web pages based
on authority and relevance scores. The basic premise is that the top ranked
pages (ideally the first page) contain sufficient information to satisfy the
user’s information need. This may be fine for the second type of queries
because the opinion holder usually has only one opinion on the search ob-
ject, and the opinion is usually contained in a single document or page (in
some cases, using a general search engine with an appropriate set of key-
words may be sufficient to find answers for such queries). However, for
the first type of opinion queries, the top ranked documents only represent
the opinions of a few persons. Therefore, they need to reflect the natural
distribution of positive and negative sentiments of the whole population.
Moreover, in many cases, opinionated documents are very long (e.g., re-
views). It is hard for the user to read many of them in order to obtain a
complete picture of the prevailing sentiments. Some form of summary of
opinions is desirable, which can be either a simple rating average of re-
views and proportions of positive and negative opinions, or a sophisticated
feature-based summary as we discussed earlier. To make it even easier for
the user, two rankings may be produced, one for positive opinions and one
for negative opinions.

Providing a feature-based summary for each search query is an ideal so-
lution. An analogy can be drawn from traditional surveys or opinion polls.
An opinionated document is analogous to a filled survey form. Once all or
a sufficient number of survey forms are collected, some analysts will ana-
lyze them to produce a survey summary, which is usually in the form of a
bar or pie chart. One seldom shows all the filled survey forms to users
(e.g., the management team of an organization or the general public) and
asks them to read everything in order to draw their own conclusions. How-
ever, automatically generating a feature-based summary for each search
object (or query) is a very challenging problem. To build a practical search
system, some intermediate solution based on Problem 2 and 3 in Sect.
11.2.1 may be more appropriate.

Opinions also have a temporal dimension. For example, the opinions of
people on a particular object, e.g., a product or a topic, may change over
time. Displaying the changing trend of sentiments along the time axis can
be very useful in many applications.

Finally, like opinion search, comparison search will be useful as well.
For example, when you want to register for a free email account, you most
probably want to know which email system is best for you, e.g., hotmail,
gmail or Yahoo! mail. Wouldn’t it be nice if you can find comparisons of

11.5 Opinion Spam 441

features of these email systems from existing users by issuing a search
query “hotmail vs. gmail vs. yahoo mail.”?

11.5 Opinion Spam

In Sect. 6.10, we discussed Web spam, which refers to the use of
“illegitimate means” to boost the search rank position of some target Web
pages. The reason for spamming is because of the economic and/or
publicity value of the rank position of a page returned by a search engine.
In the context of opinions on the Web, the problem is similar. It has
become a common practice for people to find and to read opinions on the
Web for many purposes. For example, if one wants to buy a product, one
typically goes to a merchant or review site (e.g., amazon.com) to read
some reviews of existing users of the product. If one sees many positive
reviews of the product, one is very likely to buy the product. On the
contrary, if one sees many negative reviews, he/she will most likely choose
another product. Positive opinions can result in significant financial gains
and/or fames for organizations and individuals. This, unfortunately, gives
good incentives for opinion spam, which refers to human activities (e.g.,
write spam reviews) that try to deliberately mislead readers or automated
opinion mining systems by giving undeserving positive opinions to some
target objects in order to promote the objects and/or by giving unjust or
false negative opinions on some other objects in order to damage their
reputation. In this section, we use customer reviews of products as an
example to study opinion spam on the Web. Most of the analyses are also
applicable to opinions expressed in other forms of user-generated contents,
e.g., forum postings, group discussions, and blogs.

11.5.1 Objectives and Actions of Opinion Spamming

As we indicated above, there are two main objectives for writing spam re-
views:

1. To promote some target objects, e.g., one’s own products.
2. To damage the reputation of some other target objects, e.g., products of

one’s competitors.

In certain cases, the spammer may want to achieve both objectives, while
in others, he/she only aims to achieve one of them because either he/she
does not have an object to promote or there is no competition. Another ob-
jective is also possible but may be rare. That is, the spammer writes some

442 11 Opinion Mining

irrelevant information or false information in order to annoy readers and to
fool automated opinion mining systems.

To achieve the above objectives, the spammer usually takes both or one
of the actions below:

• Write undeserving positive reviews for the target objects in order to
promote them. We call such spam reviews hype spam.

• Write unfair or malicious negative reviews for the target objects to dam-
age their reputation. We call such spam review defaming spam.

11.5.2 Types of Spam and Spammers

Table 11.3 below gives a simplified view of spam reviews. Spam reviews
in regions 1, 3 and 5 are typically written by owners or manufacturers of
the product or persons who have direct economic or other interests in the
product. Their main goal is to promote the product. Although opinions ex-
pressed in reviews of region 1 may be true, reviewers do not announce
their conflict of interests.

Spam reviews in regions 2, 4, and 6 are likely to be written by competi-
tors, who give false information in order to damage the reputation of the
product. Although opinions in reviews of region 4 may be true, reviewers
do not announce their conflict of interests and may have malicious inten-
sions.

Table 11.3. Spam reviews vs. product quality

 Hype spam review Defaming spam review
Good quality product 1 2
Poor quality product 3 4

In-between good and poor
quality product 5 6

Clearly, spam reviews in region 1 and 4 are not so damaging, while
spam reviews in regions 2, 3, 5 and 6 are very harmful. Thus, spam detec-
tion techniques should focus on identifying reviews in these regions.

Manual and Automated Spam: Spam reviews may be manually written
or automatically generated. Writing spam reviews manually is not a simple
task if one wants to spam on a product at many review sites and write them
differently to avoid being detected by methods that catch near duplicate
reviews. Using some language templates, it is also possible to automati-
cally generate many different variations of the same review.

11.5 Opinion Spam 443

Individual Spammers and Group Spammers: A spammer may act indi-
vidually (e.g., the author of a book) or as a member of a group (e.g., a
group of employees of a company).
Individual spammers: In this case, a spammer, who does not work with

anyone else, writes spam reviews. The spammer may register at a review
site as a single user, or as “many users” using different user-ids. He/she
can also register at multiple review sites and write spam reviews.

Group spammers: A group of spammers works collaboratively to promote
a target object and/or to damage the reputation of another object. They
may also register at multiple sites and spam at these sites. Group spam
can be very damaging because they may take control of the sentiments
on the product and completely mislead potential customers.

11.5.3 Hiding Techniques

In order to avoid being detected, spammers may take a variety of precau-
tions. We study individual and group of spammers separately. The lists are
by no means exhaustive and should be considered as just examples.

An Individual Spammer

1. The spammer builds up reputation by reviewing other products in the
same or different categories/brands that he/she does not care about and
give them agreeable ratings and reasonable reviews. Then, he/she be-
comes a trustworthy reviewer. However, he/she may write spam reviews
on the products that he/she really cares about. This hiding method is
useful because some sites rank reviewers based on their reviews that are
found helpful by readers, e.g., amazon.com. Some sites also have trust
systems that allow readers to assign trust scores to reviewers.

2. The spammer registers multiple times at a site using different user-ids
and write multiple spam reviews under these user-ids so that their re-
views or ratings will not appear as outliers. The spammer may even use
different machines to avoid being detected by server log based detection
methods that can compare IP addresses of reviewers (discussed below).

3. The spammer gives a reasonably high rating but write a critical (nega-
tive) review. This may fool detection methods that find outliers based on
ratings alone. Yet, automated review mining systems will pick up all the
negative sentiments in the actual review content.

4. Spammers write either only positive reviews on his/her own products or
only negative reviews on the products of his/her competitors, but not
both. This is to hide from spam detection methods that compare one’s
reviews on competing products from different brands.

444 11 Opinion Mining

A Group of Spammers

1. Every member of the group reviews the same product to lower the rating
deviation.

2. Every member of the group writes a review roughly at the time when
the product is launched in order to take control of the product. It is gen-
erally not a good idea to write many spam reviews at the same time after
many reviews have been written by others because a spike will appear,
which can be easily detected.

3. Members of the group write reviews at random or irregular intervals to
hide spikes.

4. If the group is sufficiently large, it may be divided into sub-groups so
that each sub-group can spam at different web sites (instead of only
spam at the same site) to avoid being detected by methods that compare
average ratings and content similarities of reviews from different sites.

11.5.4 Spam Detection

So far, little study has been done on opinion spam detection. This sub-
section outlines some possible approaches. We note that each individual
technique below may not be able to reliably detect spam reviews, but it can
be treated as a spam indicator. A holistic approach that combines all
evidences is likely to be effective. One possible combination method is to
treat spam detection as a classification problem. All the individual methods
simply compute spam evidences which can be put in a data set from which
a spam classifier can be learned. For this approach to work, a set of re-
views needs to be manually labeled for learning. The resulting classifier
can be used to classify each new review as a spam review or not one.

Review Centric Spam Detection: In this approach, spam detection is
based only on reviews. A review has two main parts: rating and content.

Compare content similarity: In order to have the maximum impact, a
spammer may write multiple reviews on the same product (using differ-
ent user-ids) or multiple products of the same brand. He/she may also
write reviews at multiple review sites. However, for a single spammer to
write multiple reviews that look very different is not an easy task. Thus,
some spammers simply use the same review or slight variations of the
same review. In a recent study of reviews from amazon.com, it was
found that some spammers were so lazy that they simply copied the
same review and pasted it for many different products of the same brand.
Techniques that can detect near duplicate documents are useful here (see
Sect. 6.5.5). For automatically generated spam reviews based on lan-

11.5 Opinion Spam 445

guage templates, sophisticated pattern mining methods may be needed to
detect them.

Detect rating and content outliers: If we assume that reviews of a product
contain only a very small proportion of spam, we can detect possible
spam activities based on rating deviations, especially for reviews in re-
gion 2 and 3, because they tend to be outliers. For reviews in regions 5
and 6, this method may not be effective.

If a product has a large proportion of spam reviews, it is hard to detect
them based on review ratings, even though each spammer may act inde-
pendently, because they are no longer outliers. In this case, we may need
to employ reviewer centric and server centric spam detection methods
below. This case is similar to group spam, which is also hard to detect
based on content alone because the spam reviews are written by different
members of the group and there are a large number of them. Hence, their
reviews are not expected to be outliers. However, members of the group
may be detected based on reviewer centric detection methods and server
centric detection methods. The following methods are also helpful.

Compare average ratings from multiple sites: This method is useful to ac-
cess the level of spam activities from a site if only a small number of re-
view sites are spammed. For example, if the averages rating at many re-
view sites for a product are quite high but at one site it is quite low, this
is an indication that there may be some group spam activities going on.

Detect rating spikes: This method looks at the review ratings (or contents)
from the time series point of view. If a number of reviews with similar
ratings come roughly at the same time, a spike will appear which indi-
cates a possible group spam.

Reviewer Centric Spam Detection: In this approach, “unusual” behaviors
of reviewers are exploited for spam detection. It is assumed that all the re-
views of each reviewer at a particular site are known. Most review sites
provide such information, e.g., amazon.com, or such information can be
found by matching user-ids.

Watch early reviewers: Spammers are often the first few reviewers to re-
view a product because earlier reviews tend to have a bigger impact.
Their ratings for each product are in one of the two extremes, either very
high or very low. They may do this consistently for a number of products
of the same brand.

Detect early remedial actions: For a given product, as soon as someone
writes a (or the first) negative review to a product, the spammer gives a
positive review just after it, or vice versa.

Compare review ratings of the same reviewer on products from different
brands: A spammer often writes very positive reviews for products of

446 11 Opinion Mining

one brand (to promote the product) and very negative reviews for similar
products of another brand. A rating (or content) comparison will show
discrepancies. If some of the ratings also deviate a great deal from the
average ratings of the products, this is a good indicator of possible spam.

Compare review times: A spammer may review a few products from dif-
ferent brands at roughly the same time. Such behaviors are unusual for a
normal reviewer.

As we mentioned above, detecting a group of spammers is difficult.
However, we can reduce their negative impact by detecting each individual
member in the group using the above and below methods.

Server centric spam detection: The server log at the review site can be
helpful in spam detection as well. If a single person registers multiple
times at a Web site having the same IP address, and the person also writes
multiple reviews for the same product or even different products using dif-
ferent user-ids, it is fairly certain that the person is a spammer. Using the
server log may also detect some group spam activities. For example, if
most good reviews of a product are from a particular region where the
company that produces the product is located, it is a good indication that
these are likely spam.

As more and more people and organizations are using opinions on the
Web for decision making, spammers have more and more incentives to ex-
press false sentiments in product reviews, discussions and blogs. To ensure
the quality of information provided by an opinion mining and/or search
system, spam detection is a critical task. Without effective detection, opin-
ions on the Web may become useless. This section analyzed various as-
pects of opinion spam and outlined some possible detection methods. This
may just be the beginning of a long journey of the “arms race” between
spam and detection of spam.

Bibliographic Notes

Opinion mining received a great deal of attention recently due to the avail-
ability of a huge volume of online documents and user-generated content
on the Web, e.g., reviews, forum discussions, and blogs. The problem is
intellectually challenging, and also practically useful. The most widely
studied sub-problem is sentiment classification, which classifies evaluative
texts or sentences as positive, negative, or neutral. Representative works
on classification at the document level include those by Turney [521],
Pang et al. [428], and Dave et al. [122]. They have been discussed in this

Bibliographic Notes 447

chapter. Sentence level subjectivity classification was studied by
Hatzivassiloglou and Wiebe [225], which determines whether a sentence is
a subjective sentence (but may not express a positive or negative opinion)
or a factual one. Sentence level sentiment or opinion classification (posi-
tive, negative and neutral) was studied by Hu and Liu [245], Kim and
Hovy [276], Wiebe and Riloff [545], among others. Some of these meth-
ods were discussed in Sect. 11.2.5. Other related works at both the docu-
ment and sentence levels include those by Hearst [232], Tong [517], Das
and Chen [120], Morinaga et al. [397], Agrawal et al. [10], Nasukawa and
Yi [402], Beineke et al. [44], Nigam and Hurst [412], Gamon [191], Ga-
mon et al. [192], Pang and Lee [426, 427], Riloff and Wiebe [462], Wilson
et al. [548], etc.

Most sentence level and even document level classification methods are
based on word or phrase sentiment identification. Automatic and semi-
automatic methods for the purpose have been explored by several re-
searchers. There are basically two types of approaches: (1) corpus-based
approaches, and (2) dictionary-based. approaches. Corpus-based ap-
proaches find co-occurrence patterns of words to determine their senti-
ments, e.g., the works by Turney [521], Riloff and Wiebe [462], Hatzivas-
siloglou and McKeown [224], Yu and Hatzivassiloglou [584], and
Grefenstette et al. [206]. Dictionary-based approaches use synonyms, an-
tonyms and hierarchies in WordNet to determine word sentiments. Such
approaches were studied by Hu and Liu [245], Valitutti et al. [524], Kim
and Hovy [276], and Andreevskaia and Bergler [22].

The idea of feature-based opinion summarization was introduced by Hu
and Liu [245] to deal with a large number of reviews. Some methods for
performing the task were also proposed. Popescu and Etzioni [447], and
Carenini et al [80] explored the issues further. Liu et al. [347] studied the
problem of product feature extraction from pros and cons, which are short
phrases. Yi et al. [577], Ku et al. [291] and Kobayashi et al. [284] investi-
gated similar problems as well. More recent work can be found in [81, 159,
264, 267, 277, 278, 290, 409, 483, 507, 544, 546, 622].

Regarding mining comparative sentences and relations, Jindal and Liu
[255, 256] defined the problem and proposed some initial techniques based
on data mining and machine learning methods. Research in linguistics on
syntax and semantics of comparatives can be found in [150, 274, 393].

The discussions on opinion search and opinion spam are based on a re-
cent study of product reviews from amazon.com by the author’s research
group.

12 Web Usage Mining

With the continued growth and proliferation of e-commerce, Web services,
and Web-based information systems, the volumes of clickstream and user
data collected by Web-based organizations in their daily operations has
reached astronomical proportions. Analyzing such data can help these or-
ganizations determine the life-time value of clients, design cross-marketing
strategies across products and services, evaluate the effectiveness of pro-
motional campaigns, optimize the functionality of Web-based applications,
provide more personalized content to visitors, and find the most effective
logical structure for their Web space. This type of analysis involves the
automatic discovery of meaningful patterns and relationships from a large
collection of primarily semi-structured data, often stored in Web and ap-
plications server access logs, as well as in related operational data sources.

Web usage mining refers to the automatic discovery and analysis of
patterns in clickstream and associated data collected or generated as a re-
sult of user interactions with Web resources on one or more Web sites
[114, 387, 505]. The goal is to capture, model, and analyze the behavioral
patterns and profiles of users interacting with a Web site. The discovered
patterns are usually represented as collections of pages, objects, or re-
sources that are frequently accessed by groups of users with common
needs or interests.

Following the standard data mining process [173], the overall Web us-
age mining process can be divided into three inter-dependent stages: data
collection and pre-processing, pattern discovery, and pattern analysis. In
the pre-processing stage, the clickstream data is cleaned and partitioned
into a set of user transactions representing the activities of each user during
different visits to the site. Other sources of knowledge such as the site con-
tent or structure, as well as semantic domain knowledge from site ontolo-
gies (such as product catalogs or concept hierarchies), may also be used
in pre-processing or to enhance user transaction data. In the pattern discov-
ery stage, statistical, database, and machine learning operations are per-
formed to obtain hidden patterns reflecting the typical behavior of users, as
well as summary statistics on Web resources, sessions, and users. In the fi-
nal stage of the process, the discovered patterns and statistics are further
processed, filtered, possibly resulting in aggregate user models that can be

By Bamshad Mobasher

450 12 Web Usage Mining

used as input to applications such as recommendation engines, visualiza-
tion tools, and Web analytics and report generation tools. The overall
process is depicted in Fig. 12.1.

In the remainder of this chapter, we provide a detailed examination of
Web usage mining as a process, and discuss the relevant concepts and
techniques commonly used in all the various stages mentioned above.

12.1 Data Collection and Pre-Processing

An important task in any data mining application is the creation of a suit-
able target data set to which data mining and statistical algorithms can be
applied. This is particularly important in Web usage mining due to the
characteristics of clickstream data and its relationship to other related data
collected from multiple sources and across multiple channels. The data
preparation process is often the most time consuming and computationally
intensive step in the Web usage mining process, and often requires the use
of special algorithms and heuristics not commonly employed in other do-
mains. This process is critical to the successful extraction of useful patterns

Fig. 12.1. The Web usage mining process

12.1 Data Collection and Pre-Processing 451

from the data. The process may involve pre-processing the original data,
integrating data from multiple sources, and transforming the integrated
data into a form suitable for input into specific data mining operations.
Collectively, we refer to this process as data preparation.

Much of the research and practice in usage data preparation has been fo-
cused on pre-processing and integrating these data sources for different
analysis. Usage data preparation presents a number of unique challenges
which have led to a variety of algorithms and heuristic techniques for pre-
processing tasks such as data fusion and cleaning, user and session identi-
fication, pageview identification [115]. The successful application of data
mining techniques to Web usage data is highly dependent on the correct
application of the pre-processing tasks. Furthermore, in the context of e-

Fig. 12.2. Steps in data preparation for Web usage mining.

452 12 Web Usage Mining

commerce data analysis, these techniques have been extended to allow for
the discovery of important and insightful user and site metrics [286].

Figure 12.2 provides a summary of the primary tasks and elements in
usage data pre-processing. We begin by providing a summary of data types
commonly used in Web usage mining and then provide a brief discussion
of some of the primary data preparation tasks.

12.1.1 Sources and Types of Data

The primary data sources used in Web usage mining are the server log
files, which include Web server access logs and application server logs.
Additional data sources that are also essential for both data preparation and
pattern discovery include the site files and meta-data, operational data-
bases, application templates, and domain knowledge. In some cases and
for some users, additional data may be available due to client-side or
proxy-level (Internet Service Provider) data collection, as well as from ex-
ternal clickstream or demographic data sources such as those provided by
data aggregation services from ComScore (www.comscore.com), NetRat-
ings (www.nielsen-netratings.com), and Acxiom (www.acxiom.com).

The data obtained through various sources can be categorized into four
primary groups [115, 505].

Usage Data: The log data collected automatically by the Web and applica-
tion servers represents the fine-grained navigational behavior of visitors. It
is the primary source of data in Web usage mining. Each hit against the
server, corresponding to an HTTP request, generates a single entry in the
server access logs. Each log entry (depending on the log format) may con-
tain fields identifying the time and date of the request, the IP address of the
client, the resource requested, possible parameters used in invoking a Web
application, status of the request, HTTP method used, the user agent
(browser and operating system type and version), the referring Web re-
source, and, if available, client-side cookies which uniquely identify a re-
peat visitor. A typical example of a server access log is depicted in Fig.
12.3, in which six partial log entries are shown. The user IP addresses in
the log entries have been changed to protect privacy.

For example, log entry 1 shows a user with IP address “1.2.3.4” access-
ing a resource: “/classes/cs589/papers.html” on the server (maya.cs.
depaul.edu). The browser type and version, as well as operating system in-
formation on the client machine are captured in the agent field of the entry.
Finally, the referrer field indicates that the user came to this location from
an outside source: “http://dataminingresources.blogspot.com/”. The next
log entry shows that this user has navigated from “papers.html” (as re-

12.1 Data Collection and Pre-Processing 453

flected in the referrer field of entry 2) to access another resource:
“/classes/cs589/papers/cms-tai.pdf”. Log entry 3 shows a user who has ar-
rived at the resource “/classes/ds575/papers/hyperlink.pdf” by doing a
search on Google using keyword query: “hyperlink analysis for the web
survey”. Finally, entries 4−6 all correspond to a single click-through by a
user who has accessed the resource “/classes/cs480/announce.html”. En-
tries 5 and 6 are images embedded in the file “announce.html” and thus
two additional HTTP request are registered as hits in the server log corre-
sponding to these images.

Depending on the goals of the analysis, this data needs to be trans-
formed and aggregated at different levels of abstraction. In Web usage
mining, the most basic level of data abstraction is that of a pageview. A
pageview is an aggregate representation of a collection of Web objects
contributing to the display on a user’s browser resulting from a single user
action (such as a click-through). Conceptually, each pageview can be
viewed as a collection of Web objects or resources representing a specific
“user event,” e.g., reading an article, viewing a product page, or adding a
product to the shopping cart. At the user level, the most basic level of be-
havioral abstraction is that of a session. A session is a sequence of page-
views by a single user during a single visit. The notion of a session can be

1 2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
http://dataminingresources.blogspot.com/

2 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
http://maya.cs.depaul.edu/~classes/cs589/papers.html

3 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200
318814 HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1)
http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey

4 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
http://maya.cs.depaul.edu/~classes/cs480/

5 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
http://maya.cs.depaul.edu/~classes/cs480/announce.html

6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
http://maya.cs.depaul.edu/~classes/cs480/announce.html

Fig. 12.3. Portion of a typical server log

454 12 Web Usage Mining

further abstracted by selecting a subset of pageviews in the session that are
significant or relevant for the analysis tasks at hand.

Content Data: The content data in a site is the collection of objects and
relationships that is conveyed to the user. For the most part, this data is
comprised of combinations of textual materials and images. The data
sources used to deliver or generate this data include static HTML/XML
pages, multimedia files, dynamically generated page segments from
scripts, and collections of records from the operational databases. The site
content data also includes semantic or structural meta-data embedded
within the site or individual pages, such as descriptive keywords, docu-
ment attributes, semantic tags, or HTTP variables. The underlying domain
ontology for the site is also considered part of the content data. Domain
ontologies may include conceptual hierarchies over page contents, such as
product categories, explicit representations of semantic content and rela-
tionships via an ontology language such as RDF, or a database schema
over the data contained in the operational databases.

Structure Data: The structure data represents the designer’s view of the
content organization within the site. This organization is captured via the
inter-page linkage structure among pages, as reflected through hyperlinks.
The structure data also includes the intra-page structure of the content
within a page. For example, both HTML and XML documents can be rep-
resented as tree structures over the space of tags in the page. The hyperlink
structure for a site is normally captured by an automatically generated “site
map.” A site mapping tool must have the capability to capture and repre-
sent the inter- and intra-pageview relationships. For dynamically generated
pages, the site mapping tools must either incorporate intrinsic knowledge
of the underlying applications and scripts that generate HTML content, or
must have the ability to generate content segments using a sampling of pa-
rameters passed to such applications or scripts.

User Data: The operational database(s) for the site may include additional
user profile information. Such data may include demographic information
about registered users, user ratings on various objects such as products or
movies, past purchases or visit histories of users, as well as other explicit
or implicit representations of users’ interests. Some of this data can be cap-
tured anonymously as long as it is possible to distinguish among different
users. For example, anonymous information contained in client-side cook-
ies can be considered a part of the users’ profile information, and used to
identify repeat visitors to a site. Many personalization applications require
the storage of prior user profile information.

12.1 Data Collection and Pre-Processing 455

12.1.2 Key Elements of Web Usage Data Pre-Processing

As noted in Fig. 12.2, the required high-level tasks in usage data pre-
processing include the fusion and synchronization of data from multiple
log files, data cleaning, pageview identification, user identification, session
identification (or sessionization), episode identification, and the integration
of clickstream data with other data sources such as content or semantic in-
formation, as well as user and product information from operational data-
bases. We now examine some of the essential tasks in pre-processing.

Data Fusion and Cleaning

In large-scale Web sites, it is typical that the content served to users comes
from multiple Web or application servers. In some cases, multiple servers
with redundant content are used to reduce the load on any particular server.
Data fusion refers to the merging of log files from several Web and appli-
cation servers. This may require global synchronization across these serv-
ers. In the absence of shared embedded session ids, heuristic methods
based on the “referrer” field in server logs along with various sessioniza-
tion and user identification methods (see below) can be used to perform the
merging. This step is essential in “inter-site” Web usage mining where the
analysis of user behavior is performed over the log files of multiple related
Web sites [513].

Data cleaning is usually site-specific, and involves tasks such as, remov-
ing extraneous references to embedded objects that may not be important
for the purpose of analysis, including references to style files, graphics, or
sound files. The cleaning process also may involve the removal of at least
some of the data fields (e.g. number of bytes transferred or version of
HTTP protocol used, etc.) that may not provide useful information in
analysis or data mining tasks.

Data cleaning also entails the removal of references due to crawler navi-
gations. It is not uncommon for a typical log file to contain a significant
(sometimes as high as 50%) percentage of references resulting from search
engine or other crawlers (or spiders). Well-known search engine crawlers
can usually be identified and removed by maintaining a list of known
crawlers. Other “well-behaved” crawlers which abide by standard robot
exclusion protocols, begin their site crawl by first attempting to access to
exclusion file “robots.txt” in the server root directory. Such crawlers, can
therefore, be identified by locating all sessions that begin with an (at-
tempted) access to this file. However, a significant portion of crawlers ref-
erences are from those that either do not identify themselves explicitly
(e.g., in the “agent” field) or implicitly; or from those crawlers that delib-

456 12 Web Usage Mining

erately masquerade as legitimate users. In this case, identification and re-
moval of crawler references may require the use of heuristic methods that
distinguish typical behavior of Web crawlers from those of actual users.
Some work has been done on using classification algorithms to build mod-
els of crawlers and Web robot navigations [510], but such approaches have
so far been met with only limited success and more work in this area is re-
quired.

Pageview Identification

Identification of pageviews is heavily dependent on the intra-page struc-
ture of the site, as well as on the page contents and the underlying site do-
main knowledge. Recall that, conceptually, each pageview can be viewed
as a collection of Web objects or resources representing a specific “user
event,” e.g., clicking on a link, viewing a product page, adding a product to
the shopping cart. For a static single frame site, each HTML file may have
a one-to-one correspondence with a pageview. However, for multi-framed
sites, several files make up a given pageview. For dynamic sites, a page-
view may represent a combination of static templates and content gener-
ated by application servers based on a set of parameters.

In addition, it may be desirable to consider pageviews at a higher level
of aggregation, where each pageview represents a collection of pages or
objects, for examples, pages related to the same concept category. In e-
commerce Web sites, pageviews may correspond to various product-
oriented events, such as product views, registration, shopping cart changes,
purchases, etc. In this case, identification of pageviews may require a pri-
ori specification of an “event model” based on which various user actions
can be categorized.

In order to provide a flexible framework for a variety of data mining ac-
tivities a number of attributes must be recorded with each pageview. These
attributes include the pageview id (normally a URL uniquely representing
the pageview), static pageview type (e.g., information page, product view,
category view, or index page), and other metadata, such as content attrib-
utes (e.g., keywords or product attributes).

User Identification

The analysis of Web usage does not require knowledge about a user’s
identity. However, it is necessary to distinguish among different users.
Since a user may visit a site more than once, the server logs record multi-
ple sessions for each user. We use the phrase user activity record to refer
to the sequence of logged activities belonging to the same user.

12.1 Data Collection and Pre-Processing 457

In the absence of authentication mechanisms, the most widespread ap-
proach to distinguishing among unique visitors is the use of client-side
cookies. Not all sites, however, employ cookies, and due to privacy con-
cerns, client-side cookies are sometimes disabled by users. IP addresses,
alone, are not generally sufficient for mapping log entries onto the set of
unique visitors. This is mainly due to the proliferation of ISP proxy servers
which assign rotating IP addresses to clients as they browse the Web. It is
not uncommon to find many log entries corresponding to a limited number
of proxy server IP addresses from large Internet Service Providers such as
America Online. Therefore, two occurrences of the same IP address (sepa-
rated by a sufficient amount of time), in fact, might correspond to two dif-
ferent users. Without user authentication or client-side cookies, it is still
possible to accurately identify unique users through a combination of IP
addresses and other information such as user agents and referrers [115].

Consider, for instance, the example of Fig. 12.4. On the left, the figure
depicts a portion of a partly preprocessed log file (the time stamps are
given as hours and minutes only). Using a combination of IP and Agent
fields in the log file, we are able to partition the log into activity records
for three separate users (depicted on the right).

Time IP URL Ref Agent
0:01 1.2.3.4 A - IE5;Win2k
0:09 1.2.3.4 B A IE5;Win2k
0:10 2.3.4.5 C - IE6;WinXP;SP1
0:12 2.3.4.5 B C IE6;WinXP;SP1
0:15 2.3.4.5 E C IE6;WinXP;SP1
0:19 1.2.3.4 C A IE5;Win2k
0:22 2.3.4.5 D B IE6;WinXP;SP1
0:22 1.2.3.4 A - IE6;WinXP;SP2
0:25 1.2.3.4 E C IE5;Win2k
0:25 1.2.3.4 C A IE6;WinXP;SP2
0:33 1.2.3.4 B C IE6;WinXP;SP2
0:58 1.2.3.4 D B IE6;WinXP;SP2
1:10 1.2.3.4 E D IE6;WinXP;SP2
1:15 1.2.3.4 A - IE5;Win2k
1:16 1.2.3.4 C A IE5;Win2k
1:17 1.2.3.4 F C IE6;WinXP;SP2
1:26 1.2.3.4 F C IE5;Win2k
1:30 1.2.3.4 B A IE5;Win2k
1:36 1.2.3.4 D B IE5;Win2k

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:22 1.2.3.4 A -
0:25 1.2.3.4 C A
0:33 1.2.3.4 B C
0:58 1.2.3.4 D B
1:10 1.2.3.4 E D
1:17 1.2.3.4 F C

User 3

0:10 2.3.4.5 C -
0:12 2.3.4.5 B C
0:15 2.3.4.5 E C
0:22 2.3.4.5 D B

User 2

Fig. 12.4. Example of user identification using IP + Agent

458 12 Web Usage Mining

Sessionization

Sessionization is the process of segmenting the user activity record of each
user into sessions, each representing a single visit to the site. Web sites
without the benefit of additional authentication information from users and
without mechanisms such as embedded session ids must rely on heuristics
methods for sessionization. The goal of a sessionization heuristic is to re-
construct, from the clickstream data, the actual sequence of actions per-
formed by one user during one visit to the site.

We denote the “conceptual” set of real sessions by R, representing the
real activity of the user on the Web site. A sessionization heuristic h at-
tempts to map R into a set of constructed sessions, denoted by Ch. For the
ideal heuristic, h*, we have Ch* = R. In other words, the ideal heuristic can
re-construct the exact sequence of user navigation during a session. Gener-
ally, sessionization heuristics fall into two basic categories: time-oriented
or structure-oriented. Time-oriented heuristics apply either global or local
time-out estimates to distinguish between consecutive sessions, while
structure-oriented heuristics use either the static site structure or the im-
plicit linkage structure captured in the referrer fields of the server logs.
Various heuristics for sessionization have been identified and studied
[115]. More recently, a formal framework for measuring the effectiveness
of such heuristics has been proposed [498], and the impact of different
heuristics on various Web usage mining tasks has been analyzed [46].

As an example, two variations of time-oriented heuristics and a basic
navigation-oriented heuristic are given below. Each heuristic h scans the
user activity logs to which the Web server log is partitioned after user
identification, and outputs a set of constructed sessions:

• h1: Total session duration may not exceed a threshold θ. Given t0, the
timestamp for the first request in a constructed session S, the request
with a timestamp t is assigned to S, iff t − t0 ≤ θ.

• h2: Total time spent on a page may not exceed a threshold δ. Given t1,
the timestamp for request assigned to constructed session S, the next re-
quest with timestamp t2 is assigned to S, iff t2 − t1 ≤ δ.

• h-ref: A request q is added to constructed session S if the referrer for q
was previously invoked in S. Otherwise, q is used as the start of a new
constructed session. Note that with this heuristic it is possible that a re-
quest q may potentially belong to more than one “open” constructed
session, since q may have been accessed previously in multiple sessions.
In this case, additional information can be used for disambiguation. For
example, q could be added to the most recently opened session satisfy-
ing the above condition.

12.1 Data Collection and Pre-Processing 459

An example of the application of sessionization heuristics is given in
Fig. 12.5 and Fig. 12.6. In Fig. 12.5, the heuristic h1, described above, with
θ = 30 minutes has been used to partition a user activity record (from the
example of Fig. 12.4) into two separate sessions.

If we were to apply h2 with a threshold of 10 minutes, the user record
would be seen as three sessions, namely, A B C E, A, and F B D.
On the other hand, Fig. 12.6 depicts an example of using h-ref heuristic on
the same user activity record. In this case, once the request for F (with time
stamp 1:26) is reached, there are two open sessions, namely, A B C E
and A. But F is added to the first because its referrer, C, was invoked in
session 1. The request for B (with time stamp 1:30) may potentially belong
to both open sessions, since its referrer, A, is invoked both in session 1 and
in session 2. In this case, it is added to the second session, since it is the
most recently opened session.

Episode identification can be performed as a final step in pre-processing
of the clickstream data in order to focus on the relevant subsets of page-
views in each user session. An episode is a subset or subsequence of a ses-
sion comprised of semantically or functionally related pageviews. This
task may require the automatic or semi-automatic classification of page-

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C

Session 1

1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

Session 2

Fig. 12.5. Example of sessionization with a time-oriented heuristic

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:26 1.2.3.4 F C

Session 1

1:15 1.2.3.4 A -
1:30 1.2.3.4 B A
1:36 1.2.3.4 D BSession 2

Fig. 12.6. Example of sessionization with the h-ref heuristic

460 12 Web Usage Mining

views into different functional types or into concept classes according to a
domain ontology or concept hierarchy. In highly dynamic sites, it may also
be necessary to map pageviews within each session into “service-based”
classes according to a concept hierarchy over the space of possible pa-
rameters passed to script or database queries [47]. For example, the analy-
sis may ignore the quantity and attributes of an item added to the shopping
cart, and focus only on the action of adding the item to the cart.

Path Completion

Another potentially important pre-processing task which is usually per-
formed after sessionization is path completion. Client- or proxy-side
caching can often result in missing access references to those pages or ob-
jects that have been cached. For instance, if a user returns to a page A dur-
ing the same session, the second access to A will likely result in viewing
the previously downloaded version of A that was cached on the client-side,
and therefore, no request is made to the server. This results in the second
reference to A not being recorded on the server logs. Missing references
due to caching can be heuristically inferred through path completion which
relies on the knowledge of site structure and referrer information from
server logs [115]. In the case of dynamically generated pages, form-based
applications using the HTTP POST method result in all or part of the user
input parameter not being appended to the URL accessed by the user
(though, in the latter case, it is possible to recapture the user input through
packet sniffers which listen to all incoming and outgoing TCP/IP network
traffic on the server side).

A simple example of missing references is given in Fig. 12.7. On the
left, a graph representing the linkage structure of the site is given. The dot-
ted arrows represent the navigational path followed by a hypothetical user.
After reaching page E, the user has backtracked (e.g., using the browser’s
“back” button) to page D and then B from which she has navigated to page
C. The back references to D and B do not appear in the log file because
these pages where cached on the client-side (thus no explicit server request
was made for these pages). The log file shows that after a request for E, the
next request by the user is for page C with a referrer B. In other words,
there is a gap in the activity record corresponding to user’s navigation from
page E to page B. Given the site graph, it is possible to infer the two miss-
ing references (i.e., E D and D B) from the site structure and the re-
ferrer information given above. It should be noted that there are, in gen-
eral, many (possibly infinite), candidate completions (for example,
consider the sequence E D, D B, B A, A B). A simple heuristic

12.1 Data Collection and Pre-Processing 461

that can be used for disambiguating among candidate paths is to select the
one requiring the fewest number of “back” references.

Data Integration

The above pre-processing tasks ultimately result in a set of user sessions
(or episodes), each corresponding to a delimited sequence of pageviews.
However, in order to provide the most effective framework for pattern dis-
covery, data from a variety of other sources must be integrated with the
preprocessed clickstream data. This is particularly the case in e-commerce
applications where the integration of both user data (e.g., demographics,
ratings, and purchase histories) and product attributes and categories from
operational databases is critical. Such data, used in conjunction with usage
data, in the mining process can allow for the discovery of important busi-
ness intelligence metrics such as customer conversion ratios and lifetime
values [286].

In addition to user and product data, e-commerce data includes various
product-oriented events such as shopping cart changes, order and shipping
information, impressions (when the user visits a page containing an item
of interest), click-throughs (when the user actually clicks on an item of in-
terest in the current page), and other basic metrics primarily used for data
analysis. The successful integration of these types of data requires the crea-
tion of a site-specific “event model” based on which subsets of a user’s
clickstream are aggregated and mapped to specific events such as the addi-
tion of a product to the shopping cart. Generally, the integrated e-
commerce data is stored in the final transaction database. To enable full-
featured Web analytics applications, this data is usually stored in a data
warehouse called an e-commerce data mart. The e-commerce data mart

A

B C

D E F

User’s actual navigation path:

A B D E D B C

What the server log shows:

URL Referrer
 A --
 B A
 D B
 E D
 C B

Fig. 12.7. Missing references due to caching.

462 12 Web Usage Mining

is a multi-dimensional database integrating data from various sources, and
at different levels of aggregation. It can provide pre-computed e-metrics
along multiple dimensions, and is used as the primary data source for
OLAP (Online Analytical Processing), for data visualization, and in data
selection for a variety of data mining tasks [71, 279]. Some examples of
such metrics include frequency or monetary value of purchases, average
size of market baskets, the number of different items purchased, the num-
ber of different item categories purchased, the amount of time spent on
pages or sections of the site, day of week and time of day when a certain
activity occurred, response to recommendations and online specials, etc.

12.2 Data Modeling for Web Usage Mining

Usage data pre-processing results in a set of n pageviews, P = {p1, p2, ···,
pn}, and a set of m user transactions, T = {t1,t2,···,tm}, where each ti in T
is a subset of P. Pageviews are semantically meaningful entities to
which mining tasks are applied (such as pages or products). Conceptu-
ally, we view each transaction t as an l-length sequence of ordered pairs:

,))(,(,)),(,()),(,(2211
t
l

t
l

tttt pwppwppwpt L=

where each pt
i = pj for some j in {1, 2, ···, n}, and w(pt

i) is the weight as-
sociated with pageview pt

i in transaction t, representing its significance.
The weights can be determined in a number of ways, in part based on the
type of analysis or the intended personalization framework. For example,
in collaborative filtering applications which rely on the profiles of similar
users to make recommendations to the current user, weights may be based
on user ratings of items. In most Web usage mining tasks the weights are
either binary, representing the existence or non-existence of a pageview in
the transaction; or they can be a function of the duration of the pageview in
the user’s session. In the case of time durations, it should be noted that
usually the time spent by a user on the last pageview in the session is not
available. One commonly used option is to set the weight for the last page-
view to be the mean time duration for the page taken across all sessions in
which the pageview does not occur as the last one. In practice, it is com-
mon to use a normalized value of page duration instead of raw time dura-
tion in order to account for user variances. In some applications, the log of
pageview duration is used as the weight to reduce the noise in the data.

For many data mining tasks, such as clustering and association rule min-
ing, where the ordering of pageviews in a transaction is not relevant, we
can represent each user transaction as a vector over the n-dimensional space

12.2 Data Modeling for Web Usage Mining 463

of pageviews. Given the transaction t above, the transaction vector t (we
use a bold face lower case letter to represent a vector) is given by:

 ()t
p

t
p

t
p n

www ,,,
21
L=t ,

where each wt
pi = w(pt

j), for some j in {1, 2, ···, n}, if pj appears in the trans-
action t, and wt

pi = 0 otherwise. Thus, conceptually, the set of all user trans-
actions can be viewed as an m×n user-pageview matrix (also called the
transaction matrix), denoted by UPM.

An example of a hypothetical user-pageview matrix is depicted in Fig.
12.8. In this example, the weights for each pageview is the amount of time
(e.g., in seconds) that a particular user spent on the pageview. In practice,
these weights must be normalized to account for variances in viewing
times by different users. It should also be noted that the weights may be
composite or aggregate values in cases where the pageview represents a
collection or sequence of pages and not a single page.

Given a set of transactions in the user-pageview matrix as described
above, a variety of unsupervised learning techniques can be applied to
obtain patterns. These techniques such as clustering of transactions (or
sessions) can lead to the discovery of important user or visitor segments.
Other techniques such as item (e.g., pageview) clustering and association
or sequential pattern mining can find important relationships among
items based on the navigational patterns of users in the site.

As noted earlier, it is also possible to integrate other sources of knowl-
edge, such as semantic information from the content of Web pages with
the Web usage mining process. Generally, the textual features from the
content of Web pages represent the underlying semantics of the site. Each

A B C D E F
user0 15 5 0 0 0 185
user1 0 0 32 4 0 0
user2 12 0 0 56 236 0
user3 9 47 0 0 0 134
user4 0 0 23 15 0 0
user5 17 0 0 157 69 0
user6 24 89 0 0 0 354
user7 0 0 78 27 0 0
user8 7 0 45 20 127 0
user9 0 38 57 0 0 15

Sessions /
users

Pageviews

Fig. 12.8. An example of a user-pageview matrix (or transaction matrix)

464 12 Web Usage Mining

pageview p can be represented as a r-dimensional feature vector, where r
is the total number of extracted features (words or concepts) from the site
in a global dictionary. This vector, denoted by p, can be given by:

())(),...,(),(21 r
ppp ffwffwffw=p

where fwp(fj) is the weight of the jth feature (i.e., fj) in pageview p, for 1 ≤
j ≤ r. For the whole collection of pageviews in the site, we then have an
n×r pageview-feature matrix PFM = {p1, p2, …, pn}. The integration
process may, for example, involve the transformation of user transactions
(in user-pageview matrix) into “content-enhanced” transactions containing
the semantic features of the pageviews. The goal of such a transformation
is to represent each user session (or more generally, each user profile) as a
vector of semantic features (i.e., textual features or concept labels) rather
than as a vector over pageviews. In this way, a user’s session reflects not
only the pages visited, but also the significance of various concepts or con-
text features that are relevant to the user’s interaction.

While, in practice, there are several ways to accomplish this transforma-
tion, the most direct approach involves mapping each pageview in a transac-
tion to one or more content features. The range of this mapping can be the
full feature space, or feature sets (composite features) which in turn may
represent concepts and concept categories. Conceptually, the transformation
can be viewed as the multiplication of the user-pageview matrix UPM, de-
fined earlier, with the pageview-feature matrix PFM. The result is a new
matrix, TFM = {t1, t2, …, tm}, where each ti is a r-dimensional vector
over the feature space. Thus, a user transaction can be represented as a
content feature vector, reflecting that user’s interests in particular con-
cepts or topics.

As an example of content-enhanced transactions, consider Fig. 12.9
which shows a hypothetical matrix of user sessions (user-pageview ma-
trix) as well as a document index for the corresponding Web site concep-
tually represented as a term-pageview matrix. Note that the transpose of
this term-pageview matrix is the pageview-feature matrix. The user-
pageview matrix simply reflects the pages visited by users in various ses-
sions. On the other hand, the term-pageview matrix represents the con-
cepts that appear in each page. For simplicity we have assumed that all
the weights are binary (however, note that in practice weights in the user
transaction data are usually not binary and represent some measure of
significance of the page in that transaction; and the weights in the term-
pageview matrix are usually a function of term frequencies).

In this case, the corresponding content-enhanced transaction matrix
(derived by multiplying the user-pageview matrix and the transpose of
the term-pageview matrix) is depicted in Fig. 12.10. The resulting matrix

12.2 Data Modeling for Web Usage Mining 465

shows, for example, that users 4 and 6 are more interested in Web infor-
mation retrieval, while user 3 is more interested in data mining.

Various data mining tasks can now be performed on the content-
enhanced transaction data. For example, clustering the enhanced transac-
tion matrix of Fig. 12.10 may reveal segments of users that have common
interests in different concepts as indicated from their navigational behav-
iors.

If the content features include relational attributes associated with items
on the Web site, then the discovered patterns may reveal user interests at
the deeper semantic level reflected in the underlying properties of the
items that are accessed by the users on the Web site. As an example, con-
sider a site containing information about movies. The site may contain
pages related to the movies themselves, as well as attributes describing the
properties of each movie, such as actors, directors, and genres. The mining

 A.html B.html C.html D.html E.html
user1 1 0 1 0 1
user2 1 1 0 0 1
user3 0 1 1 1 0
user4 1 0 1 1 1
user5 1 1 0 0 1
user6 1 0 1 1 1

 A.html B.html C.html D.html E.html
web 0 0 1 1 1
data 0 1 1 1 0
mining 0 1 1 1 0
business 1 1 0 0 0
intelligence 1 1 0 0 1
marketing 1 1 0 0 1
ecommerce 0 1 1 0 0
search 1 0 1 0 0
information 1 0 1 1 1
retrieval 1 0 1 1 1

Fig. 12.9. Examples of a user-pageview matrix (top) and a term-pageview matrix
(bottom)

 web data mining business intelligence marketing ecommerce search information retrieval
user1 2 1 1 1 2 2 1 2 3 3
user2 1 1 1 2 3 3 1 1 2 2
user3 2 3 3 1 1 1 2 1 2 2
user4 3 2 2 1 2 2 1 2 4 4
user5 1 1 1 2 3 3 1 1 2 2
user6 3 2 2 1 2 2 1 2 4 4

Fig. 12.10. The content-enhanced transaction matrix from matrices of Fig. 12.9

466 12 Web Usage Mining

process may, for instance, generate an association rule such as: {“British”,
“Romance”, “Comedy” ⇒ “Hugh Grant”}, suggesting that users who are
interested in British romantic comedies may also like the actor Hugh Grant
(with a certain degree of confidence). Therefore, the integration of seman-
tic content with Web usage mining can potentially provide a better under-
standing of the underlying relationships among objects.

12.3 Discovery and Analysis of Web Usage Patterns

The types and levels of analysis, performed on the integrated usage data,
depend on the ultimate goals of the analyst and the desired outcomes. In
this section we describe some of the most common types of pattern discov-
ery and analysis techniques employed in the Web usage mining domain
and discuss some of their applications.

12.3.1 Session and Visitor Analysis

The statistical analysis of pre-processed session data constitutes the most
common form of analysis. In this case, data is aggregated by predeter-
mined units such as days, sessions, visitors, or domains. Standard statisti-
cal techniques can be used on this data to gain knowledge about visitor be-
havior. This is the approach taken by most commercial tools available for
Web log analysis. Reports based on this type of analysis may include in-
formation about most frequently accessed pages, average view time of a
page, average length of a path through a site, common entry and exit
points, and other aggregate measures. Despite a lack of depth in this type
of analysis, the resulting knowledge can be potentially useful for improv-
ing the system performance, and providing support for marketing deci-
sions. Furthermore, commercial Web analytics tools are increasingly in-
corporating a variety of data mining algorithms resulting in more
sophisticated site and customer metrics.

Another form of analysis on integrated usage data is Online Analytical
Processing (OLAP). OLAP provides a more integrated framework for
analysis with a higher degree of flexibility. The data source for OLAP
analysis is usually a multidimensional data warehouse which integrates us-
age, content, and e-commerce data at different levels of aggregation for
each dimension. OLAP tools allow changes in aggregation levels along
each dimension during the analysis. Analysis dimensions in such a struc-
ture can be based on various fields available in the log files, and may in-
clude time duration, domain, requested resource, user agent, and referrers.

12.3 Discovery and Analysis of Web Usage Patterns 467

This allows the analysis to be performed on portions of the log related to a
specific time interval, or at a higher level of abstraction with respect to the
URL path structure. The integration of e-commerce data in the data ware-
house can further enhance the ability of OLAP tools to derive important
business intelligence metrics [71]. The output from OLAP queries can also
be used as the input for a variety of data mining or data visualization tools.

12.3.2 Cluster Analysis and Visitor Segmentation

Clustering is a data mining technique that groups together a set of items
having similar characteristics. In the usage domain, there are two kinds of
interesting clusters that can be discovered: user clusters and page clusters.

Clustering of user records (sessions or transactions) is one of the most
commonly used analysis tasks in Web usage mining and Web analytics.
Clustering of users tends to establish groups of users exhibiting similar
browsing patterns. Such knowledge is especially useful for inferring user
demographics in order to perform market segmentation in e-commerce ap-
plications or provide personalized Web content to the users with similar
interests. Further analysis of user groups based on their demographic at-
tributes (e.g., age, gender, income level, etc.) may lead to the discovery of
valuable business intelligence. Usage-based clustering has also been used
to create Web-based “user communities” reflecting similar interests of
groups of users [423], and to learn user models that can be used to provide
dynamic recommendations in Web personalization applications [390].

Given the mapping of user transactions into a multi-dimensional space
as vectors of pageviews (see Fig. 12.8), standard clustering algorithms,
such as k-means, can partition this space into groups of transactions that
are close to each other based on a measure of distance or similarity among
the vectors (see Chap. 4). Transaction clusters obtained in this way can
represent user or visitor segments based on their navigational behavior or
other attributes that have been captured in the transaction file. However,
transaction clusters by themselves are not an effective means of capturing
the aggregated view of common user patterns. Each transaction cluster
may potentially contain thousands of user transactions involving hundreds
of pageview references. The ultimate goal in clustering user transactions is
to provide the ability to analyze each segment for deriving business intelli-
gence, or to use them for tasks such as personalization.

One straightforward approach in creating an aggregate view of each
cluster is to compute the centroid (or the mean vector) of each cluster. The
dimension value for each pageview in the mean vector is computed by
finding the ratio of the sum of the pageview weights across transactions to

468 12 Web Usage Mining

the total number of transactions in the cluster. If pageview weights in the
original transactions are binary, then the dimension value of a pageview p
in a cluster centroid represents the percentage of transactions in the cluster
in which p occurs. Thus, the centroid dimension value of p provides a
measure of its significance in the cluster. Pageviews in the centroid can be
sorted according to these weights and lower weight pageviews can be fil-
tered out. The resulting set of pageview-weight pairs can be viewed as an
“aggregate usage profile” representing the interests or behavior of a sig-
nificant group of users.

More formally, given a transaction cluster cl, we can construct the ag-
gregate profile prcl as a set of pageview-weight pairs by computing the
centroid of cl:

},),(|)),(,{(µ≥= clclcl prpweightprpweightppr (1)

where:
• the significance weight, weight(p, prcl), of the page p within the aggre-

gate profile prcl is given by

);,(
||

1),(s
s

pw
cl

prpweight
cl

cl ∑
∈

= (2)

• | cl | is the number of transactions in cluster cl;
• w(p,s) is the weight of page p in transaction vector s of cluster cl; and
• the threshold µ is used to focus only on those pages in the cluster that

appear in a sufficient number of vectors in that cluster.

Each such profile, in turn, can be represented as a vector in the original
n -dimensional space of pageviews. This aggregate representation can be
used directly for predictive modeling and in applications such as recom-
mender systems: given a new user, u , who has accessed a set of pages, Pu,
so far, we can measure the similarity of Pu to the discovered profiles, and
recommend to the user those pages in matching profiles which have not
yet been accessed by the user.

As an example, consider the transaction data depicted in Fig. 12.11
(left). For simplicity we assume that feature (pageview) weights in each
transaction vector are binary (in contrast to weights based on a function of
pageview duration). We assume that the data has already been clustered
using a standard clustering algorithm such as k-means, resulting in three
clusters of user transactions. The table on the right of Fig. 12.11 shows the
aggregate profile corresponding to cluster 1. As indicated by the pageview
weights, pageviews B and F are the most significant pages characterizing
the common interests of users in this segment. Pageview C, however, only
appears in one transaction and might be removed given a filtering thresh-

12.3 Discovery and Analysis of Web Usage Patterns 469

old greater than 0.25. Such patterns are useful for characterizing user or
customer segments. This example, for instance, indicates that the resulting
user segment is clearly interested in items B and F and to a lesser degree in
item A. Given a new user who shows interest in items A and B, this pattern
may be used to infer that the user might belong to this segment and, there-
fore, we might recommend item F to that user.

Clustering of pages (or items) can be performed based on the usage data
(i.e., starting from the user sessions or transaction data), or based on the
content features associated with pages or items (keywords or product at-
tributes). In the case of content-based clustering, the result may be collec-
tions of pages or products related to the same topic or category. In usage-
based clustering, items that are commonly accessed or purchased together
can be automatically organized into groups. It can also be used to provide
permanent or dynamic HTML pages that suggest related hyperlinks to the
users according to their past history of navigational or purchase activities.

A variety of stochastic methods have also been proposed recently for
clustering of user transactions, and more generally for user modeling. For
example, recent work in this area has shown that mixture models are able
to capture more complex, dynamic user behavior. This is, in part, because
the observation data (i.e., the user-item space) in some applications (such
as large and very dynamic Web sites) may be too complex to be modeled
by basic probability distributions such as a normal or a multinomial distri-
bution. In particular, each user may exhibit different “types” of behavior
corresponding to different tasks, and common behaviors may each be re-
flected in a different distribution within the data.

Fig. 12.11. Derivation of aggregate profiles from Web transaction clusters

 A B C D E F
user 1 0 0 1 1 0 0
user 4 0 0 1 1 0 0
user 7 0 0 1 1 0 0
user 0 1 1 0 0 0 1
user 3 1 1 0 0 0 1
user 6 1 1 0 0 0 1
user 9 0 1 1 0 0 1
user 2 1 0 0 1 1 0
user 5 1 0 0 1 1 0
user 8 1 0 1 1 1 0

Aggregated Profile
for Cluster 1

Weight Pageview
1.00 B
1.00 F
0.75 A
0.25 C

Cluster 0

Cluster 1

Cluster 2

470 12 Web Usage Mining

The general idea behind mixture models (such as a mixture of Markov
models) is as follow. We assume that there exist k types of user behavior
(or k user clusters) within the data, and each user session is assumed to be
generated via a generative process which models the probability distribu-
tions of the observed variables and hidden variables. First, a user cluster is
chosen with some probability. Then, the user session is generated from a
Markov model with parameters specific to that user cluster. The probabili-
ties of each user cluster is estimated, usually via the EM [127] algorithm,
as well as the parameters of each mixture component. Mixture-based user
models can provide a great deal of flexibility. For example, a mixture of
first-order Markov models [76] not only can probabilistically cluster user
sessions based on similarities in navigation behavior, but also characterize
each type of user behavior using a first-order Markov model, thus captur-
ing popular navigation paths or characteristics of each user cluster. A mix-
ture of hidden Markov models was proposed in [580] for modeling click-
stream of Web surfers. In addition to user-based clustering, this approach
can also be used for automatic page classification. Incidentally, mixture
models have been discussed in Sect. 3.7 in the context of naïve Bayesian
classification. The EM algorithm is used in the same context in Sect. 5.1.

Mixture models tend to have their own shortcomings. From the data
generation perspective, each individual observation (such as a user session)
is generated from one and only one component model. The probability as-
signment to each component only measures the uncertainty about this as-
signment. This assumption limits this model’s ability of capturing complex
user behavior, and more seriously, may result in overfitting.

Probabilistic Latent Semantic Analysis (PLSA) provides a reasonable
solution to the above problem [240]. In the context of Web user naviga-
tion, each observation (a user visiting a page) is assumed to be generated
based on a set of unobserved (hidden) variables which “explain” the user-
page observations. The data generation process is as follows: a user is se-
lected with a certain probability, next conditioned on the user, a hidden
variable is selected, and then the page to visit is selected conditioned on
the chosen hidden variable. Since each user usually visits multiple pages,
this data generation process ensures that each user is explicitly associated
with multiple hidden variables, thus reducing the overfitting problems as-
sociated with the above mixture models. The PLSA model also uses the
EM algorithm to estimate the parameters which probabilistically character-
ize the hidden variables underlying the co-occurrence observation data,
and measure the relationship among hidden and observed variables.

This approach provides a great deal of flexibility since it provides a sin-
gle framework for quantifying the relationships between users, between
items, between users and items, and between users or items and hidden

12.3 Discovery and Analysis of Web Usage Patterns 471

variables that “explain” the observed relationships [254]. Given a set of n
user profiles (or transaction vectors), UP = {u1, u2, … , un}, and a set of m
items (e.g., pages or products), I = {i1, i2, … , im}, the PLSA model associ-
ates a set of unobserved factor variables Z = {z1, z2, …, zq} with observa-
tions in the data (q is specified by the user). Each observation corresponds
to a weight wuk(ij) for an item ij in the user profile for a user uk. This weight
may, for example, correspond to the significance of the page in the user
transaction or the user rating associated with the item. For a given user u
and a given item i, the following joint probability can be derived (see [254]
for details of the derivation):

∑
=

=
q

k
kkk zizuziu

1
)|Pr()|Pr()Pr(),Pr(. (3)

In order to explain the observations in (UP, I), we need to estimate the
parameters Pr(zk), Pr(u|zk), and Pr(i|zk), while maximizing the following
likelihood L(UP, I) of the observation data:

(,) () log Pr(,)u
u UP i I

L UP I w i u i
∈ ∈

= ∑ ∑ . (4)

The Expectation−Maximization (EM) algorithm is used to perform maxi-
mum likelihood parameter estimation. Based on initial values of Pr(zk),
Pr(u|zk), and Pr(i|zk), the algorithm alternates between an expectation step
and maximization step. In the expectation step, posterior probabilities are
computed for latent variables based on current estimates, and in the maxi-
mization step the re-estimated parameters are obtained. Iterating the expec-
tation and maximization steps monotonically increases the total likelihood
of the observed data L(UP, I), until a local optimal solution is reached. De-
tails of this approach can be found in [254].

Again, one of the main advantages of PLSA model in Web usage min-
ing is that using probabilistic inference with the above estimated parame-
ters, we can derive relationships among users, among pages, and between
users and pages. Thus this framework provides a flexible approach to
model a variety of types of usage patterns.

12.3.3 Association and Correlation Analysis

Association rule discovery and statistical correlation analysis can find
groups of items or pages that are commonly accessed or purchased to-
gether. This, in turn, enables Web sites to organize the site content more
efficiently, or to provide effective cross-sale product recommendations.

472 12 Web Usage Mining

Most common approaches to association discovery are based on the Ap-
riori algorithm (see Sect. 2.2). This algorithm finds groups of items (page-
views appearing in the preprocessed log) occurring frequently together in
many transactions (i.e., satisfying a user specified minimum support
threshold). Such groups of items are referred to as frequent itemsets. As-
sociation rules which satisfy a minimum confidence threshold are then
generated from the frequent itemsets.

Recall an association rule is an expression of the form X→Y [sup, conf],
where X and Y are itemsets, sup is the support of the itemset X ∪ Y repre-
senting the probability that X and Y occur together in a transaction, and
conf is the confidence of the rule, defined by sup(X∪Y) / sup(X), represent-
ing the conditional probability that Y occurs in a transaction given that X
has occurred in that transaction. More details on association rule discovery
can be found in Chap. 2.

The mining of association rules in Web transaction data has many ad-
vantages. For example, a high-confidence rule such as

special-offers/, /products/software/ → shopping-cart/
might provide some indication that a promotional campaign on software
products is positively affecting online sales. Such rules can also be used to
optimize the structure of the site. For example, if a site does not provide di-
rect linkage between two pages A and B, the discovery of a rule, A → B,
would indicates that providing a direct hyperlink from A to B might aid us-
ers in finding the intended information. Both association analysis (among
products or pageviews) and statistical correlation analysis (generally
among customers or visitors) have been used successfully in Web person-
alization and recommender systems [236, 389].

Indeed, one of the primary applications of association rule mining in
Web usage or e-commerce data is in recommendation. For example, in the
collaborative filtering context, Sarwar et al. [474] used association rules in
the context of a top-N recommender system for e-commerce. The prefer-
ences of the target user are matched against the items in the antecedent X
of each rule, and the items on the right hand side of the matching rules are
sorted according to the confidence values. Then the top N ranked items
from this list are recommended to the target user (see Sect. 3.5.3).

One problem for association rule recommendation systems is that a sys-
tem cannot give any recommendations when the dataset is sparse (which is
often the case in Web usage mining and collaborative filtering applica-
tions). The reason for this sparsity is that any given user visits (or rates)
only a very small fraction of the available items, and thus it is often diffi-
cult to find a sufficient number of common items in multiple user profiles.
Sarwar et al. [474] relied on some standard dimensionality reduction tech-

12.3 Discovery and Analysis of Web Usage Patterns 473

niques to alleviate this problem. One deficiency of this and other dimen-
sionality reduction approaches is that some of the useful or interesting
items may be removed, and therefore, may not appear in the final patterns.
Fu et al. [187] proposed two potential solutions to this problem. The first
solution is to rank all the discovered rules based on the degree of intersec-
tion between the left-hand side of each rule and the user’s active session
and then to generate the top k recommendations. This approach will relax
the constraint of having to obtain a complete match with the left-hand-side
of the rules. The second solution is to utilize collaborative filtering: the
system finds “close neighbors” who have similar interest to a target user
and makes recommendations based on the close neighbors’ histories.

Lin et al. [337] proposed a collaborative recommendation system us-
ing association rules. The proposed mining algorithm finds an appropriate
number of rules for each target user by automatically selecting the mini-
mum support. The system generates association rules among users (user
associations), as well as among items (item associations). If a user mini-
mum support is greater than a threshold, the system generates recommen-
dations based on user associations, else it uses item associations.

Because it is difficult to find matching rule antecedent with a full user
profile (e.g., a full user session or transaction), association-based recom-
mendation algorithms typically use a sliding window w over the target
user’s active profile or session. The window represents the portion of
user’s history that will be used to predict future user actions (based on
matches with the left-hand sides of the discovered rules). The size of this
window is iteratively decreased until an exact match with the antecedent of
a rule is found. A problem with the naive approach to this algorithm is that
it requires repeated search through the rule-base. However, efficient trie-
based data structure can be used to store the discovered itemsets and allow
for efficient generation of recommendations without the need to generate
all association rules from frequent itemsets [389]. Such data structures are
commonly used for string or sequence searching applications. In the con-
text of association rule mining, the frequent itemsets are stored in a di-
rected acyclic graph. This frequent itemset graph is an extension of the
lexicographic tree used in the tree projection mining algorithm of Agarwal,
et al. [2]. The graph is organized into levels from 0 to k, where k is the
maximum size among all frequent itemsets. Each node at depth d in the
graph corresponds to an itemset, X, of size d and is linked to itemsets of
size d+1 that contain X at level d+1. The single root node at level 0 corre-
sponds to the empty itemset. To be able to search for different orderings of
an itemset, all itemsets are sorted in lexicographic order before being in-
serted into the graph. If the graph is used to recommend items to a new

474 12 Web Usage Mining

target user, that user’s active session is also sorted in the same manner be-
fore matching with itemsets.

As an example, suppose that in a hypothetical Web site with user trans-
action data depicted in the left table of Fig. 12.12. Using a minimum sup-
port (minsup) threshold of 4 (i.e., 80%), the Apriori algorithm discovers
the frequent itemsets given in the right table. For each itemset, the support
is also given. The corresponding frequent itemset graph is depicted in Fig.
12.13.

A recommendation engine based on this framework matches the current
user session window with the previously discovered frequent itemsets to
find candidate items (pages) for recommendation. Given an active session
window w and a group of frequent itemsets, the algorithm considers all the
frequent itemsets of size |w| + 1 containing the current session window by
performing a depth-first search of the Frequent Itemset Graph to level |w|.
The recommendation value of each candidate is based on the confidence of
the corresponding association rule whose consequent is the singleton con-
taining the page to be recommended. If a match is found, then the children
of the matching node n containing w are used to generate candidate rec-
ommendations. In practice, the window w can be incrementally decreased
until a match is found with and itemset. For example, given user active
session window <B, E>, the recommendation generation algorithm, using
the graph of Fig. 12.13, finds items A and C as candidate recommenda-
tions. The recommendation scores of item A and C are 1 and 4/5, corre-
sponding to the confidences of the rules, B, E → A and B, E → C, respec-
tively.

A problem with using a single global minimum support threshold in as-
sociation rule mining is that the discovered patterns will not include “rare”
but important items which may not occur frequently in the transaction data.
This is particularly important when dealing with Web usage data, it is of-
ten the case that references to deeper content or product-oriented pages oc-

Fig. 12.12. Web transactions and resulting frequent itemsets (minsup = 4)

12.3 Discovery and Analysis of Web Usage Patterns 475

cur far less frequently than those of top level navigation-oriented pages.
Yet, for effective Web personalization, it is important to capture patterns
and generate recommendations that contain these items. A mining method
based on multiple minimum supports is proposed in [344] that allows
users to specify different support values for different items. In this method,
the support of an itemset is defined as the minimum support of all items
contained in the itemset. For more details on mining using multiple mini-
mum supports, see Sect. 2.4. The specification of multiple minimum sup-
ports thus allows frequent itemsets to potentially contain rare items which
are deemed important. It has been shown that the use of multiple support
association rules in the context of Web personalization can dramatically
increase the coverage (or recall) of recommendations while maintaining a
reasonable precision [389].

12.3.4 Analysis of Sequential and Navigational Patterns

The technique of sequential pattern mining attempts to find inter-session
patterns such that the presence of a set of items is followed by another item
in a time-ordered set of sessions or episodes. By using this approach, Web
marketers can predict future visit patterns which will be helpful in placing
advertisements aimed at certain user groups. Other types of temporal
analysis that can be performed on sequential patterns include trend analy-
sis, change point detection, or similarity analysis. In the context of Web

A(5) B(5) C(4)

∅

E(5)

AB (5) AC (4) AE (5) BC (4) CE (4) BE (5)

ABC (4)

ABCE (4)

ACE (4)ABE (5) BCE (4)

Fig. 12.13. A frequent itemset graph.

476 12 Web Usage Mining

usage data, sequential pattern mining can be used to capture frequent
navigational paths among user trails.

Sequential patterns (SPs) in Web usage data capture the Web page trails
that are often visited by users, in the order that they were visited. Sequen-
tial patterns are those sequences of items that frequently occur in a suffi-
ciently large proportion of (sequence) transactions. A sequence 〈s1s2…sn〉
occurs in a transaction t = 〈p1, p2, . . . , pm〉 (where n ≤ m) if there exist n
positive integers 1 ≤ a1 < a2 < . . . < an ≤ m, and si = pai for all i. We say
that 〈cs1 cs2…csn〉 is a contiguous sequence in t if there exists an integer 0
≤ b ≤ m − n, and csi = pb+i for all i = 1 to n. In a contiguous sequential
pattern (CSP), each pair of adjacent items, si and si+1, must appear con-
secutively in a transaction t which supports the pattern. A normal sequen-
tial pattern can represent non-contiguous frequent sequences in the under-
lying set of sequence transactions.

Given a sequence transaction set T, the support (denoted by sup(S)) of a
sequential (respectively, contiguous sequential) pattern S in T is the frac-
tion of transactions in T that contain S. The confidence of the rule X → Y,
where X and Y are (contiguous) sequential patterns, is defined as:

conf(X → Y) = sup(X ◦ Y) / sup(X) ,

where ◦ denotes the concatenation operator.
In the context of Web usage data, CSPs can be used to capture frequent

navigational paths among user trails [497]. In contrast, items appearing in
SPs, while preserving the underlying ordering, need not be adjacent, and
thus they represent more general navigational patterns within the site. Note
that sequences and sequential patterns or rules discussed here are special
cases of those defined in Sect. 2.9.

The view of Web transactions as sequences of pageviews allows for a
number of useful and well-studied models to be used in discovering or ana-
lyzing user navigation patterns. One such approach is to model the naviga-
tional activities in the Web site as a Markov model: each pageview (or a
category) can be represented as a state and the transition probability be-
tween two states can represent the likelihood that a user will navigate from
one state to the other. This representation allows for the computation of a
number of useful user or site metrics. For example, one might compute the
probability that a user will make a purchase, given that she has performed
a search in an online catalog. Markov models have been proposed as the
underlying modeling machinery for link prediction as well as for Web pre-
fetching to minimize system latencies [132, 473]. The goal of such ap-
proaches is to predict the next user action based on a user’s previous surf-
ing behavior. They have also been used to discover high probability user
navigational trails in a Web site [57]. More sophisticated statistical learn-

12.3 Discovery and Analysis of Web Usage Patterns 477

ing techniques, such as mixtures of Markov models, have also been used to
cluster navigational sequences and perform exploratory analysis of users’
navigational behavior in a site [76].

More formally, a Markov model is characterized by a set of states {s1,
s2, ... , sn} and a transition probability matrix, [Pri,j]n×n, where Pri,j repre-
sents the probability of a transition from state si to state sj. Markov models
are especially suited for predictive modeling based on contiguous se-
quences of events. Each state represents a contiguous subsequence of prior
events. The order of the Markov model corresponds to the number of prior
events used in predicting a future event. So, a kth-order Markov model
predicts the probability of next event by looking the past k events. Given a
set of all paths R, the probability of reaching a state sj from a state si via a
(non-cyclic) path r ∈ R is the product of all the transition probabilities
along the path and is given by Pr(r) = ∏Prm,m+1, where m ranges from i to j
− 1. The probability of reaching sj from si is the sum of these path prob-
abilities over all paths: Pr(j|i) = ∑r∈R Pr(r).

As an example of how Web transactions can be modeled as a Markov
model, consider the set of Web transaction given in Fig. 12.14 (left). The
Web transactions involve pageviews A, B, C, D, and E. For each transac-
tion the frequency of occurrences of that transaction in the data is given in
the table’s second column (thus there are a total of 50 transactions in the
data set). The (absorbing) Markov model for this data is also given in Fig.
12.14 (right). The transitions from the “start” state represent the prior prob-
abilities for transactions starting with pageviews A and B. The transitions
into the “final” state represent the probabilities that the paths end with the
specified originating pageviews. For example, the transition probability
from the state A to B is 16/28 = 0.57 since out of the 28 occurrences of A
in transactions, in 16 cases, B occurs immediately after A.

Higher-order Markov models generally provide a higher prediction ac-
curacy. However, this is usually at the cost of lower coverage (or recall)
and much higher model complexity due to the larger number of states. In
order to remedy the coverage and space complexity problems, Pitkow and
Pirolli [446] proposed all-kth-order Markov models (for coverage im-
provement) and a new state reduction technique, called longest repeating
subsequences (LRS) (for reducing model size). The use of all-kth-order
Markov models generally requires the generation of separate models for
each of the k orders: if the model cannot make a prediction using the kth
order, it will attempt to make a prediction by incrementally decreasing the
model order. This scheme can easily lead to even higher space complexity
since it requires the representation of all possible states for each k.
Deshpande and Karypis [132] proposed selective Markov models, intro-
ducing several schemes in order to tackle the model complexity problems

478 12 Web Usage Mining

with all-kth-order Markov models. The proposed schemes involve pruning
the model based on criteria such as support, confidence, and error rate. In
particular, the support-pruned Markov models eliminate all states with low
support determined by a minimum frequency threshold.

Another way of efficiently representing contiguous navigational trails is
by inserting each trail into a trie structure. A good example of this ap-
proach is the notion of aggregate tree introduced as part of the WUM (Web
Utilization Miner) system [497]. The aggregation service of WUM extracts
the transactions from a collection of Web logs, transforms them into se-
quences, and merges those sequences with the same prefix into the aggre-
gate tree (a trie structure). Each node in the tree represents a navigational
subsequence from the root (an empty node) to a page and is annotated by
the frequency of occurrences of that subsequence in the transaction data
(and possibly other information such as markers to distinguish among re-
peat occurrences of the corresponding page in the subsequence). WUM
uses a mining query language, called MINT, to discover generalized navi-
gational patterns from this trie structure. MINT includes mechanisms to
specify sophisticated constraints on pattern templates, such as wildcards
with user-specified boundaries, as well as other statistical thresholds such
as support and confidence. This approach and its extensions have proved
useful in evaluating the navigational design of a Web site [496].
As an example, again consider the set of Web transactions given in the
previous example. Figure 12.15 shows a simplified version of WUM’s ag-
gregate tree structure derived from these transactions. Each node in the tree
represents a navigational subsequence from the root (an empty node) to a
page and is annotated by the frequency of occurrences of that subsequence
in the session data. The advantage of this approach is that the search for

Transaction Frequency
A, B, E 10

B, D, B, C 4
B, C, E 10

A, B, E, F 6
A, D, B 12

B, D, B, E 8

6/34

F

28/34

6/6

28/50

22/50

16/28 12/62
24/24

12/62 4/14

14/62

24/62

10/14

12/28
A

B

C

E

start

final

D

Fig. 12.14. An example of modeling navigational trails as a Markov
h i

12.3 Discovery and Analysis of Web Usage Patterns 479

navigational patterns can be performed very efficiently and the confidence
and support for the navigational patterns can be readily obtained from the
node annotations in the tree. For example, consider the contiguous naviga-
tional sequence <A, B, E, F>. The support for this sequence can be com-
puted as the support of the last page in the sequence, F, divided by the
support of the root node: 6/50 = 0.12, and the confidence of the sequence
is the support of F divided by the support of its predecessor, E, or 6/16 =
0.375. If there are multiple branches in the tree containing the same navi-
gational sequence, then the support for the sequence is the sum of the sup-
ports for all occurrences of the sequence in the tree and the confidence is
updated accordingly. For example, the support of the sequence <D, B> is
(12+12)/50 = 0.48, while the confidence is the aggregate support for B di-
vided by the aggregate support for D, i.e., 24/24 = 1.0. The disadvantage of
this approach is the possibly high space complexity, especially in a site
with many dynamically generated pages.

12.3.5 Classification and Prediction based on Web User
Transactions

Classification is the task of mapping a data item into one of several prede-
fined classes. In the Web domain, one is interested in developing a profile
of users belonging to a particular class or category. This requires extraction
and selection of features that best describe the properties of given the class
or category. Classification can be done by using supervised learning algo-
rithms such as decision trees, naive Bayesian classifiers, k-nearest
neighbor classifiers, and Support Vector Machines (Chap. 3). It is also

50

S

A

B

D

D

C

B

B

E

E

B

F

C

E

28

22
12

10

12

16

12

10

16

12

6

4

8

Fig. 12.15. An example of modeling navigational trails in an aggregate tree

480 12 Web Usage Mining

possible to use previously discovered clusters and association rules for
classification of new users (Sect. 3.5).

Classification techniques play an important role in Web analytics appli-
cations for modeling the users according to various predefined metrics. For
example, given a set of user transactions, the sum of purchases made by
each user within a specified period of time can be computed. A classifica-
tion model can then be built based on this enriched data in order to classify
users into those who have a high propensity to buy and those who do not,
taking into account features such as users’ demographic attributes, as well
their navigational activities.

Another important application of classification and prediction in the
Web domain is that of collaborative filtering. Most collaborative filtering
applications in existing recommender systems use k-nearest neighbor clas-
sifiers to predict user ratings or purchase propensity by measuring the cor-
relations between a current (target) user’s profile (which may be a set of
item ratings or a set of items visited or purchased) and past user profiles in
order to find users in the database with similar characteristics or prefer-
ences [236]. Many of the Web usage mining approaches discussed earlier
can also be used to automatically discover user models and then apply
these models to provide personalized content to an active user [386, 445].

Basically, collaborative filtering based on the k-nearest neighbor (kNN)
approach involves comparing the activity record for a target user with the
historical records T of other users in order to find the top k users who have
similar tastes or interests. The mapping of a visitor record to its neighbor-
hood could be based on similarity in ratings of items, access to similar con-
tent or pages, or purchase of similar items. In most typical collaborative
filtering applications, the user records or profiles are a set of ratings for a
subset of items. The identified neighborhood is then used to recommend
items not already accessed or purchased by the active user. Thus, there are
two primary phases in collaborative filtering: the neighborhood formation
phase and the recommendation phase. In the context of Web usage mining,
kNN involves measuring the similarity or correlation between the target
user’s active session u (represented as a vector) and each past transaction
vector v (where v ∈ T). The top k most similar transactions to u are con-
sidered to be the neighborhood for the session u. More specifically, the
similarity between the target user, u, and a neighbor, v, can be calculated
by the Pearson’s correlation coefficient defined below:

 ,
)()(

))((
),(

2
,

2
,

,,

∑∑
∑

∈∈

∈

−−

−−
=

Ci iCi i

Ci ii

rrrr

rrrr
sim

vvuu

vvuuvu (5)

where C is the set of items that are co-rated by u and v (i.e., items that

12.3 Discovery and Analysis of Web Usage Patterns 481

have been rated by both of them), ru,i and rv,i are the ratings (or weights) of
some item i for the target user u and a possible neighbor v respectively,
and ur and vr are the average ratings (or weights) of u and v respectively.
Once similarities are calculated, the most similar users are selected.

It is also common to filter out neighbors with a similarity of less than a
specific threshold to prevent predictions being based on very distant or
negative correlations. Once the most similar user transactions are identi-
fied, the following formula can be used to compute the rating prediction of
an item i for target user u.

∑
∑

∈

∈
−×

+=
V

V i

sim
rrsim

rip
v

v vv
u vu

vu
u

),(
)(),(

),(, , (6)

where V is the set of k similar users, rv,i are the ratings of those users on
item i, and sim(u, v) is the Pearson correlation described above. The for-
mula in essence computes the degree of preference of all the neighbors
weighted by their similarity and then adds this to the target user's average
rating, the idea being that different users may have different “baselines”
around which their ratings are distributed.

The problem with the user-based formulation of the collaborative filter-
ing problem is the lack of scalability: it requires the real-time comparison
of the target user to all user records in order to generate predictions. A
variation of this approach that remedies this problem is called item-based
collaborative filtering [475]. Item-based collaborative filtering works by
comparing items based on their pattern of ratings across users. Again, a
nearest-neighbor approach can be used. The kNN algorithm attempts to
find k similar items that are co-rated by different users similarly. The simi-
larity measure typically used is the adjusted cosine similarity given be-
low:

∑∑
∑

∈∈

∈

−−

−−
=

U jU i

U ji

rrrr

rrrr
jisim

u uuu uu

u uuuu

2
,

2
,

,,

)()(

))((
),(, (7)

where U is the set of all users, i and j are items, ru,i represents the rating of
user u ∈ U on item i, and ur is the average of the user u's ratings as before.
Note that in this case, we are computing the pair-wise similarities among
items (not users) based on the ratings for these items across all users. After
computing the similarity between items we select a set of k most similar
items to the target item (i.e., the item for which we are interested in pre-
dicting a rating value) and generate a predicted value of user u’s rating by
using the following formula

482 12 Web Usage Mining

∑
∑

∈

∈
×

=
Jj

Jj j

jisim

jisimr
ip

),(

),(
)(

,u
 u, , (8)

where J is the set of k similar items, ru,j is the rating of user u on item j,
and sim(i, j) is the similarity between items i and j as defined above. It is
also common to ignore items with negative similarity to the target item.
The idea here is to use the user’s own ratings for the similar items to ex-
trapolate the prediction for the target item.

12.4 Discussion and Outlook

Web usage mining has emerged as the essential tool for realizing more
personalized, user-friendly and business-optimal Web services. Advances
in data pre-processing, modeling, and mining techniques, applied to the
Web data, have already resulted in many successful applications in adap-
tive information systems, personalization services, Web analytics tools,
and content management systems. As the complexity of Web applications
and user’s interaction with these applications increases, the need for intel-
ligent analysis of the Web usage data will also continue to grow.

Usage patterns discovered through Web usage mining are effective in
capturing item-to-item and user-to-user relationships and similarities at the
level of user sessions. However, without the benefit of deeper domain
knowledge, such patterns provide little insight into the underlying reasons
for which such items or users are grouped together. Furthermore, the in-
herent and increasing heterogeneity of the Web has required Web-based
applications to more effectively integrate a variety of types of data across
multiple channels and from different sources.

Thus, a focus on techniques and architectures for more effective integra-
tion and mining of content, usage, and structure data from different sources
is likely to lead to the next generation of more useful and more intelligent
applications, and more sophisticated tools for Web usage mining that can
derive intelligence from user transactions on the Web.

Bibliographic Notes

Web usage mining as a complete process, integrating various stages of data
mining cycle, including data preparation, pattern discovery, and interpreta-

Bibliographic Notes 483

tion, was initially introduced by Cooley et al. [114]. This initial work was
later extended by Srivastava, et al. [505].

Proper data preparation is an essential activity that enables the discov-
ery of actionable knowledge from usage data. A complete discussion of the
stages and tasks in data preparation for Web usage mining can be found in
the paper by Cooley et al. [115]. One of these tasks is that of sessionization
of the user activity records in the log data which is generally accomplished
through the use of various heuristics. Several heuristics were defined by
Cooley et al. [115]. Berendt et al. [46] and Spiliopoulou et al. [498] intro-
duced several additional sessionization heuristics, and developed a com-
prehensive framework for the evaluation of these heuristics in the context
of various applications in Web usage mining. Much of the discussion of
Sect. 12.1 is based on these sources.

One of the primary applications of Web usage mining has been in Web
personalization and predictive user modeling. Initially, Web usage mining
as a tool for personalization was introduced by Mobasher et al. [388].
More recent surveys of issues and techniques related to personalization
based on Web usage mining can be found in the papers by Pierrakos et al.
[445], Mobasher [386], and Anand and Mobasher [20].

Another important application of Web usage mining is the analysis of
customer and visitor behavior in e-commerce and for Web marketing. Web
usage mining applied to e-commerce data enables the discovery of impor-
tant business intelligence metrics such as customer conversion ratios and
lifetime values. A good discussion of lessons and challenges in e-business
data analysis can be found in the paper by Kohavi et al. [286].

References

1. S. Adali, T. Liu, and M. Magdon-Ismail. Optimal Link Bombs are Uncoordinated. In
Proc. of 1st Intl. Workshop on Adversarial Information Retrieval on the Web, 2005.

2. R. Agarwal, C. Aggarwal, and V. Prasad. A Tree Projection Algorithm for Genera-
tion of Frequent Itemsets. In Proc. of the High Performance Data Mining Workshop,
1999.

3. C. Aggarwal, F. Al-Garawi, and P. Yu. Intelligent Crawling on the World Wide Web
with Arbitrary Predicates. In Proc. of 10th Intl. World Wide Web Conf. (WWW’01),
pp. 96–105, 2001.

4. C. Aggarwal, C. Propiuc, J. L. Wolf, P. S. Yu, and J. S. Park. A Framework for Find-
ing Projected Clusters in High Dimensional Spaces. In Proc. of Intl. Conf. on Man-
agement of Data (SIGMOD’99), pp. 407–418, 1999.

5. C. Aggarwal, and P. S. Yu. Finding Generalized Projected Clusters in High Dimen-
sional Spaces. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD’00), pp. 70–81, 2000.

6. E. Agichtein. Confidence Estimation Methods for Partially Supervised Relation Ex-
traction. In Proc. of SIAM Intl. Conf. on Data Mining (SDM06), 2006

7. R. Agrawal, J. R. Bayardo, and R. Srikant. Athena: Mining-Based Interactive Man-
agement of Text Databases. In Proc. of Extending Database Technology (EDBT’00),
pp. 365–379, 2000

8. R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan. Automatic Subspace Cluster-
ing for High Dimensional Data for Data Mining Applications. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data (SIGMOD’98), pp. 94–105, 1998.

9. R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules between Sets
of Items in Large Databases. In Proc. of the ACM SIGMOD Intl. Conf. on Manage-
ment of Data (SIGMOD’93), pp. 207–216, 1993.

10. R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu. Mining Newsgroups Using Net-
works Arising from Social Behavior. In Proc. of the 12th Intl. World Wide Web Conf.
(WWW’03), pp. 529–535, 2003.

11. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc.
of the 20th Intl. Conf. on Very Large Data Bases (VLDB’94), pp. 487–499, 1994.

12. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the Intl. Conf. on
Data Engineering (ICDE’95), pp. 3–14, 1995.

13. R. Agrawal and R. Srikant. On Integrating Catalogs. In Proc. of the Tenth Intl. World
Wide Web Conf. (WWW’01), pp. 603–612, 2001.

14. L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using Hard AI Prob-
lems for Security. In Proc. of Eurocrypt, pp. 294–311, 2003.

15. R. Akavipat, L.-S. Wu, and F. Menczer. Small World Peer Networks in Distributed
Web Search. In Alt. Track Papers and Posters Proc. 13th Intl. World Wide Web
Conf., pp. 396–397, 2004.

16. B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari, A. Sheth, I.
Arpinar, A. Joshi, and T. Finin. Semantic Analytics on Social Networks: Experiences

486 References

in Addressing the Problem of Conflict of Interest Detection. In Proc. of the 15th Intl.
Conf. on World Wide Web (WWW'06), 2006.

17. C. Alpert, A. Kahng and S. Yao. Spectral Partitioning: The More Eigenvectors, the
Better. Discrete Applied Mathematics, 90, pp. 3–5, 1999.

18. B. Amento, L. Terveen, and W. Hill. Does Authority Mean Quality? Predicting Ex-
pert Quality Ratings of Web Documents. In Proc. of the 23rd ACM SIGIR Conf. on
Research and Development in Information Retrieval, pp. 296–303, 2000.

19. E. Amitay, D. Carmel, A. Darlow, R. Lempel and A. Soffer. The Connectivity Sonar:
Detecting Site Functionality by Structural Patterns. In Proc. of the 14th ACM Conf.
on Hypertext and Hypermedia, pp. 38–47, 2003.

20. S. S. Anand, and B. Mobasher. Intelligent Techniques for Web Personalization. In In-
telligent Techniques for Web Personalization, B. Mobasher and S. S. Anand (eds.),
Lecture Notes in AI (LNAI 3169), Springer, 2005.

21. R. Andersen, and K. J. Lang. Communities from Seed Sets. In Proc. of the 15th Intl.
Conf. on World Wide Web (WWW'06), 2006.

22. A. Andreevskaia and S. Bergler. Mining WordNet for Fuzzy Sentiment: Sentiment
Tag Extraction from WordNet Glosses. In Proc. of 11th Conf. of the European Chap-
ter of the Association for Computational Linguistics (EACL’06), pp. 209–216, 2006.

23. M. Antonie, and O. Zaiane. Text Document Categorization by Term Association. In
Proc. of IEEE Intl. Conf. on Data Mining, 2002.

24. P. Arabie and L. Hubert. An Overview of Combinatorial Data Analysis. In P. Arabie,
L. Hubert and G. D. Soets (eds.). Clustering and Classification, pp. 5–63, 1996.

25. A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan. Searching the
Web. ACM Trans. Internet Technology, 1 (1), pp. 2–43, 2001.

26. A. Arasu and H. Garcia-Molina. Extracting Structured Data from Web Pages. In
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’03), pp.
337–348, 2003.

27. L. Arllota, V. Crescenzi, G. Mecca, and P. Merialdo. Automatic Annotation of Data
Extraction from Large Web Sites. In Intl. Workshop on Web and Databases, 2003.

28. J. A. Aslam and M. Montague. Models for Metasearch. In Proc. of the 24th Annual
Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR’01), pp. 276–284, 2001.

29. J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential Pattern Mining Using Bit-
maps. In Proc. of the Eighth ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’02), pp. 429–435, 2002.

30. R. Baeza-Yates, C. Castillo and V. Lopez. PageRank Increase under Different Collu-
sion Topologies. In Proc. of the 1st Intl. Workshop on Adversarial Information Re-
trieval on the Web, 2005.

31. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison–
Wesley, 1999.

32. R. Baeza-Yates, F. Saint-Jean, and C. Castillo. Web Dynamics, Age and Page Qual-
ity. In Proc. of String Processing and Information Retrieval. pp. 117–130, 2002.

33. P. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web: Probabilis-
tic Methods and Algorithms. Wiley, 2003.

34. L. Barabasi and R. Albert. Emergence of Scaling in Random Walk. Science, 286, pp.
509–512, 1999.

35. D. Barbará, C. Domeniconi, and N. Kang. Classifying Documents without Labels. In
Proc. of the SIAM Intl. Conf. on Data Mining (SDM’04), 2004.

36. D. Barbará, Y. Li and J. Couto. COOLCAT: an Entropy-Based Algorithm for Cate-
gorical Clustering. In Proc. of the 11th Intl. Conf. on Information and knowledge
management (CIKM’02), pp. 582–589, 2002.

References 487

37. Z. Bar-Yossef, and M. Gurevich. Random Sampling from a Search Engine's Index. In
Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

38. Z. Bar-Yossef, S. Rajagopalan. Template Detection via Data Mining and its Applica-
tions. In Proc. of the 11th Intl World Wide Web Conf. (WWW'02), pp. 580–591, 2002.

39. S. Basu, A. Banerjee, and R. J. Mooney: Semi-supervised Clustering by Seeding. In
Proc. of the Nineteenth Intl. Conf. on Machine Learning (ICML’02), pp. 27–34,
2002.

40. C. Batini, M. Lenzerini, and S. Navathe. A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Survey 18(4), pp. 323–364, 1986.

41. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction with
Lixto. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’01), pp. 119–128,
2001.

42. R. J. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’98), pp. 85–93, 1998.

43. R. J. Bayardo, and R. Agrawal. Mining the Most Interesting Rules. In Proc. of the
ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD’99), pp.
145-154, 1999.

44. P. Beineke, T. Hastie, C. Manning, and S. Vaithyanathan. An Exploration of Senti-
ment Summarization. In: Proc. of the AAAI Spring Symposium on Exploring Attitude
and Affect in Text: Theories and Applications, 2003.

45. T. C. Bell, A. Moffat, C. G. Nevill-Manning, I. H. Witten, and J. Zobel. Data Com-
pression in Full-Text Retrieval Systems. Journal of the American Society for Infor-
mation Science, 44(9), pp. 508–531, 1993.

46. B. Berendt, B. Mobasher, M. Nakagawa, and M. Spiliopoulou. The Impact of Site
Structure and User Environment on Session Reconstruction in Web Usage Analysis.
In Proc. of the KDD’02 WebKDD Workshop, 2002.

47. B. Berendt and M. Spiliopoulou. Analyzing Navigation Behavior in Web Sites Inte-
grating Multiple Information Systems. VLDB Journal, 9(1), pp. 56–75, 2000.

48. M. Berry, S. T. Dumais, and G. W. O'Brien. Using Linear Algebra for Intelligent In-
formation Retrieval. SIAM: Review, 37(4), pp. 573–595, 1995.

49. M. J. A. Berry and G. Linoff. Data Mining Techniques: For Marketing, Sales, and
Customer Relationship Management. Wiley Computer Publishing, 2004.

50. J. C. Bezdek. Cluster Validity with Fuzzy Sets. J. of Cybernetics, 3, pp. 58–72. 1974.
51. K. Bharat, and A. Z. Broder: A Technique for Measuring the Relative Size and Over-

lap of Public Web Search Engines. Computer Networks, 30(1–7), pp. 379–388, 1998.
52. K. Bharat and M. Henzinger. Improved Algorithms for Topic Distillation in Hyper-

linked Environments. In Proc. of the 21st ACM SIGIR Conf. on Research and Devel-
opment in Information Retrieval, pp. 104–111, 1998

53. A. Bilke, and F. Naumann. Schema Matching Using Duplicates. In Proc. of Intl.
Conf. on Data Engineering (ICDE’05), pp. 69–80, 2005.

54. A. Blum, and S. Chawla. Learning from Labeled and Unlabeled Data Using Graph
Mincuts. In Proc. of Intl. Conf. on Machine Learning (ICML’01), pp.19–26, 2001.

55. A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with Co-Training.
In Proc. of Computational Learning Theory, pp. 92–100, 1998.

56. J. C. De Borda. Mémoire sur les élections au scrutin. Mémoires de l’Académie
Royale des Sciences année, 1781.

57. J. Borges and M. Levene. Data Mining of User Navigation Patterns. In Web Usage
Analysis and User Profiling, LNAI 1836, Springer, pp. 92–111, 1999.

58. C. L. Borgman, (ed.) Scholarly Communication and Bibliometrics. Sage Publica-
tions, Inc., 1990.

488 References

59. B. E. Boser, I. Guyon, and V. N. Vapnik. A Training Algorithm for Optimal Margin
Classifiers. In Proc. of the Fifth Annual Workshop on Computational Learning The-
ory, 5: pp. 144–152, 1992.

60. P. De Bra and R. Post. Information Retrieval in the World Wide Web: Making Cli-
ent-Based Searching Feasible, In Proc. of the 1st Intl. World Wide Web Conf., pp.
183–192, 1994.

61. P. S. Bradley, U. Fayyad and C. Reina. Scaling Clustering Algorithms to Large Da-
tabases. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining (KDD’98),
pp. 9–15, 1998.

62. L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Chapman and Hall, New York, 1984.

63. L. Breiman. Bagging Predictors. Machine Learning, 24(2), 123–140, 1996.
64. L. Breiman. Prediction Games and Arcing Classifiers. Technical Report 504, Statis-

tics Department, University of California at Berkeley, 1997.
65. L. Breiman: Random Forests. Machine Learning, 45(1), pp. 5–32, 2001.
66. B. E. Brewington, and G. Cybenko. How Dynamic is the Web? In Proc. of the 9th

Intl. World Wide Web Conf., 2000.
67. BrightPlanet.com. The Deep Web: Surfacing Hidden Value. Accessible at

http://brightplanet.com, July 2000.
68. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search

Sngine. Computer Networks, 30(1–7), pp. 107–117, 1998.
69. A. Broder, S. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tom-

kins, and J. Wiener. Graph Structure in the Web. Computer Networks, 33(1–6), pp.
309–320, 2000.

70. C. A. Brunk and M. J. Pazzani. An Investigation of Noise-Tolerant Relational Con-
cept Learning Algorithms. In Proc. of the 8th Intl. Workshop on Machine Learning,
pp. 389–393, 1991.

71. A. Buchner and M. D. Mulvenna. Discovering Internet Marketing Intelligence
through Online Analytical Web Usage Mining. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD’99), pp. 54–61, 1999.

72. G. Buehrer, S. Parthasarathy, and A. Ghoting. Out-of-core frequent pattern mining on
a commodity PC. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (KDD’06), pp. 86 – 95, 2006.

73. D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal Frequent Itemset Al-
gorithm for Transactional Databases. In Proc. of the Intl. Conf. on Data Engineering
(ICDE’01), pp. 443, 2001.

74. C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2(2), pp. 955–974, 1998.

75. D. Buttler, L. Liu, and C. Pu. A Fully Automated Object Extraction System for the
World Wide Web. In Proc. of Intl. Conf. on Distributed Computing Systems
(ICDCS’01), pp. 361–370, 2001.

76. I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Model-Based Cluster-
ing and Visualization of Navigation Patterns on a Web Site. Data Mining Knowledge
Discovery 7(4), pp. 399–424, 2003.

77. D. Cai, S. Yu, J.-R. Wen and W.-Y Ma. Extracting Content Structure for Web Pages
based on Visual Representation. In Proc. of the APWeb'03 Conf., Number 2642 in
Lecture notes in Computer Science (LNCS), pp. 406–417, 2003

78. D. Cai, S. Yu, J.-R. Wen and W.-Y. Ma. Block-Based Web Search. In Proc. of the
ACM SIGIR Research and Development in Information Retrieval (SIGIR'04), pp.
456–463, 2004.

References 489

79. Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting Ranking SVM
to Document Retrieval. In Proc. of the 29th Annual Intl. ACM SIGIR Conf. on Re-
search and Development in Information Retrieval (SIGIR’06), pp. 186-193, 2006.

80. G. Carenini, R. Ng, and E. Zwart. Extracting Knowledge from Evaluative Text. In
Proc. of the Third Intl. Conf. on Knowledge Capture (K-CAP’05), pp. 11–18. 2005.

81. G. Carenini, R. Ng, and A. Pauls. Interactive Multimedia Summaries of Evaluative
Text. In Proc. of the 10th Intl. Conf. on Intelligent User Interfaces (IUI’06), pp. 305–
312, 2006.

82. H. Carrillo and D. Lipman. The Multiple Sequence Alignment Problem in Biology.
SIAM Journal Applied Mathematics, 48(5), pp. 1073–1082, 1988.

83. V. Castelli and T. M. Cover. Classification Rules in the Unknown Mixture Parameter
Case: Relative Value of Labeled and Unlabeled Samples. In Proc. of 1994 IEEE In-
tern. Symp. Inform. Theory, 111, 1994.

84. S. Chakrabarti. Integrating the Document Object Model with Hyperlinks for En-
hanced Topic Distillation and Information Extraction. In Proc. of the 13th Intl. World
Wide Web Conf. (WWW’01), pp. 211–220, 2001.

85. S. Chakrabarti. Mining the Web. Discovering Knowledge from Hypertext Data. Mor-
gan Kaufmann, 2003.

86. S. Chakrabarti, B. Dom, S. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, D.
Gibson, and J. Kleinberg. Mining the Web’s Link Structure. IEEE Computer, 32(8),
pp. 60–67, 1999.

87. S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A New Approach
to Topic-Specific Web Resource Discovery. Computer Networks, 31(11–16), pp.
1623–1640, 1999.

88. S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and J. Kleinberg.
Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated
Text. Computer Networks 30(1–7), pp. 65–74, 1998.

89. S. Chakrabarti, K. Puniyani, and S. Das. Optimizing Scoring Functions and Indexes
for Proximity Search in Type-annotated Corpora. In Proc. of the 15th Intl. Conf. on
World Wide Web (WWW'06), 2006.

90. C-H. Chang, M. Kayed, M. R. Girgis, and K. Shaalan. A Survey of Web Information
Extraction Systems. IEEE Transactions on Knowledge and Data Engineering,
18(10), pp. 1411–1428, 2006.

91. C-H. Chang and S. Lui. IEPAD. Information Extraction Based on Pattern Discovery.
In Proc. of the Tenth Intl. World Wide Web Conf. (WWW’01), pp. 681–688, 2001.

92. K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured Databases on the
Web: Observations and Implications. SIGMOD Record, 33(3), pp. 61-70, 2004.

93. O. Chapelle, B. Schölkopf and A. Zien. (eds.) Semi-Supervised Learning. MIT Press,
2006.

94. P. Cheeseman, and J. Stutz. Bayesian Classification (AutoClass): Theory and Re-
sults. In Advances in Knowledge Discovery and Data Mining, 1996.

95. W. Chen. New Algorithm for Ordered Tree-to-Tree Correction Problem. J. Algo-
rithms, 40(2), pp. 135–158, 2001.

96. H. Chen, Y.-M. Chung, M. Ramsey, and C. Yang. A Smart Itsy Bitsy Spider for the
Web. Journal of the American Society for Information Science 49 (7), 604–618,
1998.

97. S. F. Chen, and J. Goodman. An Empirical Study of Smoothing Techniques for Lan-
guage Modeling. Tech. Rep. TR-10-98, Harvard University, 1998.

98. Y.-Y. Chen, Q. Gan and T. Suel. Local Methods for Estimating PageRank Values. In
Proc. of the Intl. Conf. on Information and Knowledge Management (CIKM’04), pp.
381–389, 2004.

490 References

99. C. H. Cheng, A. W. Fu and Y Zhang. Entropy-Based Subspace Clustering for Mining
Numerical Data. In Proc. of Knowledge Discovery and Data Mining (KDD’99), pp.
84–93, 1999.

100. Y. Cheng and G. Church. Biclustering of Expression Data. In Proc. ISMB, pp. 93–
103. AAAI Press, 2000.

101. J. Cho and H. Garcia-Molina. The Evolution of the Web and Implications for an In-
cremental Crawler. In Proc. of the 26th Intl. Conf. on Very Large Data Bases
(VLDB’00), 2000.

102. J. Cho, H. Garcia-Molina, and L. Page. Efficient Crawling through URL Ordering.
Computer Networks 30 (1–7), pp. 161–172, 1998.

103. J. Cho, and S. Roy. Impact of Web Search Engines on Page Popularity. In Proc. of
the 13th Intl. World Wide Web Conf. (WWW’04), pp. 20–29, 2004.

104. P. Clark, and T. Niblett. The CN2 Induction Algorithm. Machine Learning, 3, pp.
261–283, 1989.

105. C. Clifton, E. Housman, and A. Rosenthal. Experience with a Combined Approach to
Attribute-Matching Across Heterogenenous Databases. In: Proc, IFIP 2.6 Working
Conf. Database Semantics, 1997.

106. W. W. Cohen. Fast Effective Rule Induction. In Proc. of 12th Intl. Conf. on Machine
Learning (ICML’95), pp. 115–123, 1995.

107. W. W. Cohen. Integration of Heterogeneous Databases without Common Domains
Using Queries Based on Textual Similarity. In Proc ACM SIGMOD Conf. on Man-
agement of Data (SIGMOD’08), pp. 201–212, 1998.

108. W. W. Cohen, M. Hurst, and L. S. Jensen. A Flexible Learning System for Wrapping
Tables and Lists in Html Documents. In Proc. of the 11th Intl. World Wide Web
Conf. (WWW’02), pp. 232–241, 2002.

109. M. Collins and Y. Singer. Unsupervised Models for Named Entity Classification. In
Proc. of Intl. Conf. on Empirical Methods in Natural Language Processing
(EMNLP’99), pp. 100–110, 1999.

110. M. de Condorcet. Essai sur l'application de l'analyse a la probabilitie des decisions
rendues a la pluralite des voix, Paris, 1785.

111. G. Cong, W. S. Lee, H. Wu, and B. Liu. Semi-Supervised Text Classification Using
Partitioned EM. In Proc. of Database Systems for Advanced Applications (DASFAA
2004): 482–493, 2004.

112. G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. Mining Top-k Covering Rule Groups
for Gene Expression Data. In Proc. of ACM SIGMOD Intl. Conf. on Management of
Data (SIGMOD’05), pp. 670–681, 2005.

113. G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang. Farmer: Finding Interesting
Rule Groups in Microarray Datasets. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data (SIGMOD’04), pp. 143–154. 2004.

114. R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and Pattern
Discovery on the World Wide Web. In Proc. of the 9th IEEE Intl. Conf. on Tools
With Artificial Intelligence (ICTAI’97), pp. 558–567, 1997.

115. R. Cooley, B. Mobasher, and J. Srivastava. Data Preparation for Mining World Wide
Web Browsing Patterns. Knowledge and Information Systems, 1(1), pp. 5–32, 1999.

116. T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

117. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards Automatic Data Ex-
traction from Large Web Sites. In Proc. of Very Large Data Bases (VLDB’01), pp.
109–118, 2001.

118. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

References 491

119. W. B. Croft. Combining Approaches to Information Retrieval. In W. B. Croft (eds.),
Advances in Information Retrieval: Recent Research from the Center for Intelligent
Information Retrieval, Kluwer Academic Publishers, 2000.

120. S. Das and M. Chen. Yahoo! for Amazon: Extracting Market Sentiment from Stock
Message Boards. APFA’01, 2001.

121. S. Dasgupta, M.L. Littman, and D. McAllester. PAC Generalization Bounds for Co-
Training. Advances in Neural Information Processing Systems (NIPS), 2001.

122. K. Dave, S. Lawrence, and D. Pennock. Mining the Peanut Gallery: Opinion Extrac-
tion and Semantic Classification of Product Reviews. In Proc. of the 12th Intl. World
Wide Web Conference (WWW’03), pp. 519–528, 2003.

123. B. Davison. Topical Locality in the Web. In Proc. 23rd Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pp. 272–279, 2000.

124. S. Debnath, P. Mitra, and C. L. Giles. Automatic Extraction of Informative Blocks
from Webpages. In Proc. of the 2005 ACM Symposium on Applied Computing, pp.
1722–1726, 2005.

125. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-
dexing by Latent Semantic Analysis. Journal of the American Society for Information
Science, 41, pp. 391–407, 1990.

126. M. Degeratu, G. Pant, and F. Menczer. Latency-Dependent Fitness in Evolutionary
Multithreaded Web Agents. In Proc. of GECCO Workshop on Evolutionary Compu-
tation and Multi-Agent Systems, pp. 313–316, 2001.

127. A. P. Dempster, N. M. Laird, and D. B. Rubin Maximum Likelihood from Incom-
plete Data via the EM algorithm. Journal of the Royal Statistical Society, Series B,
39(1), pp. 1–38, 1977.

128. L. Deng, X. Chai, Q. Tan, W. Ng, and D. L. Lee. Spying Out Real User Preferences
for Metasearch Engine Personalization. In Proc. of the Workshop on WebKDD, 2004.

129. F. Denis. PAC Learning from Positive Statistical Queries. In Proc. of Intl. Conf. on
Algorithmic Learning Theory (ALT’98), pp. 112–126, 1998.

130. F. Denis, R. Gilleron and M. Tommasi. Text Classification from Positive and Unla-
beled Examples. IPMU, 2002.

131. M. Deshpande and G. Karypis. Using conjunction of attribute values for classifica-
tion. In Proc. of the ACM Intl. Conf. on Information and Knowledge Management
(CIKM’02), pp. 356-364, 2002.

132. M. Deshpande and G. Karypis. Selective Markov Models for Predicting Web Page
Accesses. ACM Trans. on Internet Technology, 4(2), 163–184, 2004.

133. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. IMap: Discovering
Complex Semantic Matches between Database Schemas. In Proc. of ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD'04), pp. 383–394, 2004.

134. S. Dhillon. Co-Clustering Documents and Words Using Bipartite Spectral Graph Par-
titioning. In Proc. of the 7th ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’01), pp. 269–274, 2001.

135. S. Dhillon, S. Mallela, and D. S. Modha. Information-Theoretic Co-Clustering. In
Proc. of The Ninth ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining (KDD’03), pp. 89–98, 2003.

136. L. Dice. Measures of the Amount of Ecologic Association between Species. Ecology,
26(3), 1945.

137. J. Diesner and K. M. Carley. Exploration of Communication Networks from the En-
ron Email Corpus. In Workshop on Link Analysis, Counterterrorism and Security at
SDM’05, 2005.

138. T. G. Dietterich and G. Bakiri. Solving Multiclass Learning Problems via Error-
Correcting Output Codes. J. of Artificial Intelligence Research, 2. pp. 263–286, 1995.

492 References

139. M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused Crawling
Using Context Graphs. In Proc. of Intl. Conf. on Very Large Databases (VLDB’00),
pp. 527–534, 2000.

140. M. Diligenti, M. Gori, and M. Maggini, Web Page Scoring Systems for Horizontal
and Vertical Search. In Proc. of the 11th Intl. World Wide Web Conference
(WWW’02), pp. 508–516. 2002.

141. C. Ding, and X. He. Linearized Cluster Assignment via Spectral Ordering. In Proc. of
Int’l Conf. Machine Learning (ICML’04), 2004.

142. C. Ding, X. He, H. Zha, and H. Simon. PageRank, HITS and a Unified Framework
for Link Analysis. In Proc. of SIAM Data Mining Conf., 2003.

143. C. Djeraba, O. R. Zaiane, and S. Simoff. (eds.). Mining Multimedia and Complex Da-
ta. Springer, 2003.

144. H. Do and E. Rahm. Coma: A System for Flexible Combination of Schema Matching
Approaches. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’02), pp.
610–621, 2002.

145. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling Schemas of Disparate Data
Sources: a Machine-Learning Approach. In Proc. of the 2001 ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD’01), pp. 509–520, 2001.

146. A. Doan and A. Halevy, Semantic Integration Research in the Database Community:
A Brief Survey. AI Magzine, 26(1), pp. 83–94, 2005.

147. A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy: Learning to Map between
Ontologies on the Semantic Web. In Proc. of the 11th Intl. World Wide Web Confe-
rence (WWW’02), pp. 662–673, 2002.

148. P. Domingos, and M. J. Pazzani. On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning 29(2–3), pp. 103–130, 1997.

149. G. Dong, X. Zhang, L. Wong, and J. Li. CAEP: Classification by Aggregating
Emerging Patterns. In Proc. of Intl. Conf. on Discovery Science, pp. 30–42, 1999.

150. C. Doran, D. Egedi, B. A. Hockey, B. Srinivas, and M. Zaidel. XTAG System-A
Wide Coverage Grammar for English. In Proc. of Intl. Conf. on Computational Lin-
guistics (COLING’94), pp. 922–928, 1994.

151. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretiza-
tion of Continuous Features. In Proc. of the 12th Intl. Conf. on Machine Learning
(ICML’95), 1995.

152. A. Douglis. B. Feldmann, Krishnamurthy, and J. C. Mogul. Rate of Change and Oth-
er Metrics: a Live Study of the World Wide Web. In Proc. of USENIX Symp. on In-
ternet Technologies and Systems, pp. 147–158, 1997.

153. E. Dragut, W. Wu, P. Sistla, C. Yu, and W. Meng. Merging Source Query Interfaces
on Web Databases. In Proc. of the International Conference on Data Engineering
(ICDE’06), 2006.

154. E. Dragut, C. Yu, and W. Meng. Meaningful Labeling of Integrated Query Interfaces.
In Proceedings of Very Large Data Bases (VLDB’06), 2006.

155. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons
Inc., 2nd edition, 2001

156. M. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.
157. J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters. Journal of Cybernetics, 3, pp. 32–57, 1974.
158. J. Eckmann, and E. Moses. Curvature of Co-Links Uncovers Hidden Thematic Lay-

ers in the World Wide Web. In Proc. of the National Academy of Sciences, pp. 5825–
5829, 2002.

159. K. Eguchi, and V. Lavrenko. Sentiment Retrieval Using Generative Models. In Proc.
of the Conf. on Empirical Methods in Natural Language Processing (EMNLP’06),

References 493

pp. 345–354, 2006.
160. D. Eichmann. Ethical Web Agents. Computer Networks, 28(1–2), pp. 127–136, 1995.
161. P. Elias. Universal Codeword Sets and Representations of the Integers. IEEE Trans-

actions on Information Theory, IT–21(2), pp.194–203, 1975.
162. D. W. Embley, D. Jackman, and L. Xu. Multifaceted Exploitation of Metadata for

Attribute Match Discovery in Information Integration. In: Proc Intl. Workshop on In-
formation Integration on the Web, pp. 110–117, 2001.

163. D. W. Embley, Y. Jiang, and Y. K. Ng. Record-Boundary Discovery in Web Docu-
ments. In Proc. of ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD’99),
pp. 467–478, 1999.

164. M. Ester, H.-P. Kriegal, J. Sander and X. Xu. A Density-Based Algorithm for Disco-
vering Clusters in Large Spatial Databases with Noise. In Proc. of Knowledge Dis-
covery and Data Mining (KDD’96), pp. 226–231, 1996.

165. A. Esuli, and F. Sebastiani. Determining Term Subjectivity and Term Orientation for
Opinion Mining. In: Proc. of Conf. of the European Chapter of the Association for
Computational Linguistics (EACL’06), 2006.

166. O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland,
D. Weld, and A. Yates. Web-Scale Information Extraction in Knowitall. In Proc. of
the 13th Intl. World Wide Web Conference (WWW’04), pp. 100–110, 2004.

167. B. S. Everitt. Cluster Analysis. Heinemann, London, 1974.
168. R. Fagin, R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin, and D.

P. Williamson. Searching the Workplace Web. In Proc. of the 12th Intl. World Wide
Web Conference (WWW’03), pp. 366–375, 2003.

169. W. Fan. On the Optimality of Probability Estimation by Random Decision Trees. In
Proc. of National Conf. on Artificial Intelligence (AAAI’04), pp. 336-341, 2004.

170. W. Fan, S. J. Stolfo, J. Zhang, P. K. Chan: AdaCost: Misclassification Cost-Sensitive
Boosting. In Proc. of the 16th Intl. Conf. on Machine Learning (ICML’99), pp. 97-
105, 1999.

171. A. Farahat, T. LoFaro, J. C. Miller, G Rae and L Ward. Authority Rankings from
HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization.
SIAM Journal on Scientific Computing, pp. 1181–1201, 2005.

172. U. M. Fayyad, and K. B. Irani. Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning. In Proc. of the Intl. Joint Conf. on Artificial
Intelligence, pp. 102–1027, 1993.

173. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining,
AAAI/MIT Press, pp. 1–34, 1996.

174. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy (eds.). Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

175. C. Fellbaum. WordNet: An On-Line Lexical Database. MIT Press, 1998.
176. D. Fetterly, M. Manasse and M. Najork. Detecting Phrase-Level Duplication on the

World Wide Web. In Proc. of the 28th Annual Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pp. 170–177, 2005.

177. D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A Large-Scale Study of the Evo-
lution of Web Pages. In Proc. of the 12th Intl. World Wide Web Conf. (WWW’03), pp.
669–678, 2003.

178. D. Fisher. Knowledge Acquisition via Incremental Conceptual Clustering. Machine
Learning, 2, pp. 139–172, 1987.

179. G. W. Flake, S. Lawrence, and C. L. Giles, Efficient Identification of Web Com-
munities. In Proc. of the sixth ACM SIGKDD Intl. Conf. on Knowledge discovery and
data mining, pp.150–160, 2000.

494 References

180. G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-Organization of the Web
and Identification of Communities. IEEE Computer 35(3), pp. 66–71, 2002.

181. L. R. Ford Jr. and D. R. Fulkerson. Maximal Flow through a Network. Canadian
Journal Mathematics, 8: pp. 399–404, 1956.

182. S. Fortunato, A. Flammini, F. Menczer, and A. Vespignani. Topical Interests and the
Mitigation of Search Engine Bias. In Proc. Natl. Acad. Sci. USA, 103(34), pp.
12684-12689, 2006.

183. S. Fortunato, A. Flammini, and F. Menczer. Scale-Free Network Growth by Ranking.
Phys. Rev. Lett. 96(21), 2006.

184. E. Fox and J. Shaw. Combination of Multiple Searches. In Proc. of the Second Text
REtrieval Conf., pp. 243-252, 1993.

185. D. Freitag and A. McCallum. Information Extraction with HMM Structures Learned
by Stochastic Optimization. In Proc. of National Conf. on Artificial Intelligence
(AAAI’00), 2000.

186. Y. Freund, and R. E. Schapire. Experiments with a New Boosting Algorithm. In
Proc. of the 13th Intl. Conf. on Machine Learning (ICML'96), pp. 148–156, 1996.

187. X. Fu, J. Budzik, and K. J. Hammond. Mining Navigation History for Recommenda-
tion. In Proc. of the Intl. Conf. on Intelligent User Interfaces, pp. 106–112, 2000.

188. G. P. C. Fung, J. X. Yu, H. Lu, and P. S. Yu. Text Classification without Labeled
Negative Documents. In Proc. 21st Intl. Conf. on Data Engineering (ICDE'05), pp.
594–605, 2005.

189. J. Furnkranz and G. Widmer. Incremental Reduced Error Pruning. In Proc. of the
Eleventh Intl. Conf. Machine Learning, pp. 70–77, 1994.

190. A. Gal, G. Modica, H. Jamil, and A. Eyal. Automatic Ontology Matching Using Ap-
plication Semantics. AI Magazine, 26(1), pp. 21–32, Spring 2005.

191. M. Gamon. Sentiment Classification on Customer Feedback Data: Noisy Data, Large
Feature Vectors, and the Role of Linguistic Analysis. In Proc. of the 20th Intl. Conf.
on Computational Linguistics, pp. 841–847, 2004.

192. M. Gamon, A. Aue, S. Corston-Oliver, and E. K. Ringger. Pulse: Mining Customer
Opinions from Free Text. In Proc. of Intelligent Data Analysis (IDA’ 05), pp. 121–
132, 2005.

193. V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS – Clustering Categorical Data
Using Summaries. In Proc. of Knowledge Discovery and Data Mining (KDD’99), pp.
73–83, 1999.

194. F. Gasparetti and A. Micarelli. Swarm Intelligence: Agents for Adaptive Web Search.
In Proc. of the 16th European Conf. on Artificial Intelligence (ECAI’04), 2004.

195. J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest - A Framework for Fast Deci-
sion Tree Construction of Large Datasets. In Proc. of Intl. Conf. on Very Large Data
Bases (VLDB’98), pp. 416-427, 1998.

196. R. Ghani, Combining Labeled and Unlabeled Data for MultiClass Text Categoriza-
tion. In Proc. of the Intl. Conf. on Machine Learning (ICML’02), pp. 187–194, 2002.

197. D. Gibson, J. M. Kleinberg, and P. Raghavan, Clustering Categorical Data: An Ap-
proach Based on Dynamical Systems. In Proc. of the Intl. Conf. on Very Large Data
Bases (VLDB’98), pp.311–322, 1998.

198. D. Gibson, J. Kleinberg, and P. Raghavan. Inferring Web Communities from Link
Topology. In Proc. of the 9th ACM Conf. on Hypertext and Hypermedia, 1998.

199. D. Gibson, K. Punera, and A. Tomkins. The Volume and Evolution of Web Page
Templates. In Special Interest Tracks and Posters of the 14th Intl. Conf. on World
Wide Web (WWW '05). pp. 830–839, 2005.

200. M. Girvan and M. Newman. Community Structure in Social and Biological Network.
In Proc. of the National Academy of Sciences, 2001.

References 495

201. S. Goldman and Y. Zhou. Enhanced Supervised Learning with Unlabeled Data. In
Proc. of the Intl. Conf. on Machine Learning (ICML’00), pp. 327–334, 2000.

202. S. W. Golomb. Run-Length Encodings. IEEE Transactions on Information Theory,
12(3), pp. 399–401, July 1966.

203. G. H. Golub, and C. F. Van Loan. Matrix Computations. The Johns Hopkins Univer-
sity Press, 1983.

204. I. J. Good. The Estimation of Probabilities: An Essay on Modern Bayesian Methods.
MIT Press, 1965.

205. J. C. Gower. A General Coefficient of Similarity and Some of its Properties. Biomet-
rics, 27, pp. 857–871, 1971.

206. G. Grefenstette, Y. Qu, D. A. Evans, and J. G. Shanahan. Validating the Coverage of
Lexical Resources for Affect Analysis and Automatically Classifying New Words
along Semantic Axes. In Proc. of AAAI Spring Symposium on Exploring Attitude and
Affect in Text: Theories and Applications, 2004.

207. G. Grimmett and D. Stirzaker. Probability and Random Process. Oxford University
Press, 1989.

208. R. L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, (eds.).
Data Mining for Scientific and Engineering Applications. Kluwer Academic Publish-
ers, 2001.

209. D. A. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuristics,
Springer, 2004.

210. S. Grumbach and G. Mecca. In Search of the Lost Schema. In Proc. of the Intl. Conf.
on Database Theory, pp. 314–331, 1999.

211. S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient Clustering Algorithm for
Large Databases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD’98), pp. 73–84, 1998.

212. S. Guha, R. Rastogi, and K. Shim. ROCK: a Robust Clustering Algorithm for Cate-
gorical Attributes. In Proc. of the 15th Intl. Conf. on Data Engineering, pp. 345–366.
2000.

213. D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

214. Z. Gyongyi and H. Garcia-Molina. Web Spam Taxonomy. Technical Report, Stanford
University, 2004.

215. Z. Gyöngyi, and H. Garcia-Molina. Link Spam Alliances. In Proc. of the 31st Intl
Conf. on Very Large Data Bases (VLDB’05), pp. 517–528, 2005.

216. Z. Gyongyi, H. Garcia-Molina and J. Pedersen. Combating Web Spam with Trus-
tRank. In Proc. of 30th Intl. Conf. on Very Large Data Bases (VLDB’04), pp. 576–
587, 2004.

217. J. Han and Y. Fu. Discovery of Multi-Level Association Rules from Large Data-
bases. In Proc. of the 21st Intl. Conf. on Very Large Data Bases (VLDB’05), pp. 420–
431, 1995.

218. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, 2001.

219. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan: Fre-
quent Pattern-Projected Sequential Pattern Mining. In Proc. of the 2000 Int. Conf.
Knowledge Discovery and Data Mining (KDD’00), pp. 355–359, 2000.

220. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.
In Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’00), pp.
1–12, 2000.

221. D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.
222. J. A. Hartigan. Clustering Algorithms. John Wiley & Sons Inc. 1975.

496 References

223. J. A. Hartigan. Direct Clustering of a Data Matrix. Journal of the American Statisti-
cal Association, 67(337): pp. 123–129, 1972.

224. V. Hatzivassiloglou and K. McKeown. Predicting the Semantic Orientation of Adjec-
tives. In Proc. of the 35th Annual Meeting of the Association for Computational Lin-
guistics (ACL-EACL’97), pp. 174−181, 1997.

225. V. Hatzivassiloglou, and J. Wiebe. Effects of Adjective Orientation and Gradability
on Sentence Subjectivity. In Proc. of the Intl. Conf. on Computational Linguistics
(COLING’00), pp. 299–305. 2000.

226. T. Haveliwala. Extrapolation Methods for Accelerating PageRank Computations. In
Proc. of the 12th Intl. World Wide Web Conf. (WWW’03), pp. 261–270, 2003.

227. B. He, and K. C.-C. Chang. Statistical Schema Matching across Web Query Inter-
faces. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD’03), pp. 217–228, 2003.

228. B. He and K. C.-C. Chang. Making Holistic Schema Matching Robust: An Ensemble
Approach. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’05), pp. 429-438, 2005.

229. B. He, K. C.-C. Chang, and J. Han. Discovering Complex Matchings across Web
Query Interfaces: A Correlation Mining Approach. In Proc. of the ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining (KDD’04), pp. 148–157, 2004.

230. H. He, W. Meng, C. T. Yu, and Z. Wu. WISE-Integrator: An Automatic Integrator of
Web Search Interfaces for E-commerce. In Proc. of Very Large Data Bases
(VLDB’03), 2003.

231. H. He, W. Meng, C. T. Yu, and Z. Wu. Automatic extraction of web search interfaces
for interface schema integration. In Proc. of WWW Alternate Track Papers and Post-
ers, pp. 414-415, 2004.

232. M. A. Hearst. Direction-based Text Interpretation as an Information Access Refine-
ment. In P. Jacobs (eds.), Text-Based Intelligent Systems. Lawrence Erlbaum Associ-
ates, 1992.

233. M. A. Hearst, and J. O. Pedersen. Reexamining the Cluster Hypothesis: Scat-
ter/Gather on Retrieval Results. In Proc. of the 19th Intl. ACM SIGIR Conf. on Re-
search and Development in Information Retrieval (SIGIR'96), 1996.

234. M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. Measuring Search En-
gine Quality Using Random Walks on the Web. In Proc. of the 8th Intl. World Wide
Web Conf., pp. 213–225, 1999.

235. M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On Near-Uniform
URL Sampling. In Proc. of the 9th Intl. World Wide Web Conf. (WWW’00), pp. 295–
308, 2000.

236. J. L. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating Collaborative Filter-
ing Recommender Systems. ACM Transactions on Information Systems, 22(1), pp.
5–53, 2004

237. M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur. The
Shark-Search Algorithm An Application: Tailored Web Site Mapping. In Proc. of
the 7th Intl. World Wide Web Conf. (WWW7), pp. 317–326, 1998.

238. A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web Crawler. World
Wide Web 2(4), pp. 219–229, 1999.

239. A. Hinneburg and D. A. Keim. An Optimal Grid-Clustering: Towards Breaking the
Curse of Dimensionality in High-Dimensional Clustering. In Proc. of Very Large
Data Bases (VLDB’99), pp. 506–517, 1999.

240. T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Ma-
chine Learning, 42(1): pp. 177–196, 2001.

241. A. Hogue and D. Karger. Thresher: Automating the Unwrapping of Semantic Con-

References 497

tent from the World Wide Web. In Proc. of the 14th Intl. World Wide Web Confer-
ence (WWW’05), pp. 86–95, 2005.

242. S. C. H. Hoi, R. Jin, M. R. Lyu. Large-Scale Text Categorization by Batch Mode Ac-
tive Learning. In Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

243. V. Honavar and G. Slutzki. (eds.). Grammatical Inference. In Proc. of the Fourth Intl
Colloquium on Grammatical Inference. LNCS 1433. Springer-Verlag, 1998.

244. C.-N. Hsu and M.-T. Dung. Generating Finite-State Transducers for Semi-Structured
Data Extraction from the Web. Inf. System, 23(9), pp. 521–538, 1998.

245. M. Hu and B. Liu. Mining and Summarizing Customer Reviews. In Proc. of ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD’04), pp. 168–
177, 2004.

246. M. Hu and B. Liu. Mining Opinion Features in Customer Reviews. In Proc. of the
19th National Conf. on Artificial Intelligence (AAAI’04), pp. 755–760, 2004.

247. M. Hu and B. Liu. Opinion Feature Extraction Using Class Sequential Rules. In
Proc. of the Spring Symposia on Computational Approaches to Analyzing Weblogs,
2006.

248. L. Hyafil, and R. L. Rivest. Constructing Optimal Binary Decision Trees is NP-
Complete. Information Processing Letters 5, pp. 15–17, 1976.

249. H. Ino, M. Kudo, and A. Nakamura. Partitioning of Web Graphs by Community To-
pology. In Proc. of the 14th Intl. Conf. on World Wide Web (WWW’05), pp. 661–66,
2005.

250. U. Irmak, and T. Suel. Interactive Wrapper Generation with Minimal User Effort. In
Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

251. T. Jagatic, N. Johnson, M. Jakobsson, and F. Menczer. Social Phishing. Communica-
tions of the ACM. In press, 2006.

252. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
253. T. Jiang, L. Wang, and K. Zhang. Alignment of Trees - an Alternative to Tree edit. In

Proc. of Combinatorial Pattern Matching, pp. 75–86, 1994.
254. X. Jin, Y. Zhou, and B. Mobasher. Web Usage Mining Based on Probabilistic Latent

Semantic Analysis. In Proc. of the ACM SIGKDD Conf. on Knowledge Discovery
and Data Mining (KDD’04), pp. 197–205, 2004.

255. N. Jindal, and B. Liu. Identifying Comparative Sentences in Text Documents. In
Proc. of ACM SIGIR Intl. Conf. on Research and Development in Information Re-
trieval (SIGIR’06), pp. 244–251, 2006.

256. N. Jindal, and B. Liu. Mining Comparative Sentences and Relations. In Proc. of Na-
tional Conference on Artificial Intelligence (AAAI’06), 2006.

257. T. Joachims. Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In Machine Learning: In Proc. of Tenth European Conf. on
Machine Learning (ECML’98), pp. 137–142, 1998.

258. T. Joachims. Making Large-Scale SVM Learning Practical. Advances in Kernel
Methods - Support Vector Learning, B. Schölkopf and C. Burges and A. Smola
(eds.), MIT Press, 1999.

259. T. Joachims. Transductive Inference for Text Classification Using Support Vector
Machines. In Proc. of the Intl. Conf. on Machine Learning (ICML’99), pp. 200–209,
1999.

260. T. Joachims. Optimizing Search Engines Using Click-through Data. In Proc. of the
ACM Intl. Conf. on Knowledge Discovery and Data Mining (KDD’02), pp. 133-142,
2002.

261. T. Joachims, Transductive Learning via Spectral Graph Partitioning. In Proc. of the
Intl. Conf. on Machine Learning (ICML’03), pp. 290–297, 2003.

262. R. Jones, B. Rey, O. Madani, and W. Greiner. Generating Query Substitutions. In

498 References

Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.
263. L. P. Kaelbling, M. Littman, and A. Moore. Reinforcement Learning: A survey.

Journal of Artificial Intelligence Research 4, pp. 237–285, 1996.
264. N. Kaji and M. Kitsuregawa. Automatic Construction of Polarity-Tagged Corpus

from HTML Documents. In Proc. of the COLING/ACL 2006 Main Conference
Poster Sessions, pp. 452–459, 2006.

265. Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the State of the Art. The
Knowledge Engineering Review Journal, 18(1), pp. 1–31, 2003.

266. S. D. Kamar, T. Haveliwala, C. D. Manning, and G. H. Golub, Extrapolation Meth-
ods for Accelerating PageRank Computations. In Proc. of the 12th Intl. World Wide
Web Conference (WWW’03), pp. 261–270, 2003.

267. H. Kanayama and T. Nasukawa. Fully Automatic Lexicon Expansion for Domain-
oriented Sentiment Analysis. In Proc. of the 2006 Conf. on Empirical Methods in
Natural Language Processing (EMNLP’06), pp. 355–363, 2006.

268. J. Kang, and J. F. Naughton, On Schema Matching with Opaque Column Names and
Data Values. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD’03), 2003.

269. V. Kashyap and A. Sheth. Semantic and Schematic Similarities between Database
Objects: a Context-Based Approach. In Proc. of the Intl. Journal on Very Large Data
Bases (VLDB’96), 5(4): pp. 276–304, 1996.

270. G. V. Kass. An Exploratory Technique for Investigating Large Quantities of Cate-
gorical Data. Applied Statistics, 29, pp. 119–127, 1980.

271. L. Kaufman, and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Clus-
ter Analysis. John Wiley & Sons, 1990.

272. M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. Journal of the
ACM, 45, pp. 983–1006, 1998.

273. J. S. Kelly. Social Choice Theory: An Introduction. Springer-Verlag, 1988.
274. C. Kennedy. Comparatives, Semantics of. In Encyclopedia of Language and Linguis-

tics, Second Edition, Elsevier, 2005.
275. M. M. Kessler. Bibliographic Coupling between Scientific Papers. American Docu-

mentation, 14, 1963.
276. S. Kim and E. Hovy. Determining the Sentiment of Opinions. In Proc. of the Intl.

Conf. on Computational Linguistics (COLING’04), 2004.
277. S.-M. Kim and E. Hovy. Automatic Identification of Pro and Con Reasons in Online

Reviews. In Proc. of the COLING/ACL 2006 Main Conference Poster Sessions, pp.
483–490, 2006.

278. S.-M. Kim and E. Hovy. Identifying and Analyzing Judgment Opinions. In Proc. of
the Human Language Technology Conference of the North American Chapter of the
ACL, pp. 200–207, 2006.

279. R. Kimball and R. Merz. The Data Webhouse Toolkit: Building the Web-Enabled
Data Warehouse. John Wiley & Sons, 2000.

280. J. L. Klavans, and S. Muresan. DEFINDER: Rule-Based Methods for the Extraction
of Medical Terminology and Their Associated Definitions from On-line Text. In
Proc. of American Medical Informatics Assoc., 2000.

281. J. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In Proc. of the
9th ACM SIAM Symposium on Discrete Algorithms (SODA’98), pp. 668–677, 1998.

282. J. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the
ACM 46 (5), pp. 604–632, 1999.

283. M. Klemetinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding
Interesting Rules from Large Sets of Discovered Association Rules. In Proc. of the
ACM Intl. Conf. on Information and Knowledge Management (CIKM’94), pp. 401-

References 499

407, 1994.
284. N. Kobayashi, R. Iida, K. Inui and Y. Matsumoto. Opinion Mining on the Web by

Extracting Subject-Attribute-Value Relations. In Proc. of AAAI-CAAW'06, 2006.
285. R. Kohavi, B. Becker, and D. Sommerfield, Improving Simple Bayes. In Proc. of

European Conference on Machine Learning (ECML’97), 1997.
286. R. Kohavi, L. Mason, R. Parekh, and Z. Zheng. Lessons and Challenges from Mining

Retail E-Commerce Data. Machine Learning, 57(1–2), pp. 83–113, 2004.
287. T. Kohonen. Self-Organizing Maps. Series in Information Sciences, 30, Springer,

Heidelberg, Second Edition. 1995.
288. F. Korn, H. V. Jagadish and C. Faloutsos. Efficiently Supporting Ad Hoc Queries in

Large Datasets of Time Sequences. In Proc. ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD’97), pp 289–300, 1997.

289. R. Kraft, C. C. Chang, F. Maghoul, and Ravi Kumar. Searching with Context. In
Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

290. L.-W. Ku, H.-W. Ho, and H.-H. Chen. Novel Relationship Discovery Using Opinions
Mined from the Web. In Proc. of the Twenty-First National Conf. on Artificial Intel-
ligence (AAAI’06), 2006.

291. L.-W. Ku, Y.-T. Liang and H.-H. Chen. Opinion Extraction, Summarization and
Tracking in News and Blog Corpora. In Proc. of the AAAI-CAAW'06, 2006.

292. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing:
Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

293. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for
Emerging Cyber-Communities. In Proc. of the 8th Intl. World Wide Web Conference
(WWW8), pp. 1481–1493, 1999.

294. K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. 2004. A Hier-
archical Monothetic Document Clustering Algorithm for Summarization and Brows-
ing Search Results. In Proc. of the 13th Intl. Conf. on World Wide Web (WWW'04),
pp. 658–665, 2004.

295. N. Kushmerick. Wrapper Induction: Efficiency and Expressiveness. Artificial Intelli-
gence, 118: pp. 15–68, 2000.

296. N. Kushmerick. Wrapper Induction for Information Extraction. Ph.D Thesis. Dept. of
Computer Science, University of Washington, TR UW-CSE-97-11-04, 1997.

297. S. H. Kwok and C. C. Yang. Searching the Peer–to–Peer Networks: The Community
and their Queries. Journal of the American Society for Information Science and
Technology, Special Topic Issue on Research on Information Seeking, 55(9), pp.783–
793, 2004.

298. J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling or Sequence Data. In Proc. of the Intl. Conf. on
Machine Learning (ICML’01), pp. 282–289, 2001.

299. S. Lam, and J. Reidl. Shilling Recommender Systems for Fun and Profit. In Proc. of
the 13th Int.l World Wide Web Conf. (WWW’04), pp. 393-402, 2004.

300. K. Lang. Newsweeder: Learning to Filter Netnews. In Proc. of the International Con-
ference on Machine Learning (ICML’95), pp. 331–339, 1995.

301. P. Langley, W. Iba, and K. Thompson. An Analysis of Bayesian Classifiers. In Proc.
of the 10th National Conf. on Artificial Intelligence (AAAI’92), pp. 223–228, 1992.

302. P. Langley. Elements of Machine Learning. Morgan Kauffmann, 1996.
303. A. N. Langville and Carl D. Meyer. Deeper Inside PageRank. Internet Mathematics,

1(3), pp. 335–380, 2005.
304. A. N. Langville and C. D. Meyer. Google's PageRank and Beyond: The Science of

Search Engine Rankings. Princeton University Press, 2006.
305. D. T. Larose. Discovering Knowledge in Data: An Introduction to Data Mining.

500 References

John Wiley, 2004.
306. J. A Larson, S. B Navathe, and R. ElMasri. A Theory of Attribute Equivalence in Da-

tabases with Application to Schema Integration. In Proc. of IEEE Trans Software
Engineering 16(4): pp. 449–463, 1989.

307. S. Lawrence and C. Giles. Accessibility of Information on the Web. Nature 400, pp.
107–109, 1999.

308. S. Lawrence, C. L. Giles, and K. Bollaker. Digital Libraries and Autonomous Cita-
tion Indexing. IEEE Computer 32(6), pp. 67–71, 1999.

309. W. S. Lee, and B. Liu. Learning with Positive and Unlabeled Examples Using
Weighted Logistic Regression. In Proc. of the Twentieth Intl. Conf. on Machine
Learning (ICML’03), pp. 448–455, 2003.

310. R. Lempel and S. Moran. The Stochastic Approach for Link-Structure Analysis
(SALSA) and the TKC Effect. In Proc. of the Ninth Intl. World Wide Web Conf.
(WWW’9), pp. 387–401, 2000.

311. A. V. Leouski and W. B. Croft. An Evaluation of Techniques for Clustering Search
Results. Technical Report IR–76, Department of Computer Science, University of
Massachusetts, Amherst, 1996.

312. K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the Structure of Web Sites
for Automatic Segmentation of Tables. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data (SIGMOD’04), pp. 119–130, 2004.

313. J. Lerner and M. Pinkal. Comparatives and Nested Quantification. CLAUS-Report
21, 1992.

314. N. Lesh, M. J. Zaki, and M. Ogihara. Mining Features for Sequence Classification. In
Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
(KDD’99), 1999.

315. F. Letouzey, F. Denis, and R. Gilleron. Learning from Positive and Unlabeled Exam-
ples. In Proc. of the 11th Intl. Conf. on Algorithmic Learning Theory (ALT’00), pp.
71–85, 2000.

316. D. Lewis. An Evaluation of Phrasal and Clustered Representations on a Text Catego-
rization Task. In Proc. of the ACM SIGIR Intl. Conf. on Research and Development
in Information Retrieval (SIGIR’92), pp. 37–50, 1992.

317. D. Lewis and W. Gale. A Sequential Algorithm for Training Text Classifiers. In
Proc. of the ACM SIGIR Intl. Conf. on Research and Development in Information Re-
trieval (SIGIR’94), pp. 3–12, 1994.

318. H. Li and K. Yamanishi. Document Classification Using a Finite Mixture Model. In
Proc. of the 35th Annual Meeting of the Association for Computational Linguistics,
pp. 39–47, 1997.

319. J. Li, G. Dong, K. Ramamohanarao. Making Use of the Most Expressive Jumping
Emerging Patterns for Classification. In Proc. of Pacific-Asia Conf. on Knowledge
Discovery and Data Mining (PAKDD’00), pp. 220–232, 2000.

320. J. Li, G. Dong, K. Ramamohanarao, and L. Wong. DeEPs: A New Instance-Based
Lazy Discovery and Classification System. Machine Learning, 54(2), pp. 99–124
2004.

321. X. L. Li, and B. Liu. Learning to Classify Text Using Positive and Unlabeled Data. In
Proc. of the Eighteenth Intl. Joint Conf. on Artificial Intelligence (IJCAI’03), pp.
587–594, 2003.

322. X. L. Li, and B. Liu. Learning from Positive and Unlabeled Examples with Different
Data Distributions. In Proc. of the European Conf. on Machine Learning
(ECML’05), 2005.

323. X. L. Li, B. Liu and S-K. Ng. Learning to Identify Unexpected Instances in the Test
Set. To appear in Proc. of Intl. Joint Conf. on Artificial Intelligence (IJCAI’06), 2006.

References 501

324. X. L. Li, T.-H. Phang, M. Hu, and B. Liu. Using Micro Information Units for Internet
Search. In Proc. of the ACM Intl. Conf. on Information and Knowledge Management
(CIKM'02), pp. 566–573, 2002.

325. X. Li, B. Liu and P. S. Yu. Discovering Overlapping Communities of Named Enti-
ties. In Proc. of Conf. on Practical Knowledge Discovery and Data Mining
(PKDD’06), 2006.

326. X. Li, B. Liu and P. S. Yu. Time Sensitive Ranking with Application to Publication
Search. Forthcoming paper, 2006.

327. W. Li, and C. Clifton. SemInt: a Tool for Identifying Attribute Correspondences in
Heterogeneous Databases Using Neural Network. Data Knowledge Engineering
33(1), pp. 49–84, 2000.

328. W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on
Multiple Class-Association Rules. In Proc. of the 2001 IEEE Intl. Conf. on Data
Mining (ICDM’01), pp. 369–376, 2001.

329. C. Li, J.-R. Wen, and H. Li. Text Classification Using Stochastic Keyword Genera-
tion. In Proc. of Intl. Conf. on Machine Learning (ICML’03), pp. 464-471, 2003.

330. G. Lidstone. Note on the General Case of the Bayes-Laplace formula for Inductive or
a Posteriori Probabilities. Transactions of the Faculty of Actuaries, 8, pp. 182–192,
1920.

331. W. Lin, S. A. Alvarez, and C. Ruiz. Efficient adaptive-support association rule min-
ing for recommender systems. Data Mining and Knowledge Discovery, 6, pp. 83-
105, 2002.

332. D. Lin. PRINCIPAR-An Efficient, Broad-Coverage, Principle-Based Parser. In Proc.
of the 15th Conf. on Computational Linguistics, pp. 482–488., 1994.

333. C.-R Lin, and M.-S. Chen: A Robust and Efficient Clustering Algorithm Based on
Cohesion Self-merging. In Proc. of the SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (KDD’02), pp. 582–587, 2002.

334. D.-I. Lin and Z. M. Kedem. Pincer-Search: A New Algorithm for Discovering the
Max Mum Frequent Set. In Proc. of the 6th Intl. Conf. Extending Database Technol-
ogy (EDBT’98), 1998.

335. L.-J. Lin. Self-Improving Reactive Agents Based on Reinforcement Learning, Plan-
ning, and Teaching. Machine Learning 8, pp. 293–321, 1992.

336. S.-H. Lin, and J.-M. Ho. Discovering Informative Content Blocks from Web Docu-
ments. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining (KDD’02), pp. 588–593, 2002

337. W. Lin, S. A. Alvarez, and C. Ruiz. Efficient Adaptive-Support Association Rule
Mining for Recommender Systems. Data Mining and Knowledge Discovery, 6, pp.
83–105, 2002.

338. G. S. Linoff, and M. J. Berry. Mining the Web: Transforming Customer Data into
Customer Value. John Wiley & Sons. 2002.

339. B. Liu, C. W. Chin, and H. T. Ng. Mining Topic-Specific Concepts and Definitions
on the Web. In Proc. of the 12th Intl. World Wide Web Conf. (WWW’03), pp. 251–
260, 2003.

340. B. Liu, Yang Dai, Xiaoli Li, Wee Sun Lee and Philip Yu. Building Text Classifiers
Using Positive and Unlabeled Examples. In Proc. of the 3rd IEEE Intl. Conf. on Data
Mining (ICDM’03), pp. 179–188, 2003.

341. B. Liu, R. Grossman, and Y. Zhai. Mining Data Records in Web Pages. In Proc. of
the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD’03),
pp. 601–606. 2003.

342. B. Liu, W. Hsu, and S. Chen. Using General Impressions to Analyze Discovered
Classification Rules. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Dis-

502 References

covery and Data Mining (KDD’97), pp. 31-36, 1997.
343. B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule Mining.

In Proc. of Knowledge Discovery and Data Mining (KDD’98), pp. 80–86, 1998.
344. B. Liu, W. Hsu, and Y. Ma. Mining Association Rules with Multiple Minimum Sup-

ports. In Proc. of Intl. Conf. Knowledge Discovery and Data Mining (KDD’99), pp.
337–341, 1999.

345. B. Liu, W. Hsu, and Y. Ma. Pruning and Summarizing the Discovered Associations.
In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
(KDD’99), pp. 125-134, 1999.

346. B. Liu, W. Hsu, L. Mun, and H. Lee. Finding Interesting Patterns Using User Expec-
tations. IEEE Transactions on Knowledge and Data Engineering, 11(6), pp.817–832,
1999.

347. B. Liu, M. Hu, and J. Cheng. Opinion Observer: Analyzing and Comparing Opinions
on the Web. In Proc. of the 14th Intl. World Wide Web Conf. (WWW’05), pp. 342–
351, 2005.

348. B. Liu, W. S. Lee, Philip S. Yu and Xiaoli Li. Partially Supervised Classification of
Text Documents. In Proc. of the Nineteenth Intl. Conf. on Machine Learning
(ICML’02), pp. 8–12, 2002.

349. B. Liu, Y. Ma, and C-K Wong, Classification Using Association Rules: Weaknesses
and Enhancements. In Vipin Kumar, et al, (eds), Data Mining for Scientific Applica-
tions, 2001.

350. B. Liu, Y. Xia, and P. S. Yu. Clustering through Decision Tree Construction. In
Proc. of the ACM Intl. Conf. on Information and Knowledge Management
(CIKM’00), pp. 20–29, 2000.

351. B. Liu and Y. Zhai. NET – A System for Extracting Web Data from Flat and Nested
Data Records. In Proc. of 6th Intl. Conf. on Web Information Systems Engineering
(WISE’05), pp. 487–495, 2005.

352. B. Liu, K. Zhao, J. Benkler and W. Xiao. Rule Interestingness Analysis Using OLAP
Operations. In Proc. of the Twelfth ACM SIGKDD Intl. Conf. on Knowledge Discov-
ery and Data Mining (KDD’06), pp. 297–306, 2006.

353. H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, 1998.

354. J. Lu and J. Callan. Content-Based Retrieval in Hybrid Peer-to-Peer Networks. In
Proc. 12th ACM Intl. Conf. on Information and Knowledge Management (CIKM’03),
pp. 199–206, 2003

355. L. Ma, N. Goharian, and A. Chowdhury. Extracting Unstructured Data from Tem-
plate Generated Web Document. In Proc. of the ACM Intl. Conf. on Information and
Knowledge Management (CIKM’03), pp. 512–515, 2003

356. J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy. Corpus-Based Schema
Matching. In Proc. of International Conference on Data Engineering (ICDE’05), pp.
57–68, 2005.

357. J. B. MacQueen. Some Methods for Classification and Analysis of Multivariate Ob-
servations. In Proc. of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, pp. 281–297, 1967.

358. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with Cupid.
In Proc 27th Int. Conf. on Very Large Data Bases (VLDB’01), pp. 49–58, 2001.

359. A. G. Maguitman, F. Menczer, H. Roinestad, and A. Vespignani. Algorithmic Detec-
tion of Semantic Similarity. In Proc. 14th Intl. World Wide Web Conf. (WWW’05),
pp. 107–116, 2005.

360. L. Manevitz and M. Yousef. One-Class SVMs for Document Classification. Journal
of Machine Learning Research, 2, pp. 139–154, 2001.

References 503

361. H. Mannila, H. Toivonen, and I. Verkamo. Efficient Algorithms for Discovering As-
sociation Rules. In Proc. of Knowledge Discovery in Databases (KDD'94), pp. 181–
19, AAAI Press 1994

362. C. Manning and H. Schutze. Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

363. B. Markines, L. Stoilova, and F. Menczer. Social Bookmarks for Collaborative
Search and Recommendation. In Proc. of the 21st National Conf. on Artificial Intel-
ligence (AAAI’06), 2006.

364. O. McBryan. Genvl and WWWW: Tools for Taming the Web. In O. Nierstrasz (Ed.).
In Proc. of the First Intl. World Wide Web Conf., Geneva. CERN, 1994.

365. A. McCallum, and K. Nigam. A Comparison of Event Models for Naïve Bayes Text
Classification. In Proc. of the AAAI–98 Workshop on Learning for Text Categoriza-
tion. 1998.

366. A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A Machine Learning Approach
to Building Domain-Specific Search Engines. In Proc. 16th Intl. Joint Conf. on Arti-
ficial Intelligence (IJCAI’99), pp. 662–667, 1999.

367. R. McCann, B. K. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan: Mapping Main-
tenance for Data Integration Systems. In Proc. of Intl. Conf. on Very Large Data
Bases (VLDB’05): pp. 1018–1030, 2005.

368. F. McSherry. A Uniform Approach to Accelerated PageRank Computation. In Proc.
of the 14th Intl. World Wide Web Conference (WWW’05), pp. 575–582, 2005.

369. F. Menczer. ARACHNID: Adaptive Retrieval Agents Choosing Heuristic Neighbor-
hoods for Information Discovery. In Proc. of the 14th Intl. Conf. on Machine Learn-
ing, pp. 227–235, 1997.

370. F. Menczer. Growing and Navigating the Small World Web by Local Content. In
Proc. Natl. Acad. Sci. USA, 99(22), pp. 14014-14019, 2002

371. F. Menczer. The Evolution of Document Networks. In Proc. Natl. Acad. Sci. USA
101, pp. 5261-5265, 2004

372. F. Menczer. Lexical and Semantic Clustering by Web Links. Journal of the American
Society for Information Science and Technology, 55(14), pp. 1261–1269, 2004.

373. F. Menczer. Mapping the Semantics of Web Text and Links. IEEE Internet Comput-
ing 9 (3), pp. 27–36, 2005.

374. F. Menczer and R. Belew. Adaptive Information Agents in Distributed Textual Envi-
ronments. In Proc. of the 2nd Intl. Conf. on Autonomous Agents, pp. 157–164, 1998.

375. F. Menczer and R. Belew. Adaptive Retrieval Agents: Internalizing Local Context
and Scaling up to the Web. Machine Learning, 39(2–3), 203–242, 2000.

376. F. Menczer, G. Pant, M. Ruiz, and P. Srinivasan. Evaluating Topic Driven Web
Crawlers. In Proc. 24th Annual Intl. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval, pp. 241–249, 2001.

377. F. Menczer, G. Pant, and P. Srinivasan. Topical Web Crawlers: Evaluating Adaptive
Algorithms. ACM Transactions on Internet Technology 4(4), pp. 378–419, 2004.

378. W. Meng, C. Yu, and K.-L. Liu. Building Efficient and Effective Metasearch En-
gines. ACM Computing Surveys, 34(1), pp. 48–84, 2002.

379. D. Meretakis, and B. Wüthrich. Extending Naïve Bayes Classifiers Using Long Item-
sets. In Proc. of the Fifth ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’99), pp. 165–174, 1999.

380. A. Micarelli and F. Gasparetti (in press). Adaptive Focused Crawling. In P. Brusi-
lovsky, W. Nejdl, and A. Kobsa (eds.), Adaptive Web. Springer.

381. R. S. Michalski, I. Mozetic, J. Hong and N. Lavrac. The Multi-Purpose Incremental
Learning System AQ15 and its Testing Application to Three Medical Domains. In
Proc. of the National Conf. on Artificial Intelligence (AAAI’86), pp. 1041–1047,

504 References

1986.
382. T. Milo, S. Zohar. Using schema matching to simplify heterogeneous data transla-

tion. In: Proc. of Intl Conf on Very Large Data Bases (VLDB’98), pp. 122–133, 1998.
383. B. Mirkin. Clustering for Data Mining: A Data Recovery Approach. Chapman &

Hall/CRC, April 29, 2005.
384. N. Misha, D. Ron, and R. Swaminathan. A New Conceptual Clustering Framework.

Machine Learning, 56(1–3): pp. 115–151, 2004.
385. T. Mitchell. Machine Learning. McGraw Hill, 1997.
386. B. Mobasher. Web Usage Mining and Personalization. In Munindar P. Singh (ed.),

Practical Handbook of Internet Computing. CRC Press, 2005.
387. B. Mobasher. Web Usage Mining. In John Wang (eds.), Encyclopedia of Data Ware-

housing and Mining, Idea Group, 2006.
388. B. Mobasher, R. Cooley and J. Srivastava. Automatic Personalization based on Web

Usage Mining. Communications of the ACM, 43(8), pp. 142–151, 2000.
389. B. Mobasher, H. Dai, T. Luo, and N. Nakagawa. Effective Personalization Based on

Association Rule Discovery from Web Usage Data. In Proc. of the 3rd ACM Work-
shop on Web Information and Data Management (WIDM01), pp. 9–15, 2001.

390. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Discovery and Evaluation of Ag-
gregate Usage Profiles for Web Personalization. Data Mining and Knowledge Dis-
covery, 6, pp. 61–82, 2002.

391. B. Mobasher and R. Burke and J. J Sandvig. Model-Based Collaborative Filtering as
a Defense against Profile Injection Attacks. In Proc. of the 21st National Conf. on Ar-
tificial Intelligence (AAAI'06), 2006.

392. A. Moffat, R. Neal, and I. Witten. Arithmetic Coding Revisited. ACM Transactions
on Information Systems, pp. 256–294, 1998.

393. F. Moltmann, Coordination and Comparatives. Ph.D. dissertation. MIT, Cambridge
Ma., 1987.

394. M. Montague, and J. Aslam. Condorcet Fusion for Improved Retrieval. In Proc. of
the Intl. Conf. on Information and Knowledge Management (CIKM’02), pp. 538–548,
2002.

395. R. J. Mooney and R. Bunescu. Mining Knowledge from Text Using Information Ex-
traction. SIGKDD Explorations, pp. 3–10. 2005.

396. A. Moore. Very Fast EM-based Mixture Model Clustering Using Multiresolution Kd-
Trees. In Proc. of the Neural Info. Processing Systems (NIPS’98), pp. 543–549, 1998.

397. S. Morinaga, K. Yamanishi, K. Tateishi, and T. Fukushima. Mining Product Reputa-
tions on the Web. In Proc. of the SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’02), pp. 341–349, 2002.

398. S. Muggleton. Learning from the Positive Data. Inductive Logic Programming Work-
shop, pp. 358–376, 1996.

399. I. Muslea, S. Minton, and C. A. Knoblock. A Hierarchical Approach to Wrapper In-
duction. In Proc. of the Intl. Conf. on Autonomous Agents (AGENTS’99), pp. 190–
197, 1999.

400. I. Muslea, S. Minton, and C. A. Knoblock. Active Learning with Multiple Views.
Journal of Artificial Intelligence Research, 1, pp. 1–31, 2006.

401. M. Najork and J. L. Wiener. Breadth-First Search Crawling Yields High Quality
Pages. In Proc. of the 10th Intl. World Wide Web Conf. (WWW’01), pp. 114–118,
2001.

402. T. Nasukawa and J. Yi. Sentiment Analysis: Capturing Favorability Using Natural
Language Processing. In Proc. of the K-CAP-03, 2nd Intl. Conf. on Knowledge Cap-
ture, pp. 70–77, 2003.

403. T. Nelson. A File Structure for the Complex, the Changing and the Indeterminate. In

References 505

Proc. of the ACM National Conf., pp. 84–100, 1965.
404. A. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm.

In Proc. of the 14th Advances in Neural Information Processing Systems, pp. 849–
856, 2001.

405. A. Ng, A. X. Zheng, and M. I. Jordan. Stable Algorithms for Link Analysis. In Proc.
of the 24th Annual ACM SIGIR Intl. Conf on Research and Development on Informa-
tion Retrieval (SIGIR’01), 2001.

406. R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data
Mining. In Proc. of Conf. on Very Large Data Bases (VLDB’94), pp. 144–155, 1994.

407. R. T. Ng, J. Han. CLARANS: A Method for Clustering Objects for Spatial Data Min-
ing. IEEE Transactions Knowledge Data Engineering 14(5), pp. 1003-1016, 2002.

408. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory Mining and Prun-
ing Optimizations of Constrained Association Rules. In Proc. of ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD’98), pp. 13–24, 1998.

409. V. Ng, S. Dasgupta and S. M. Niaz Arifin. Examining the Role of Linguistic Knowl-
edge Sources in the Automatic Identification and Classification of Reviews. In. Proc.
of the COLING/ACL 2006 Main Conference Poster Sessions, pp. 611–618, 2006.

410. Z. Nie, Y. Zhang, J-R. Wen, and W-Y Ma. Object Level Ranking: Bringing Order to
Web Objects. In Proc. of the 14th Intl. World Wide Web Conference (WWW’05), pp.
567–574, 2005

411. K. Nigam and R. Ghani. Analyzing the Effectiveness and Applicability of Co-
training. In Proc. of the ACM Intl. Conf. on Information and Knowledge Management
(CIKM’00), pp. 86–93, 2000.

412. K. Nigam and M. Hurst. Towards a Robust Metric of Opinion. AAAI Spring Symp. on
Exploring Attitude and Affect in Text, 2004.

413. K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text Classification from La-
beled and Unlabeled Documents Using EM. Machine Learning, 39(2/3), pp. 103–
134, 2000.

414. Z. Niu, D. Ji, and C. L. Tan. Word Sense Disambiguation Using Label Propagation
Based Semi-Supervised Learning. In Proc. of the Meeting of the Association for
Computational Linguistics (ACL’05), 2005.

415. C. Notredame. Recent Progresses in Multiple Sequence Alignment: a Survey. Tech-
nical report, Information Génétique et, 2002.

416. A. Ntoulas, J. Cho, and C. Olston. What's New on the Web? The Evolution of the
Web from a Search Engine Perspective. In Proc. of the 13th Intl. World Wide Web
Conference (WWW’04), pp. 1–12, 2004.

417. A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting Spam Web Pages
through Content Analysis. In Proc. of the 15th Intl. World Wide Web Conference
(WWW’06), pp. 83–92, 2006.

418. R. Nuray, and F. Can. Automatic Ranking of Information Retrieval Systems Using
Data Fusion. Information Processing and Management, 4(3), pp. 595–614, 2006.

419. M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. Collaborative Recom-
mendation: A Robustness Analysis. ACM Transactions on Internet Technology
4(4):344–377, 2004.

420. B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association Rules. In Proc.
1998 Int. Conf. Data Engineering (ICDE’98), pp. 412–421, 1998.

421. B. Padmanabhan, and A. Tuzhilin. Small is Beautiful: Discovering the Minimal Set
of Unexpected Patterns. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Dis-
covery and Data Mining (KDD’00), pp. 54-63, 2000.

422. L. Page, S. Brin, R. Motwami, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999–0120, Computer Science De-

506 References

partment, Stanford University, 1999.
423. G. Paliouras, C. Papatheodorou, V. Karkaletsis, and C. D. Spyropoulos. Discovering

User Communities on the Internet Using Unsupervised Machine Learning Tech-
niques. Interacting with Computers Journal, 14(6), pp. 761–791, 2002.

424. L. Palopoli, D. Sacca, and D. Ursino. An Automatic Technique for Detecting Type
Conflicts in Database Schemas. In: Proc of ACM Intl. Conf on Information and
Knowledge Management (CIKM’98), pp. 306–313, 1998.

425. S. Pandey, S. Roy, C. Olston, J. Cho and S. Chakrabarti, Shuffling a Stacked Deck:
The Case for Partially Randomized Ranking of Search Engine Results. In Proc. of
Very Large Data Bases (VLDB’05), pp. 781–792, 2005.

426. B. Pang and L. Lee. A Sentimental Education: Sentiment Analysis Using Subjectivity
Summarization based on Minimum Cuts. In Proc. of the 42nd Meeting of the Asso-
ciation for Computational Linguistics (ACL’04), pp. 271—278, 2004.

427. B. Pang and L. Lee, Seeing Stars: Exploiting Class Relationships for Sentiment
Categorization with Respect to Rating Scales. In Proc. of the Meeting of the Associa-
tion for Computational Linguistics (ACL’05), pp. 115–124, 2005.

428. B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment Classification Using
Machine Learning Techniques. In Proc. of the EMNLP’02, 2002.

429. G. Pant. Deriving Link-Context from Html Tag Tree. In Proc. of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(DMKD’03), pp. 49–55, 2003.

430. G. Pant, S. Bradshaw, and F. Menczer. Search Engine – Crawler Symbiosis. In Proc.
of the 7th European Conf. on Research and Advanced Technology for Digital Librar-
ies (ECDL’03), 2003.

431. G. Pant and F. Menczer. MySpiders: Evolve your Own Intelligent Web Crawlers.
Autonomous Agents and Multi-Agent Systems, 5(2), pp. 221–229, 2002.

432. G. Pant and F. Menczer. Topical Crawling for Business Intelligence. In Proc. of the
7th European Conf. on Research and Advanced Technology for Digital Libraries
(ECDL’03), pp. 233–244, 2003.

433. G. Pant, and P. Srinivasan. Learning to Crawl: Comparing Classification Schemes.
ACM Trans. Information Systems, 23(4), pp. 430–462, 2005.

434. G. Pant, P. Srinivasan, and F. Menczer. Exploration versus Exploitation in Topic
Driven Crawlers. In Proc. of the WWW-02 Workshop on Web Dynamics, 2002.

435. J. S. Park, M.-S. Chen, and P. S. Yu: An Effective Hash Based Algorithm for Mining
Association Rules. In Proc. of the 1995 ACM SIGMOD Intl. Conf. on Management of
Data (SIGMOD’95), pp. 175–186, 1995.

436. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering Frequent Closed
Itemsets for Association Rules. In Proc. of the 7th Intl. Conf. on Database Theory,
pp. 398–416, 1999.

437. R. Pastor-Satorras and A. Vespignani. Evolution and Structure of the Internet. Cam-
bridge University Press, 2004.

438. M. J. Pazzani, C. Brunk, and G. Silverstein. A Knowledge-Intensive Approach to
Learning Relational Concepts. In Proc. of the Eighth Intl. Workshop on Machine
Learning (ML’91), pp. 432–436, 1991.

439. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. Prefix-
Span: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In
Proc. of the 2001 Int. Conf. Data Engineering (ICDE'01), pp. 215–224, 2001.

440. M. Pennock, G. W. Flakes, S. Lawrence, C.L Giles, and E. J Gloves. Winners Don’t
Take All: Characterizing the Competition for Links on the Web. In Proc. of National
Academy of Science, 99(8), pp. 5207–5211, 2002.

441. P. Perner. Data Mining on Multimedia Data. Springer, 2003.

References 507

442. T. P. Pham, H. T. Ng, and W. S. Lee. Word Sense Disambiguation with Semi-
Supervised Learning. In Proc. of the National Conference on Artificial Intelligence
(AAAI’05). pp. 1093–1098, 2005.

443. G. Piatetsky-Shapiro, and B. Masand. Estimating Campaign Benefits and Modeling
Lift. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining (KDD’99), pp. 185-193, 1999.

444. G. Piatesky-Shapiro, and C. Matheus. The Interestingness of Deviations. In Proc. of
Knowledge Discovery and Data Mining (KDD’94), 1994.

445. G. Pierrakos, G. Paliouras, C. Papatheodorou, and C. Spyropoulos. Web Usage Min-
ing as a Tool for Personalization: a Survey. User Modeling and User-Adapted Inter-
action, 13, pp. 311–372, 2003.

446. J. Pitkow and P. Pirolli. Mining Longest Repeating Subsequences to Predict WWW
Surfing. In Proceedings of the 2nd USENIX Symposium on Internet Technologies and
Systems, 1999.

447. A.-M. Popescu, and O. Etzioni. Extracting Product Features and Opinions from Re-
views. In Proc. of Conference on Empirical Methods in Natural Language Process-
ing (EMNLP’05), 2005.

448. J. Ponte, and W. B. Croft. A Language Modeling Approach to Information Retrieval.
In Proc. of the Annual Intl. ACM SIGIR Conf. on Research and Development in In-
formation Retrieval (SIGIR’98), pp. 275-281, 1998.

449. M. F. Porter. An Algorithm for Suffix Stripping. Program, 14(3), pp 130−137, 1980.
450. D. Pyle. Business Modeling and Data Mining. Morgan Kaufmann, 2003.
451. F. Qiu and J. Cho. Automatic Identification of User Interest for Personalized Search.

In Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.
452. J. R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, 5, pp.

239–266, 1990.
453. J. R. Quinlan. C4.5: Program for Machine Learning. Morgan Kaufmann, 1992.
454. J. R. Quinlan. Bagging, Boosting, and C4.5. In Proc. of National Conf. on Artificial

Intelligence (AAAI-96), pp. 725-730, 1996.
455. E. Rahm, and P. A. Bernstein. A Survey of Approaches to Automatic Schema Match-

ing. VLDB Journal, 10, pp. 334–35, 2001.
456. L. Ramaswamy, A. Lyengar, L. Liu, and F. Douglis. Automatic Detection of Frag-

ments in Dynamically Generated Web Pages. In Proc. of the 13th Intl. World Wide
Web Conference (WWW’04), pp. 443–454, 2004

457. J. Raposo, A. Pan, M. Alvarez, J. Hidalgo, and A. Vina. The Wargo System: Semi-
Automatic Wrapper Generation in Presence of Complex Data Access Modes. In
Proc. of the 13th Intl. Work-shop on Database and Expert Systems Applications, pp.
313–320, 2002.

458. D. de Castro Reis, P. B. Golgher, A. S. da Silva, and A. H. F. Laender. Automatic
Web News Extraction Using Tree Edit Distance. In Proc. of the 13th Intl. World
Wide Web Conference (WWW’04), pp. 502–511, 2004

459. J. Rennie and A. McCallum. Using Reinforcement Learning to Spider the Web Effi-
ciently. In Proc. of the 16th Intl. Conf. on Machine Learning (ICML’99), pp. 335–
343, 1999.

460. M. Richardson, A. Prakash, and E. Brill. Beyond PageRank: Machine Learning for
Static Ranking. In Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

461. C. van Rijsbergen. Information Retrieval, Chapter 3, London: Butterworths. Second
edition, 1979.

462. E. Riloff and J. Wiebe. Learning Extraction Patterns for Subjective Expressions. In
Proc. of Conference on Empirical Methods in Natural Language Processing
(EMNLP’03), 2003.

508 References

463. R. L. Rivest. Learning Decision Lists. Machine Learning, 2(3), pp. 229–246, 1987.
464. S. E. Robertson and K. Sparck-Jones. Relevance Weighting of Search Terms. Jour-

nal of the American Society for Information Science, 27, pp. 129–146, 1976.
465. S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC–7: Automatic Ad Hoc,

Filtering, VLC and Filtering Tracks. In Proc. of the Seventh Text REtrieval Confer-
ence (TREC-7), pp. 253–264, 1999.

466. J. Rocchio. Relevant Feedback in Information Retrieval. In G. Salton (eds.). The
Smart Retrieval System – Experiments in Automatic Document Processing, Engle-
wood Cliffs, NJ, 1971

467. R. Roiger and M. Geatz. Data Mining: A Tutorial Based Primer. Addison-Wesley,
2002.

468. O. Parr Rud. Data Mining Cookbook. John Wiley & Sons, 2003.
469. D. Rumelhart, G. Hinton, and R. Williams. Learning Internal Representations by Er-

ror Propagation. In D. Rumelhart and J. McClelland (eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1, Chapter 8,
pp. 318–362, 1996.

470. G. Salton and C. Buckley. Term-Weighting Approaches in Automatic Retrieval. In-
formation Processing and Management, 24(5), pp. 513–525, 1988.

471. G. Salton and M. McGill. An Introduction to Modern Information Retrieval. New
York, NY: McGraw-Hill, 1983.

472. B. Santorini. Part-of-Speech Tagging Guidelines for the Penn Treebank Project.
Technical Report MS-CIS-90-47, Department of Computer and Information Science,
University of Pennsylvania, 1990.

473. R. R. Sarukkai. Link Prediction and Path Analysis Using Markov Chains. In Proc. of
the 9th Intl. World Wide Web Conf. (WWW’00), pp. 377–386. 2000.

474. B. Sarwar, G. Karypis, J. Konstan and J. Riedl. Application of Dimensionality Re-
duction in Recommender Systems – A Case Study. In Proc. of the KDD Workshop
on WebKDD’2000, 2000.

475. B. Sarwar, G. Karypis, J. Konstan and J. Riedl. Item-Based Collaborative Filtering
Recommendation Algorithms. In Proc. of the 10th Intl. World Wide Web Conference
(WWW’01), pp. 285–295, 2001.

476. A. Savasere, E. Omiecinski, and S. B. Navathe. Mining for Strong Negative Associa-
tions in a Large Database of Customer Transactions. In Proc. of the Fourteenth Intl.
Conf. on Data Engineering (ICDE’98), pp. 494–502, 1998.

477. R. E. Schapire. The Strength of Weak Learnability. Machine Learning, 5(2), pp. 197–
227, 1990.

478. S. Scholkopf, J. Platt, J. Shawe, A. Smola, and R. Williamson. Estimating the Sup-
port of a High-Dimensional Distribution. Technical Report MSR-TR-99-87, Micro-
soft Research, pp. 1443–1471, 1999.

479. B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, 2002.
480. A. Scime (eds.). Web Mining: Applications and Techniques. Idea Group Inc., 2005.
481. G. L. Scott and H. C. Longuet-Higgins. Feature Grouping by Relocalisation of Ei-

genvectors of the Proximity Matrix. In Proc. British Machine Vision Conf., pp. 103–
108, 1990.

482. M. Seno, and G. Karypis. Finding Frequent Patterns Using Length-Decreasing Sup-
port Constraints. Data Mining and Knowledge Discovery, 10(3), pp 197–228, 2005.

483. J. G. Shanahan, Y. Qu, and J. Wiebe, (eds.). Computing Attitude and Affect in Text:
Theory and Applications. Springer. 2005.

484. E. Shannon. A Mathematical Theory of Communication. In Bell System Technical
Journal, 27: pp. 379–423, 1948.

485. G. Sheikholeslami, S. Chatterjee and A. Zhang. WaveCluster: a Multi-resolution

References 509

Clustering Approach for Very Large Spatial Databases. In Proc. of Very Large Data
Bases (VLDB’98), pp. 428–439, 1998.

486. D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. A Comparison of Implicit and Explicit
Links for Web Page Classification. In Proc. of the 15th Intl. Conf. on World Wide
Web (WWW'06), 2006.

487. X. Shen, B. Tan, and C. Zhai. Context-Sensitive Information Retrieval with Implicit
Feedback. In Proc. of the Annual Intl. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval (SIGIR'05), pp. 43-50, 2005.

488. A. Sheth and J. Larson. Federated Database Systems for Managing Distributed, Het-
erogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3):183–236,
1990.

489. J. Shi and J. Malik. Normalized Cuts and Image Segmentation. In Proc. of the IEEE
Conf. Computer Vision and Pattern Recognition, pp. 731–737, 1997.

490. X. Shi and C. C. Yang, Mining Related Queries from Search Engines Query Logs. In
Proc. of the Intl. World Wide Web Conf. (WWW’06), pp. 943-944, 2006.

491. P. Shvaiko, and J. Euzenat. A Survey of Schema-Based Matching Approaches. Jour-
nal on Data Semantics, IV, LNCS 3730, pp. 146–171, 2005.

492. A. Silberschatz, and A. Tuzhilin. What Makes Patterns Interesting in Knowledge
Discovery Systems. IEEE Transactions on Knowledge and Data Engineering, 8(6),
pp. 970–974, 1996.

493. A. Singhal. Modern Information Retrieval: A Brief Overview. IEEE Data Engineer-
ing Bulletin 24(4), pp. 35-43, 2001.

494. H. Small. Co-Citation in the Scientific Literature: a New Measure of the Relationship
between Two Documents. Journal of American Society for Information Science,
24(4), pp. 265–269, 1973.

495. R. Song, H. Liu, J. R. Wen, and W. Y. Ma. Learning Block Importance Models for
Web Pages. In Proc. of the 13th Conf. on World Wide Web (WWW’04), pp. 203–211,
2004.

496. M. Spiliopoulou. Web Usage Mining for Web Site Evaluation. Communications of
ACM, 43(8), pp. 127–134, 2000.

497. M. Spiliopoulou, and L. Faulstich. WUM: A Tool for Web Utilization Analysis. In
Proc. of EDBT Workshop at WebDB’98, pp. 184–203, 1999.

498. M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa. A Framework for the
Evaluation of Session Reconstruction Heuristics in Web Usage Analysis. INFORMS
Journal of Computing, 15(2), pp. 171–190, 2003.

499. R. Srikant and R. Agrawal. Mining Generalized Association Rules. In Proc. of the
21st Int'l Conf. on Very Large Data Bases (VLDB’95), pp. 407–419, 1995.

500. R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In Proc. of the 5th Intl. Conf. Extending Database Technol-
ogy (EDBT’96), pp. 3–17, 1996.

501. R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Rela-
tional Tables. In Proc. of the ACM SIGMOD Conf. on Management of Data
(SIGMOD’96), 1996.

502. R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item Constraints.
In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data Mining (KDD’97),
pp. 67–73, 1997.

503. P. Srinivasan, J. Mitchell, O. Bodenreider, G. Pant, and F. Menczer. Web Crawling
Agents for Retrieving Biomedical Information. In Proc. of the Intl. Workshop on
Agents in Bioinformatics (NETTAB’02), 2002.

504. P. Srinivasan, G. Pant, and F. Menczer. A General Evaluation Framework for Topical
Crawlers. Information Retrieval 8 (3), pp. 417–447, 2005.

510 References

505. J. Srivastava, R. Cooley, M. Deshpande, and P. Tan. Web Usage Mining: Discovery
and Applications of Usage Patterns from Web Data. SIGKDD Explorations, 1(2), pp.
12–23, 2000.

506. M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clustering
Techniques. In Proc. of the KDD Workshop on Text Mining, 2000.

507. V. Stoyanov and C. Cardie. Toward Opinion Summarization: Linking the Sources. In
Proc. of the Workshop on Sentiment and Subjectivity in Text, pp. 9–14, 2006.

508. J-T. Sun, X. Wang, D. Shen, H-J. Zeng, and Z. Chen. CWS: A Comparative Web
Search System. In Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

509. K.-C. Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 26(3), pp.
422–433, 1979.

510. P. -N. Tan and V. Kumar. Discovery of Web Robot Sessions Based on their Naviga-
tional Patterns. Data Mining and Knowledge Discovery, 6(1), pp. 9–35, 2002.

511. P. -N. Tan, V. Kumar and J. Srivastava. Selecting the Right Interestingness Measure
for Association Patterns. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining (KDD’02), pp. 32-41, 2002.

512. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley, 2006.

513. D. Tanasa and B. Trousse. Advanced Data Preprocessing for Intersite Web Usage
Mining. IEEE Intelligent Systems, 19(2), pp. 59–65, 2004.

514. Z.-H. Tang, and J. MacLennan. Data Mining with SQL Server 2005. Wiley publish-
ing, Inc. 2005.

515. B M. Thuraisingham. Web Data Mining and Applications in Business Intelligence
and Counter-Terrorism, CRC Press, 2003.

516. J. Tomlin. A New Paradigm for Ranking Pages on the World Wide Web. In Proc. of
the 12th Intl. World Wide Web Conference (WWW’02), pp. 350–355, 2003.

517. R. Tong. An Operational System for Detecting and Tracking Opinions in On-Line
Discussion. In Proc. of SIGIR Workshop on Operational Text Classification, 2001.

518. M. Toyoda and M. Kitsuregawa. Creating a Web Community Chart for Navigating
Related Communities. In Proc. of the Twelfth ACM Conf. on Hypertext and Hyper-
media, pp. 103–112, 2001.

519. M. Toyoda and M. Kitsuregawa. Extracting Evolution of Web Communities from a
Series of Web Archives. In Proc. of the fourteenth ACM Conf. on Hypertext and Hy-
permedia, pp. 28–37, 2003.

520. M. Toyoda, and M. Kitsuregawa. What's Really New on the Web?: Identifying New
Pages from a Series of Unstable Web Snapshots. In Proc. of the 15th Intl. Conf. on
World Wide Web (WWW'06), 2006.

521. P. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsu-
pervised Classification of Reviews. In Proc. of the Meeting of the Association for
Computational Linguistics (ACL’02), pp. 417–424, 2002

522. A. Tuzhilin, and G. Adomavicius. Handling very Large Numbers of Association
Rules in the Analysis of Microarray Data. In Proc. of ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining (KDD’02), pp. 396–404, 2002.

523. J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Email as Spectroscopy: Auto-
mated Discovery of Community Structure within Organizations. Communities and
Technologies, pp. 81–96. 2003.

524. A. Valitutti, C. Strapparava, and O. Stock. Developing Affective Lexical Resources.
Psychnology Journal, 2(1): pp. 61–83, 2004.

525. V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
526. V. Vapnik. Statistical Learning Theory. John Wiley, 1998.
527. H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and

References 511

S. Huebner. Ontology-Based Integration of Information – a Survey of Existing Ap-
proaches. In Proc. of the IJCAI Workshop on Ontologies and Information Sharing,
pp. 108–117, 2001.

527. K. Wagstaff and C. Cardie. Clustering with Instance-Level Constraints. In Proc. of
the 17th Intl. Conf. on Machine Learning, pp. 1103–1110, 2000.

528. J. Wang, J. Han, and J. Pei. Closet+: Searching for the Best Strategies for Mining
Frequent Closed Itemsets. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining (KDD'03), pp. 236–245, 2003.

529. J. Wang and F. H. Lochovsky. Data Extraction and Label Assignment for Web Data-
bases. In Proc. of the 12th Intl. World Wide Web Conference (WWW’03), pp. 187–
196, 2003.

530. J. Wang, J-R. Wen, F. H. Lochovsky, and W-Y. Ma. Instance-Based Schema Match-
ing for Web Databases by Domain-specific Query Probing. In Proc. of the Intl. Conf.
on Very Large Data Bases (VLDB’04), pp. 408–419, 2004.

531. J. T.-L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and K. M. Currey. An algorithm
for finding the largest approximately common substructures of two trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), pp. 889.895,
1998.

532. J. Wang, M. Zaki, H. Toivonen, and D. Shasha. (eds.). Data Mining in Bioinformat-
ics. Springer, 2004.

533. K. Wang, Yu He, and J. Han. Mining Frequent Itemsets Using Support Constraints.
In Proc. of 26th Intl. Conf. on Very Large Data Bases (VLDB’00), pp 43–52, 2000.

534. K. Wang, Y. Jiang, and L. V.S. Lakshmanan. Mining Unexpected Rules by Pushing
User Dynamics. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (KDD’03), pp. 246-255, 2003.

535. K. Wang, S. Zhou, and Y. He. Growing Decision Trees on Support-Less Association
Rules. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge discovery and data
mining (KDD’00), pp 265–269, 2000.

536. K. Wang, C. Xu, and B. Liu. 1999. Clustering Transactions Using Large Items. In
Proc. of the Eighth Intl. Conf. on information and Knowledge Management
(CIKM'99). 1999, pp. 483–490.

537. W. Wang, J. Yang and R. Muntz. STING: A Statistical Information Grid Approach to
Spatial Data Mining. In Proc. of Intl. Conf. on Very Large Data Bases (VLDB’97),
pp. 186–195, 1997.

538. W. Wang, J. Yang, and P. S. Yu. WAR: Weighted Association Rules for Item Inten-
sities. Knowledge and Information Systems, 6(2), pp. 203–229, 2004.

539. S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press,
1994.

540. I. G. Webb. Discovering Associations with Numeric Variables. In Proc. of the
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD’01): pp. 383–
388, 2001.

541. Y. Weiss. Segmentation Using Eigenvectors: a Unifying View. In Proc. IEEE Intl.
Conf. on Computer Vision, pp. 975–982, 1999.

542. J. Wiebe. Learning Subjective Adjectives from Corpora. In Proc. of 17th National
Conf. on Artificial Intelligence, pp. 735–740, Austin, USA, 2000.

543. J. Wiebe, and R. Mihalcea. Word Sense and Subjectivity. In Proc. of the 21st Intl.
Conf. on Computational Linguistics and 44th Annual Meeting of the ACL, pp. 1065–
1072, 2006.

544. J. Wiebe, and E. Riloff: Creating Subjective and Objective Sentence Classifiers from
Unannotated Texts. In Proc. of CICLing, pp. 486–497, 2005.

545. T. Wilson, J. Wiebe and R. Hwa. Recognizing Strong and Weak Opinion Clauses.

512 References

Computational Intelligence, 22(2), pp. 73-99, 2006.
547. H. Williams and J. Zobel. Compressing Integers for Fast File Access. Computer

Journal, 42(3), pp. 193—201, 1999.
548. T. Wilson, J. Wiebe, and J. Hwa. Just How Mad Are You? Finding Strong and Weak

Opinion Clauses. In Proc. of the National Conference on Artificial Intelligence
(AAAI’04), 2004.

549. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Academic Press, 2000.

550. I. H. Witten, C. G. Nevill-Manning, and S. J. Cunningham. Building a Digital Li-
brary for Computer Science Research: Technical Issues. In Proc. of the 19th Austral-
asian Computer Science Conf., pp. 534–542, 1996.

551. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and In-
dexing Documents and Images. Academic Press, 1999.

552. D. Wolpert. Stacked Generalization. Neural Networks 5, pp. 241–259, 1992.
553. L.-S. Wu, R. Akavipat, and F. Menczer. 6S: Distributing Crawling and Searching

Across Web Peers. In Proc. of the IASTED Int. Conf. on Web Technologies, Applica-
tions, and Services, 2005.

554. L.-S. Wu, R. Akavipat, and F. Menczer. Adaptive Query Routing in Peer Web
Search. In Proc. of the 14th Intl. World Wide Web Conf. (WWW’05), pp. 1074–1075,
2005.

555. B. Wu and B. Davison. Identifying Link Farm Spam Pages. In Proc. of the 14th Intl.
World Wide Web Conf. (WWW’05), pp. 820–829, May 2005.

556. B. Wu and B. Davison. Cloaking and Redirection: a Preliminary Study. In Proc. of
the 1st Intl. Workshop on Adversarial Information Retrieval on the Web, 2005.

557. B. Wu, V. Goel, and B. D. Davison. Topical TrustRank: Using Topicality to Combat
Web Spam. In Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

558. W. Wu, A. Doan, and C. Yu. WebIQ: Learning from the Web to Match Query Inter-
faces on the Deep Web. In Proc. of International Conference on Data Engineering
(ICDE’06), 2006.

559. W. Wu, C. Yu, A. Doan, and W. Meng. An Interactive Clustering-Based Approach to
Integrating Source Query Interfaces on the Deep Web. In Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD’04), pp. 95–106, 2004.

560. X. Wu, C. Zhang and S. Zhang. Mining both Positive and Negative Association
Rules. In Proc. of 19th Intl. Conf. on Machine Learning, pp. 658–665, 2002.

561. X. Wu, L. Zhang, and Y. Yu. Exploring Social Annotations for the Semantic Web. In
Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

562. H. Xiong, P.-N. Tan, and V. Kumar. Mining Strong Affinity Association Patterns in
Data Sets with Skewed Support Distribution. In Proc. of the 3rd IEEE Intl. Conf. on
Data Mining (ICDM’03), pp. 387-394, 2003.

563. L. Xu and D. Embley. Discovering Direct and Indirect Matches for Schema Ele-
ments. In Proc. of Intl. Conf. on Database Systems for Advanced Applications
(DASFAA’03), 2003.

564. X. Xu, M. Ester, H-P. Kriegel and J. Sander. A Non-Parametric Clustering Algorithm
for Knowledge Discovery in Large Spatial Databases. In Proc. of the Intl. Conf. on
Data Engineering (ICDE’98), 1998.

565. X. Yan, H. Cheng, J. Han, and D. Xin: Summarizing Itemset Patterns: a Profile-
Based Approach. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (KDD’05), pp. 314-323, 2005.

566. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-Driven Understanding and Re-
finement of Schema Mappings. In Proc ACM SIGMOD Intl. Conf. on Management of
Data, pp. 485–496, 2001.

References 513

567. C. C. Yang and K. Y. Chan. Retrieving Multimedia Web Objects Based on Page
Rank Algorithm. WWW’05 Poster, 2005.

568. B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks. In Proc.
of the 22nd Intl. Conf. on Distributed Computing Systems (ICDCS’02), pp. 5–14.
IEEE Computer Society, 2002.

569. B. Yang, and G. Jeh. Retroactive Answering of Search Queries. In Proc. of the 15th
Intl. Conf. on World Wide Web (WWW'06), 2006.

570. Q. Yang, T. Y. Li, and K. Wang. Building Association-Rule Based Sequential Classi-
fiers for Web-Document Prediction. Data Mining Knowledge Discovery 8(3), pp.
253-273, 2004.

571. J. Yang, W. Wang, and P. Yu. Mining Surprising Periodic Patterns. Data Mining and
Knowledge Discovery, 9(2), pp. 189–216, 2004.

572. W. Yang. Identifying Syntactic Differences between Two Programs. Software Prac-
tice Experiment, 21(7), pp. 739–755, 1991.

573. Y. Yang. An Evaluation of Statistical Approaches to Text Categorization. Journal of
Information Retrieval, 1, pp. 67–88, 1999.

574. Y. Yang, and X. Liu. A Re-Examination of Text Categorization Methods. In Proc. of
the ACM SIGIR Intl. Conf. Research and Development in Information Retrieval
(SIGIR’99), pp. 42–49, 1999.

575. Y. Yang and J. P. Pedersen. A Comparative Study on Feature Selection in Text Cate-
gorization. In Proc. of the Intl. Conf. on Machine Learning (ICML’97), pp. 412–420,
1997.

576. L. Yi, B. Liu, and X. L. Li. Eliminating Noisy Information in Web Pages for Data
Mining. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining), pp. 296–305, 2003.

577. J. Yi, T. Nasukawa, R. C. Bunescu, and W. Niblack. Sentiment Analyzer: Extracting
Sentiments about a Given Topic Using Natural Language Processing Techniques. In
Proc. of the IEEE Conf. on Data Mining (ICDM’03), pp. 427–434, 2003.

578. X. Yin, and J. Han. CPAR: Classification based on Predictive Association Rules. In
Proc. of the SIAM Intl. Conf. on Data Mining (SDM’03), 2003.

579. X. Yin and W. S. Lee. Using Link Analysis to Improve Layout on Mobile Devices.
In Proc. of the 13th Intl. Conf. on World Wide Web (WWW’04), pp. 338–344, 2004.

580. A. Ypma and T. Heskes. Categorization of Web Pages and User Clustering with Mix-
tures of Hidden Markov Models. In Proc. of the Workshop on WebKDD-2002, pp.
35–49, 2002.

581. C. Yu and W. Meng. Principles of Database Query Processing for Advanced Appli-
cations. Morgan Kaufmann, 1998.

582. H. Yu. General MC: Estimating Boundary of Positive Class from Small Positive
Data. In Proc. of the Intl. Conf. on Data Mining (ICDM’03), pp. 693–696, 2003.

583. H. Yu, J. Han and K. Chang. PEBL: Positive Example Based Learning for Web Page
Classification Using SVM. In Proc. of the Knowledge Discovery and Data Mining
(KDD’02), pp. 239–248., 2002.

584. H. Yu, and V. Hatzivassiloglou. Towards Answering Opinion Questions: Separating
Facts from Opinions and Identifying the Polarity of Opinion Sentences. In Proc. of
Intl. Conf. on Empirical Methods for Natural Language Processing (EMNLP’03),
2003.

585. P. S. Yu, X. Li, and B. Liu. Adding the Temporal Dimension to Search – A Case
Study in Publication Search. In Proc. of Web Intelligence (WI’05), pp. 543–549,
2005.

586. M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning, 40, pp. 31-60, 2001.

514 References

587. M. J. Zaki, and C. C. Aggarwal. XRules: an Effective Structural Classifier for XML
Data. In Proc. of the Ninth ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’03), pp. 316–325, 2003.

588. M. J. Zaki and C. Hsiao. Charm: An Efficient Algorithm for Closed Association Rule
Mining. In Proc. of SIAM Conf. on Data Mining, 2002.

589. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Dis-
covery of Association Rules. In Proc. of the 3rd International Conference on Knowl-
edge Discovery and Data Mining (KDD’97), pp 283–286, 1997.

590. M. Zaki, M. Peters, I. Assent, and T. Seidl. CLICKS: an Effective Algorithm for
Mining Subspace Clusters in Categorical Datasets. In Proc. of the SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining (KDD’05), pp. 736–742, 2005.

591. O. Zamir, and O. Etzioni. Web Document Clustering: A Feasibility Demonstration.
In Proc. of the 19th Intl. ACM SIGIR Conf. on Research and Development of Infor-
mation Retrieval (SIGIR'98), pp. 46–54, 1998.

592. O. Zamir, and O. Etzioni. Grouper: A Dynamic Clustering Interface to Web Search
Results. In Proc. of the 8th Intl. World Wide Web Conf. (WWW8), Toronto, Canada,
pp. 1361–1374, 1999.

593. H. Zeng, Q. He, Z. Chen, W. Ma, and J. Ma. Learning to Cluster Web Search Re-
sults. In Proc. of the 27th Intl. ACM SIGIR Conf. on Research and Development in
information Retrieval (SIGIR’04). pp. 210–217, 2004.

594. H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral Relaxation for K-means
Clustering. In Proc. of Neural Information Processing Systems (NIPS’01), pp. 1057–
1064, 2001.

595. C. Zhai. Statistical Language Model for Information Retrieval. Tutorial Notes at the
Annual Intl. ACM SIGIR Conf. on Research and Development in Information Re-
trieval (SIGIR’06), 2006.

596. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proc. of the Annual Intl. ACM SIGIR Conf. on Re-
search and Development in Information Retrieval (SIGIR’01), pp. 334-342, 2001.

597. C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach to
information retrieval. In Proc. of the ACM Intl. Conf. on Information and Knowledge
Management (CIKM’01), 2001.

598. C. Zhai and J. Lafferty. Two-stage language models for information retrieval. In
Proc. of the Annual Intl. ACM SIGIR Conf. on Research and Development in Infor-
mation Retrieval (SIGIR’02), pp. 49-56, 2002.

599. Y. Zhai and B. Liu. Extracting Web Data Using Instance-Based Learning. In Proc. of
6th Intl. Conf. on Web Information Systems Engineering (WISE’05), pp. 318–331,
2005.

600. Y. Zhai and B. Liu. Web Data Extraction based on Partial Tree Alignment. In Proc.
of the 14th Intl. World Wide Web Conference (WWW’05), pp. 76–85, 2005.

601. Y. Zhai and B. Liu. Structured Data Extraction from the Web Based on Partial Tree
Alignment. To appear in IEEE Transactions on Knowledge and Data Engineering,
2006.

602. D. Zhang, and W. S. Lee: Web Taxonomy Integration Using Support Vector Ma-
chines. In Proc. of the 13th Intl. World Wide Web Conference (WWW’04), pp. 472–
481, 2004.

603. D. Zhang, and W. S. Lee. A Simple Probabilistic Approach to Learning from Positive
and Unlabeled Examples. In Proc. of the 5th Annual UK Workshop on Computa-
tional Intelligence, 2005.

604. H. Zhang, A. Goel, R. Govindan, K. Mason and B. Van Roy. Making Eigenvector-
Based Systems Robust to Collusion. In Proc. of the 3rd Intl. Workshop on Algorithms

References 515

and Models for the Web Graph, pp. 92–104. 2004.
605. K. Zhang, R. Statman and D. Shasha. On the Editing Distance between Unordered

Labeled Trees. Information Processing Letters 42(3), pp. 133–139, 1992.
606. T. Zhang. The Value of Unlabeled Data for Classification Problems. In Proc. of the

Intl. Conf. on Machine Learning (ICML’00), 2000.
607. T. Zhang and F. Oles. A Probability Analysis on the Value of Unlabeled Data for

Classification Problems. In Proc. of the Intl. Conf. on Machine Learning (ICML’00),
2000.

608. Z. Zhang, B. He, and K. C. -C. Chang. Understanding Web Query Interfaces: Best-
Effort Parsing with Hidden Syntax. In Proc. of International Conference on Man-
agement of Data (SIGMOD’04), pp. 107–118, 2004.

609. Z. Zhang, B. He, and K. C.-C. Chang. Understanding Web Query Interfaces: Best-
Effort Parsing with Hidden Syntax. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data (SIGMOD’04), pp. 107-118, 2004.

610. T. Zhang, R. Ramakrishnan and M. Linvy. BIRCH: an Efficient Data Clustering
Method for Very Large Data Bases. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data (SIGMOD’96), pp. 103–114, 1996.

611. Q. Zhao, S. C. H. Hoi, T-Y. Liu, S. S Bhowmick, M. R. Lyu, and W-Y. Ma. Time-
Dependent Semantic Similarity Measure of Queries Using Historical Click-through
Data. In Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.

612. H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully Automatic Wrapper Gen-
eration for Search Engines. In Proc. of the 14th Intl. World Wide Web Conference
(WWW’05), pp. 66–75, 2005.

613. L. Zhao and N. K. Wee. WICCAP: From Semi-structured Data to Structured Data,
pp. 86–93. In Proc. of the 11th IEEE Intl. Conf. and Workshop on the Engineering of
Computer-Based Systems (ECBS'04), 1994.

614. Y. Zhao and G. Karypis. Empirical and Theoretical Comparisons of Selected Crite-
rion Functions for Document Clustering. Machine Learning, 55, pp. 311–331, 2003.

615. Y. Zhao and G. Karypis. Hierarchical Clustering Algorithms for Document Datasets.
Data Mining and Knowledge Discovery, 10(2), pp.141–168, 2005.

616. Z. Zheng, R. Kohavi, and L. Mason. Real World Performance of Association Rule
Algorithms. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining (KDD’01), pp. 401–406, 2001.

617. N. Zhong, Y. Yao, and J. Liu (eds.) Web Intelligence. Springer, 2003.
618. D. Zhou, E. Manavoglu, J. Li, C. L. Giles, and H. Zha. Probabilistic Models for Dis-

covering E-Communities. In Proc. of the 15th Intl. Conf. on World Wide Web
(WWW'06), 2006.

619. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions. In Proc. of the Intl. Conf. on Machine Learning
(ICML’03), pp. 912–919, 2003.

620. J. Zhu, Z. Nie, J-R. Wen, B. Zhang, and W-Y Ma. 2D Conditional Random Fields for
Web information extraction. In Proc. of the Intl. Conf. on Machine Learning
(ICML’05), pp. 1044-1051, 2005.

621. J. Zhu, Z. Nie, J-R. Wen, B. Zhang, and W.-Y. Ma. Simultaneous record detection
and attribute labeling in web data extraction. In Proc. of the ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining (KDD’06), pp. 494–503, 2006.

622. L. Zhuang, F. Jing, X.-Yan Zhu, and L. Zhang. Movie Review Mining and Summari-
zation. To appear in Proc. of the ACM 15th Conf, on Information and Knowledge
Management (CIKM’06), 2006.

Index

1:1 match, 385
1:m match, 385, 391

A
absolute URL, 281
accuracy, 57, 71
active learning, 337,
actor, 238
AdaBoost, 114
adaptive topical crawler, 303
adjectival comparison, 434
adjusted cosine similarity, 481
adverbial comparison, 434
agglomerative clustering, 132–134

algorithm, 132
average-link method, 134
centroid method, 134
chain effect, 133
complete-link method, 133
dendrogram, 131
single-link method, 133
Ward’s method, 134

anchor text, 184, 201, 231
aperiodic, 249, 251
application server log, 452
Apriori algorithm, 16–20

algorithm, 16–18
candidate generation, 18

join step, 18
pruning step, 18

downward closure, 16
interestingness, 19
lexicographic order, 16
rule generation, 20

Apriori property, 16
ARPANET, 3

association rule, 6, 13
confidence, 14
minimum confidence, 15

minconf, 15
minimum support, 15

minsup, 15
support, 14,
support count, 14
transaction, 14

associative classification, 81–86
asymmetric attribute, 138
authority, 5, 245, 255, 257, 261
authority ranking , 255, 257, 261
automated spam, 442
automatic data extraction, 323
automatic wrapper generation, 341
average-link method, 134
average precision, 197

B
back-crawl, 311
backward rule, 337
“bag” of words, 187
bagging, 114
base URL, 281
beam search, 78
behavioral pattern, 11
best-first crawler, 277
best-N-first, 292,
betweenness centrality, 240, 268, 269
biased-SVM, 175, 196
bibliographic coupling, 243, 245,

259, 297
binary attribute, 136, 141
binary split, 67
bipartite core community, 256, 264

518 Index

bipartite sub-graph, 256
bitwise, 209
Boolean query, 185, 188
boosting, 114–115
bootstrap replicate, 114
Borda ranking, 227, 228
breadth-first crawler, 275
breakeven point, 199
browser, 1

C
candidate itemset, 17
cannot-link, 150
canonicalization, 281
CAR, see class association rule
CAR-Apriori, 34–35
case of letter, 201
categorical, 22
CBA, 81
center, 120, 264
center star method, 350–351
central actor, 239
centrality, 238

betweenness, 240–241, 268
closeness, 240
degree, 239

centroid, 120, 467
Chebychev distance, 136
citation analysis, 243–245

co-citation, 244
bibliographic coupling, 245

class association rule, 32–37, 53, 81,
86

algorithm, 34
class labels, 33
condset, 34
condsupCount, 34
confidence, 33, 34
confident, 34
frequent ruleitems, 34
multiple class supports, 37
multiple item supports, 37
ruleitems, 34
rulesupCount, 34
support, 33,34

class sequential rule, 51–52, 82, 435
classification, 55
classification based on association,

81–86
association rule, 86
CAR, see class association rule
CBA, 81–85
class association rule, 81–85
rule as feature, 86
classifier building, 85
rules as feature, 86
strongest rule, 87

class prior probability, 93
classification model, 56
classifier, 56
classifier evaluation, 71–74
client-server, 1
clickstream, 13, 449-450
click-through, 461
cloaking, 233, 317
closeness centrality, 240
close tag, 328
cluster evaluation , 143–146

confusion matrix, 145
entropy, 144
ground truth, 144
indirect evaluation, 146
inter-cluster separation, 146
intra-cluster cohesion, 146
purity, 145
user inspection, 144

clustering, 6, 8, 117–146, 397
cluster of arbitrary shape, 130
cluster, representation of, 128
CMAR, 86
co-citation, 243, 244, 259, 297,
co-citation matrix, 244
co-clustering, 150
co-occurrence, 13
collaborative filtering, 462, 473,

480–481
collabortive recommendation, 473
collapse, 367
CombANZ, 227
combating spam, 234
CombMAX, 226

Index 519

CombMIN, 226
CombMNZ, 227
CombSUM, 226
community discovery, 238, 259,

261–270
bipartite core, 264–265
manifestation, 263
email, 268–269
maximum flow, 265–268
manifestation, 263
overlapping, 270–271
sub-community, 263
sub-theme, 263
super-community, 263
theme, 262

comparative adjective, 435
comparative adverb, 435
comparative relation, 432, 434, 437
comparative sentence, 412, 433

gradable comparative, 433
equative, 433
non-equal gradable, 433
non-gradable comparative, 433
superlative, 433

comparison mining, 434
complementarity condition, 102, 103,

107
complete-link method, 133
composite attribute, 389
composite domain, 389
concept hierarchy, 449
concurrency, 284
conditional independence assump-

tion, 88, 157
Condorcet ranking, 227, 228
confidence, 14, 50, 61
conflict resolution, 365
confusion matrix, 73, 136, 145
connectionist reinforcement learning,

307
constrained optimization problem,

169
constraint based match, 386
content data, 454
content-enhanced transaction ma-

trix, 464

content hiding, 233
content spamming, 230–231
context-focused crawler, 291
contiguous sequential pattern, 476
co-occurrence, 13
cookies, 452
correlation, 299
cosine similarity, 138, 190, 300, 386,

481
co-testing, 337
co-training, 156
coverage, 87, 288
crawl history, 276
crawler, 10, 273–317

concurrency, 284
crawl history, 276
evaluation, 310–315
fetching, 277,
focused crawler, 273, 289–291
freshness, 288
frontier, 274
live crawling, 318
page repository, 283
parsing, 278–279
preferential crawler, 273, 276
robot, 273
robots.txt, 315
scalability, 286
spider, 273
spider trap, 282
topic crawler, 292–208
universal crawler, 273, 285–288,

276
crawler ethics, 315
crawler etiquette, 315
crawler evaluation, 310–315
cross-validation, 72
CSR, see class sequential rules

D
damping factor, 253
dangling page, 249
data fusion and cleaning, 455
data integration, 378
data mining, 6

520 Index

data mining process, 6
data pre-processing, 58
data record, 323, 326, 328, 364
data region, 147, 324, 358, 360, 364
data sequences, 38
data standardization, 139–141

asymmetric binary attribute, 141
interval-scaled attribute, 139
mean absolute deviation, 140
nominal attribute, 136, 141
ordinal attribute, 141
range, 139
ratio-scaled attribute, 141
symmetric binary attribute, 141
z-score, 139–140

data value match, 378
decision boundary, 99
decision list, 75
decision surface, 98
decision tree, 59–68

algorithm, 62
binary split, 67
C4.5, 59
continuous attribute, 67–68
decision nodes, 59
divide-and-conquer, 62
entropy, 64
impurity function, 63
information gain, 64–65
information gain ratio, 64, 66
leaf nodes, 59
missing value, 70
overfitting, 68–69
post-pruning, 69
pre-pruning, 69
rule pruning,70
skewed class distribution, 68
split info, 67
stopping criteria, 62
tree pruning, 68

deep Web, 281, 381, 394
defaming spam, 442
default class, 70, 76, 85
degree centrality, 239
degree prestige, 242
DeLa, 380

demographic data, 452
dendrogram, 131
denial of service, 283
dense region, 147
DEPTA, 380
description match, 386
detail page, 324, 373
Dice function, 398
directory cloning, 231
discretization, 90
disk version of k-means, 123
discriminative model, 178
distance function, 112, 119, 135–138

Chebychev distance, 136
cosine similarity, 190
Euclidean distance, 135–136
Jaccard coefficient, 138
Manhattan distance, 136
Minkowski distance, 135
simple matching distance, 137
squared Euclidean distance, 136
weighted Euclidean distance,

136
distributed hypertext system, 2
divide-and-conquer, 81
divisive clustering, 132
document collection, 185
document index, 187
Document Object Model, 261, 344,

356,
DOM, see Document Object Model
DOM tree, 261, 344, 356
domain matching, 382, 387, 398
domain similarity, 398
downward closure property, 16, 25
dual, 104
dual variable, 104
duplicate detection, 203
duplicate page, 203
duplicate removal, 226

E
eager learning, 112
e-commerce data mart, 461
edit distance, 344–345

Index 521

eigensystem, 243, 247
eigenvalue, 247, 249
eigenvector, 247
Elias Delta coding, 209, 211
Elias Gamma coding, 209, 210
EM algorithm, see Expectation–

Maximization Algorithm
email community , 268
empty cluster, 122
empty region, 147
end rule, 331–332
ensemble of classifiers, 113
 bagging, 114
 boosting, 114–115
 bootstrap replicate, 114
entropy, 64, 144
episode, 459
error rate, 71
ethical issue, 273
Euclidean space, 121
Euclidean distance, 136
evaluative text, 411
exact match, 188
exclusion operator, 188
Expectation–Maximization, 153, 173,

179, 470
explicit feature, 419
explicit opinion, 419
extraction problem, 342

F
false negative, 73
false positive, 73
feature, 419
feature space, 108
feature-based opinion mining, 417–

430
attribute, 418
component, 418
explicit feature, 419
explicit opinion, 419
feature extraction, 424–428
feature granularity, 423, 428
implicit feature, 419
implicit opinion, 419

opinion holder, 420–421
opinion passage, 419
review format, 424
synonym, 428, 420

feature-based summary, 421
feature extraction , 424
flat data record, 328
flat relation, 327
flat set type, 327–328
flat tuple type, 327
forward rule, 337
focused crawler, 289–292

classification, 289
context graph, 291
context-focused crawler, 291
distiller, 290–291
Open Directory Project, 289

freshness, 288
frequent itemset, 16, 472
frequent itemset graph, 473
frequent sequence, 38
frontier, 274
F-score, 74, 199
full document query, 186
fundamental assumption of machine

learning, 58

G
gap, 209
Gaussian fields, 161–162
Gaussian RBF kernel, 111
generalized node, 360–361
generative model, 92
global query interface, 381, 395,

406–409
ancestor-descendant, 408
grouping constraint, 407
instance appropriateness, 409
lexical appropriateness, 408
structure appropriateness, 406–

407
Golomb coding, 212
Golomb–Rice coding, 213
gradable comparison, 433
grammar induction, 369

522 Index

granularity of analysis, 423
group spam, 444
GSP algorithm, 39, 40

H
harvest rate, 311
head item, 31
head-item problem, 31
hidden Web, 281
hiding technique, 232, 443
hit, 415
Hierarchical clustering, 119, 131
HITS, 255–256

authority, 255–256
community, 259
hub, 255–256
Hypertext Induced Topic Search,

255
relation with co-citation and bib-

liographic coupling, 259
holdout set, 71
hole, 147
homonym, 387
HTML, 2
HTTP, 2
hub ranking, 255, 256
hub, 245, 257, 261
hype spam, 442
hyperlink, 2, 6, 184
hypermedia, 2
hypernym, 386
hypertext, 2
Hypertext Induced Topic Search, 255

I
idiom, 431
IEPAD, 366
implicit feature, 419
implicit feature indicator, 426
implicit feedback , 194
implicit opinion, 419
impurity function, 63
inclusion operator, 188
index compression, 209–214

Elias Delta coding, 209, 211
Elias Gamma coding, 209–210
fixed prefix code, 212
Golomb coding, 209, 212
Golomb-Rice coding, 213
integer compression, 209
unary coding, 210
variable-bit, 209
variable-byte, 209, 214

index construction, 207
indexer, 185, 186
indexing, 222
individual spammer, 443
inductive learning, 55
influence domain, 242
information gain, 64–66, 80
information gain ratio, 64, 66
information integration, 381

conflict, 402
domain similarity, 398
global interface, 395
grouping relationship, 400
h-measure, 402
homonym, 387
intersect-and-union, 409
matcher, 390
matching group, 400, 401
mutual information measure, 405
name as value, 389
negatively correlated, 400
occurrence matrix, 404
positively correlated, 400
synonym group, 400
transitivity, 400

information retrieval, 9, 183–225
information retrieval query, 185–186

Boolean query, 185
full document query, 186
keyword query, 185
multi-word query, 224
natural language question, 186
phrase query, 185–186
proximity query, 186
single word query, 224

information retrieval evaluation,
195–198

Index 523

average precision, 197
breakeven point, 199
F-score, 199
precision, 196
precision-recall curve, 197
recall, 196
rank precision, 199

information theory, 64
informative example, 337, 339
InfoSpiders, 292, 306
infrequent class, 84
in-link spamming, 232
in-link, 223, 239
input space, 108
input vector, 97
instance-based wrapper learning, 338
instance-level matching, 382, 387
integer compression, 209
inter-cluster separation, 146
inter-site schema matching, 405
interestingness, 19, 53
Internet, 1, 3
interval-scaled attribute, 139
intra-cluster cohesion, 146
intra-site schema matching, 405
inverse document frequency, 189
inverted index, 187, 204
inverted list, 205
irreducible, 249, 251, 252
IR score, 224
is-a type, 385, 391
item, 13, 22
item-based collaborative filtering,

481
itemset, 14
iterative SVM, 175

J
Jaccard coefficient, 138, 204, 300
Jaccard distance, 138

K
kernel function, 99, 108–110
kernel trick, 111

keyword query, 183, 185
k-means clustering, 120–123

center, 120, 264
centroid, 120
data space, 120
Euclidean space, 121
seed, 120
mean, 121
outlier, 124

k-modes, 124
k-nearest neighbor, 112
k-sequence, 38
keywords, 9, 183
knowledge discovery in database, 5
KDD, see knowledge discovery in
database
Kuhn–Tucker conditions, 102, 106

L
label sequential rule, 50, 427, 438
landmark, 331
language pattern, 13, 427
language model, 191–192, 195
Laplace smoothing, 91, 95, 192
Laplace’s law of succession, 91, 95,

192
latent semantic indexing, 215–221

k-concept space, 217
left singular vector, 216
query and retrieval, 208–209
right singular vector, 216
singular value decomposition,

215, 218–219
lazy learning, 112
learning algorithm, 57
learning from labeled and unlabeled

examples, 151–164, 194
learning from positive and unlabeled

examples, 151, 165–177, 194
learn-one-rule, 78–80
least commitment approach, 352
leave-one-out cross-validation, 72
level-wise search, 17
lexicographic order, 16, 38
Lidstone smoothing, 91, 95, 192

524 Index

lifetime value, 461
likely positive set, 170
linear learning system, 97
linear SVM: non-separable case,

105–108
linear SVM: separable case, 99–104
linguistic pattern, 13
linguistic similarity, 398
link analysis, 237
link canonicalization, 280
link extraction, 280
link spamming, 231–232
linkage locality, 298
link-cluster conjecture, 295
link-content conjecture, 295
link topology, 295
list iteration rule, 330
list page, 324, 373
live crawling, 318
longest common subsequence, 366
longest repeating subsequence, 477
LSI, see latent semantic indexing
LSI query and retrieval, 218
LSR, see label sequential rule
LU learning, 151–164

co-training, 156–158
combinatorial Laplacian, 162
constrained optimization, 169
EM-based algorithm, 153–154
evaluation, 164
Gaussian fields, 162
mincut, 161
self-training, 158–159,
spectral graph transducer, 161–

162
theoretical foundation, 168–169
transductive SVM, 159–160
transduction, 159
weighting the unlabeled data,

155

M
m:n, 385
main content block, 5, 202
Manhattan distance, 135, 136

manual spam, 442
MAP, see maximum a posteriori
margin, 99, 100
margin hyperplane, 100
market basket analysis, 13
Markov chain, 247
Markov model, 476
match cardinality, 385
matcher, 390
matching group, 400, 401
maximum matching, 347
MaxDelta, 394
maximal margin hyperplane, 99
maximum a posteriori, 88
maximum flow community, 265–268
maximum likelihood estimation, 179
maximum support difference, 26
MDR, 362
mean absolute deviation, 140
Mercer’s theorem, 111
meta-search, 225–228

Borda ranking, 227–228
CombANZ, 227
combine similarity scores, 226
CombMAX, 226
CombMIN, 226
CombMNZ, 227
CombSUM, 226
Condorcet ranking, 227–228
duplicate removal, 225
fuse, 225
merge, 225
reciprocal ranking, 228

minconf, 15
mincut, 161
minimum class support, 37, 84
minimum confidence, 15
minimum item support, 24, 25, 37
minimum support, 15, 25, 38, 41
Minkowski distance, 135
minsup, 15
mirror site, 203
mirroring, 203
MIS, see minimum item support
missing value, 70, 91
mixture component, 92

Index 525

mixture model, 92, 469
mixture of Markov models, 470
mixture probability, 92
mixture weight, 92
Mosaic, 3
MS-Apriori, 26
MS-GSP, 42
MS-PS, 48
multinomial distribution, 94, 96
multinomial trial, 94
multiple alignment, 350–356

center star method, 350–351
partial tree alignment, 351–356

multiple minimum class supports, 37,
84

multiple minimum item supports, 37,
multiple minimum supports, 23, 41,

48, 52, 475
algorithm, 28
downward closure, 25
extended model, 25
head-item, 32
join step, 29
minimum item support, 25
prune step, 29
rare item, 23, 24
rule generation, 31

multiple random sampling , 72
multivariate Bernoulli distribution,

96
multi-word query, 224
must-link, 150
mutual information measure, 405
mutual reinforcement, 255

N
naïve Bayesian classification, 87–91

assumption, 88
Laplace’s law of succession, 91
Lidstone’s law of succession, 91
maximum a posteriori (MAP),

88
missing value, 91
numeric attribute, 90
posterior probability, 87

prior probability, 88,
zero count, 90–91

naïve Bayesian text classification,
91–96

assumption, 94
generative model, 92
hidden parameter, 92
mixture model, 92–93

mixture component, 92
mixture probability, 92
mixture weight, 92

multinomial distribution, 94–95
multivariate Bernoulli

distribution, 96
naïve best-first, 301
name match, 385
named entity community, 270
nearest neighbor learning, 160
negatively correlated, 400
nested data record, 367
nested relation, 326
NET, 367–368
Netscape, 3
neutral, 413
n-fold cross-validation, 72
n-gram, 204
nominal attribute, 136, 138, 140
non-gradable comparison, 433
nonlinear SVM, 108
normal vector, 99
normalized edit distance, 346
normalized term frequency, 189
normalized tree match, 349

O
occurrence type, 223
ODP, see Open Directory Project
Okapi, 190
ontology, 449
Open Directory Project, 289
open tag, 328
opinion holder, 420
opinion mining, 411
opinion orientation classification,

430

526 Index

opinion orientation, 413
opinion passage, 419
opinion search, 412, 439
opinion spam, 412, 441–446

hype spam, 442
defaming spam, 442
individual spammer, 442–443
group spammers, 442–443
manual spam, 443
automated spam, 442
spam detection, 444–446,

review centric, 444
reviewer centric, 445
server centric, 446

opinion summarization, 412, 417
opinion word, 429
optimal cover, 308
ordinal attribute, 141
orthogonal iteration, 259
outlier, 124
out-link, 239
out-link spamming, 231
overfitting, 68–69
overlapping community, 270–271
occurrence matrix, 404

P
packet sniffer, 460
page content, 6
page repository, 283
PageRank, 9, 223, 245–254

aperiodic, 249–252
damping factor, 253
irreducible, 249–252
Markov chain, 247–249
power iteration, 247, 253
principal eigenvector, 247, 249
random surfer, 247–248
stationary probability distribu-
tion, 249
stochastic transition matrix, 249
strongly connected, 251

pageview, 453, 456, 462
pageview-feature matrix, 464
pageview identification, 456

pageview-weight, 468
partial tree alignment, 351–356, 365
partially supervised learning, 151
partitional clustering, 119–120
part-of type, 385, 391
part-of-speech (POS) tagging, 413,

426–417, 435
path completion, 460
Pearson’s correlation coefficient, 480
Penn Treebank POS Tags, 413
personalization, 467
phrase query, 185
pivoted normalization weighting, 191
PLSA, see Probabilistic Latent Se-

mantic Analysis
pointwise mutual information, 414
polynomial kernel, 110–111
POS tagging, see part-of-speech tag-

ging
post-pruning, 69
positively correlated, 400
power iteration, 253
precision, 73, 196, 311
precision and recall breakeven point,

75
precision-recall curve, 197
predictive model, 56
preferential crawler, 273, 276
PrefixSpan algorithm, 46
pre-pruning, 69
prestige, 238, 241–243

degree prestige, 232
proximity prestige, 242
rank prestige, 243, 246

primal, 103
primal variable, 103, 107
principal eigenvector, 247, 249
Probabilistic Latent Semantic Analy-

sis, 470
product feature, 418
profile, 11
prominence, 243
pronoun resolution, 424
proper subsequence, 50
proximity prestige, 242
proximity query, 186

Index 527

pseudo-relevance feedback, 195
PU learning, 151, 165, 194

biased-SVM, 176
classifier selection, 175, 177
constrained optimization, 169
direct approach, 169
EM algorithm, 173
evaluation, 178
IDNF, 172
iterative SVM, 175
Rocchio classification, 192
S-EM, 162–163, 165
Spy technique, 171–172
theoretical foundation, 168
two-step approach, 169
reliable negative, 170

purity, 145

Q
quality page, 223
query, 185–187

Boolean query, 185
full document query, 186
keyword query, 185
multi-word query, 224
natural language question, 186
phrase query, 185–186
proximity query, 186
single word query, 224

query operation, 186

R
random surfer, 248
rank precision, 199
rank prestige, 241, 243
ranking SVM, 195
rare classes, 84
rare item problem, 23, 24
ratio-scaled attribute, 140
recall, 73, 169, 196, 311
reciprocal ranking, 228
recommendation engine, 11, 450
redirection, 234
redundant rule, 35

regular expression, 342–342, 369–
371

reinforcement learning, 305
relevance feedback, 186, 192–195
re-labeling, 338
relative URL, 281
re-learning, 338
reliable negative document, 170
replication, 203
reputation score, 224
reuse of previous match results, 392
review centric spam detection, 444
reviewer centric spam detection, 445
right singular vector, 216
RoadRunner, 374
robot exclusion protocol, 315
robot, 273
robots.txt, 315
Rocchio classification, 193–194
Rocchio relevance feedback, 193
rule induction, 75–81

decision list, 75
default class, 76
ordered class, 76
ordered rule, 76
rule pruning, 80
separate-and-conquer, 81
sequential covering, 75
understandability, 81

rule learning, 75
rule pruning, 70, 84
rule understandability, 81
ruleitem, 34

S
scale-up method, 135
schema matching , 378, 382
search engine optimization, 230
search, 222–225
search engine, 4
search length, 311
seed, 126
segmentation, 118
selective query expansion, 308
self-training, 158

528 Index

semantic orientation, 413
semantic similarity, 299
semi-supervised clustering, 151
semi-supervised learning, 125
sentence-level, 413
sentiment classification, 10, 411–417

document-level classification,
412–417

part-of-speech tag, 413–414, 426–
429, 435

pointwise mutual information, 415
score function, 416
semantic orientation, 413–415

sentiment word, 429, 431
separate-and-conquer, 81
sequence, 38
sequential covering, 75, 333
sequential crawler, 274
sequential pattern mining, 6, 37–52,

475
frequent sequence, 38
GSP, 39–40
k-sequence, 38
minimum support, 38
MS-PS, 48–49
multiple minimum supports, 41,

48
minimum item support, 41
PrefixSpan, 45–47
sequence, 38
sequential pattern, 38

contain, 38
element, 38
itemset, 38
k-sequence, 38
length, 38
sequence, 38
size, 38
subsequence, 38
supersequence, 38

support, 38
sequential rule, 50–52

class sequential rule, 51–52
label sequential rule, 50–51

server centric spam detection, 446
server log, 452

server access log, 452
session, 453
sessionization, 458
set instance, 328
set type, 327
shingle method, 203–204
sibling locality, 297
similarity function, 112
similarity group, 117
simple domain, 388
simple matching distance, 137
simple tree matching, 347–349
single word query, 224
single-link method, 133
singular value decomposition, 215
singular value, 216
skewed class distribution, 71
small-world, 319
smoothing, 91, 95, 192
social choice theory, 227
social network analysis, 9, 237–238
soft-margin SVM, 106
spam detection, 444
spamming, 184, 229–235, 441–446
sparseness, 19
sparse region, 147
spectral clustering, 150
spectral graph transducer, 161–162
spider, 273
spider trap, 282
spy technique, 171
squared Euclidean distance, 136
SSE, see sum of squared error
standardization of words, 384
start rule , 331–332
stationary probability distribution,

249
statistical language model, 191
stemming, 200, 280, 384
stem, 200
stemmer, 200
STM, see simple tree matching
stochastic matrix, 248, 249, 252
stopword removal, 186, 199, 280,

384
string matching, 344

Index 529

strongest rule, 85–87
strongly connected, 251
structured data extraction, 323–378
subsequence, 38
subspace clustering, 150
sufficient match, 341
sum of squared error, 121
superlative adjective, 435
superlative adverb, 435
supersequence, 38
supervised learning, 6, 55–115

assumption, 58
class attribute, 55
class label, 55, 97
classification function, 56
classification based on associa-

tions, see classification based
on associations,

decision tree, see decision tree
example, 55
instance, 55
k-nearest neighbor, see k-nearest

neighbor classification
learning process, 58

model, 57
testing phase, 58
training data, 57
training set, 57
training phase, 58
unseen data, 57
test data, 57

naïve Bayesian, see naïve Bayes-
ian classification

prediction function, 56
rule induction, see rule induction
SVM, see support vector ma-

chines
vector, 55

support, 14, 38, 50
support count, 14, 61
support difference constraint, 26, 45,

48
support vector machines, 97-111

bias, 97

complementarity condition, 102,
106

decision boundary, 98, 104
decision surface, 98
dual variable, 104
dual, 103
input vector, 97
input space, 108
kernel, 108–111

feature space, 108
Gaussian RBF kernel, 111
input space, 108
kernel function, 110–111
kernel trick, 111
polynomial kernel, 110-11

Kuhn-Tucker conditions, 102,
106

Lagrange multiplier, 101, 106
Lagrangian, 101
linear learning system, 97
linear separable case, 99–104
linear non-separable case, 105–

108
margin hyperplane, 92–93
margin, 99
maximal margin hyperplane, 99,

104
nonlinear SVM, 108–111
normal vector, 919
polynomial kernel, 111
primal, 103

primal Lagrangian, 103
primal variable, 103, 106

slack variable, 105
soft-margin SVM, 106
support vector, 103
weight vector, 97
Wolfe dual, 104

support vector, 103
surface Web, 394
SVD, see singular value decomposi-

tion
symmetric attribute, 137
synonym, 386, 215
synonym group, 400

530 Index

T
tag tree, see DOM tree
TCP/IP, 3
template , 324, 339
term, 183, 185, 187
term frequency, 189
term spamming, 230
term-pageview matrix, 464
test data, 57
test set, 71
testing phase, 58
text clustering, 138
text mining, 6
TF, 299
TF-IDF, 189, 299
theme, 262–263
 tidy, 278, 356
Tim Berners-Lee, 2
Timed PageRank, 254
token, 330
top N candidate, 394
topic drift, 260
topical crawler, 273, 292–309

adaptive topical crawler, 303
best-first variation, 300–303
best-N-first, 302
Clever, 302
cluster hypothesis, 295
InfoSpiders, 302, 306
lexical topology, 294
link topology, 295
linkage locality, 298
link-cluster conjecture, 295
link-content conjecture, 295
reinforcement learning, 305–309
sibling locality, 297

topology refinement, 336
training data, 57, 71
training phase, 58
training set, see training data
transaction matrix, 463
transaction, 13
transduction, 159
transductive Support Vector Ma-

chines, 159–160

transductive SVM, see transductive
Support Vector Machines

transitive property, 393
tree matching, 203, 344, 346

simple tree matching, 347-348
normalized tree matching, 349

tree pruning, 68
true negative, 73
true positive, 73
tuple instance, 328
tuple type, 327

U
unary coding, 210
union-free regular expression, 343,

371
universal crawler, 10, 273, 285
unlabeled examples, 152–180
unordered categorical, 136
unsupervised learning, 57, 117–149

cluster, 117
cluster representation, 129–130
clustering, 117–149
cluster evaluation, see cluster

evaluation
data standardization, see data

standardization
distance function, see distance

function
hierarchical clustering, see

agglomerative clustering
k-means clustering, see k-means

clustering
mixed attributes, 141–142
partition, 119, 118
segmentation, 118

URL, 2
usage data, 6
usage-based clustering, 467
user activity record，456
user-agent, 233, 315
user data, 449, 454
user generated content, 232, 411
user generated media, 411
user identification, 456

Index 531

user transaction, 462
user-pageview matrix, 463-464

V
validation set, 70, 73
variable-byte coding, 214
vector space model, 188–191

cosine similarity, 190, 139
IDF, see inverse document fre-

quency
Okapi, 190
inverse document frequency, 189
normalized term frequency, 189
pivoted normalized weighting,

191
term frequency, 189
TF, see term frequency
TF-IDF scheme, 189
vocabulary, 187

virtual society, 1
visual information, 356, 366
vocabulary search, 206

W
W3C, see World Wide Web Consor-

tium
Ward's method, 134
Web, 1, 2

CERN, 2
distributed hypertext system, 2
history, 2
HTML, 2,
HTTP, 2
HyperText Markup Language, 2
HyperText Transfer Protocol, 2
Tim Berners-Lee, 2
URL, 2

Web content mining, 7
Web database, 381
Web data model, 326–329

basic type, 327
flat relation, 327
flat set type, 327
flat tuple type, 327

instance, 327
list, 329
nested relation, 326–328
set instance, 328
set node, 327
set type, 327
tuple instance, 328
tuple node, 327
tuple type, 327

Web mining, 6
Web mining process, 7
Web page pre-processing, 201
Web query interface, 381–409

clustering based approach, 397–
399

correlation based approach, 400–
403

deep Web, 394
global query interface, see global

query interface
instance based approach, 403–

405
inter-site schema matching, 405
intra-site schema matching, 405
label, 395
name, 395
schema model, 395
surface Web, 394

Web search, 222
Web server access log, 452
Web spam, 229-235
 combating spam, 234-235
 content spamming, 230

content hiding, 232
cloaking, 233
directory cloning, 231
in-link spamming, 232
link spamming, 231
out-link spamming
redirection, 233
term spamming 230

 search engine optimization, 230
user-agent field, 233

Web structure mining, 7
Web usage mining, 7, 449-480
Weighted Euclidean distance, 136

532 Index

World Wide Web, 1
WorldWideWeb, 2
World Wide Web Consortium, 4
wrapper generation, 357–374

building DOM tree, 356–357
center star method, 350
center string, 350
conflict resolution, 365
data record, 323, 328, 364
data region, 324, 358, 364
DeLa, 380
DEPTA, 380
disjunction or optional, 361–362
EXALG, 380,
extraction based on a single list

page, 357–366
extraction based on multiple

pages, 373–375
generalized node, 360–361
grammar induction, 369
HTML code cleaning, 356
IEPAD, 380
MDR, 362, 380
multiple alignment, 350–351
nested data record, 367–372
NET, 367
node pattern, 369
partial tree alignment, 351–355
regular expression, 342, 375–

376
RoadRunner, 374–375
seed tree, 352
simple tree matching, 347–348
STM, see simple tree matching
string edit distance, 344–346
tree matching, 346–349
tidy, 356
union-free regular expression,

343, 371, 374
visual information, 356, 366

wrapper induction, 330–341
active learning, 337
co-testing, 337
end rule, 331–332
informative example, 337

instance-based wrapper learning,
338–341

landmark, 319–324
list iteration rule, 331
perfect disjunct, 333
rule learning, 333–337
sequential covering, 333
start rule, 331–332
token, 330
wrapper maintenance, 338
wrapper repair, 338
wrapper verification, 338

wrapper repair problem, 338
wrapper verification problem, 338
WWW conference, 4

Y
Yahoo!, 4

Z
zero count, 90
z-score, 139–140

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

