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Preface 

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. Web mining aims to discover use-
ful information or knowledge from Web hyperlinks, page contents, and us-
age logs. Based on the primary kinds of data used in the mining process, 
Web mining tasks can be categorized into three main types: Web structure 
mining, Web content mining and Web usage mining. Web structure min-
ing discovers knowledge from hyperlinks, which represent the structure of 
the Web. Web content mining extracts useful information/knowledge from 
Web page contents. Web usage mining mines user access patterns from 
usage logs, which record clicks made by every user. 

The goal of this book is to present these tasks, and their core mining al-
gorithms. The book is intended to be a text with a comprehensive cover-
age, and yet, for each topic, sufficient details are given so that readers can 
gain a reasonably complete knowledge of its algorithms or techniques 
without referring to any external materials. Four of the chapters, structured 
data extraction, information integration, opinion mining, and Web usage 
mining, make this book unique. These topics are not covered by existing 
books, but yet they are essential to Web data mining. Traditional Web 
mining topics such as search, crawling and resource discovery, and link 
analysis are also covered in detail in this book.  

Although the book is entitled Web Data Mining, it also includes the 
main topics of data mining and information retrieval since Web mining 
uses their algorithms and techniques extensively. The data mining part 
mainly consists of chapters on association rules and sequential patterns, 
supervised learning (or classification), and unsupervised learning (or clus-
tering), which are the three most important data mining tasks. The ad-
vanced topic of partially (semi-) supervised learning is included as well. 
For information retrieval, its core topics that are crucial to Web mining are 
described. This book is thus naturally divided into two parts. The first part, 
which consists of Chaps. 2–5, covers data mining foundations. The second 
part, which contains Chaps. 6–12, covers Web specific mining.  

Two main principles have guided the writing of this book. First, the ba-
sic content of the book should be accessible to undergraduate students, and 
yet there are sufficient in-depth materials for graduate students who plan to 



 

pursue Ph.D. degrees in Web data mining or related areas. Few assump-
tions are made in the book regarding the prerequisite knowledge of read-
ers. One with a basic understanding of algorithms and probability concepts 
should have no problem with this book. Second, the book should examine 
the Web mining technology from a practical point of view. This is impor-
tant because most Web mining tasks have immediate real-world applica-
tions. In the past few years, I was fortunate to have worked directly or in-
directly with many researchers and engineers in several search engine and 
e-commerce companies, and also traditional companies that are interested 
in exploiting the information on the Web in their businesses. During the 
process, I gained practical experiences and first-hand knowledge of real-
world problems. I try to pass those non-confidential pieces of information 
and knowledge along in the book. The book, thus, should have a good bal-
ance of theory and practice. I hope that it will not only be a learning text 
for students, but also a valuable source of information/knowledge and even 
ideas for Web mining researchers and practitioners. 
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1 Introduction 

When you read this book, you, without doubt, already know what the 
World Wide Web is and have used it extensively. The World Wide Web 
(or the Web for short) has impacted on almost every aspect of our lives. It 
is the biggest and most widely known information source that is easily ac-
cessible and searchable. It consists of billions of interconnected documents 
(called Web pages) which are authored by millions of people. Since its in-
ception, the Web has dramatically changed our information seeking behav-
ior. Before the Web, finding information means asking a friend or an ex-
pert, or buying/borrowing a book to read. However, with the Web, 
everything is only a few clicks away from the comfort of our homes or of-
fices. Not only can we find needed information on the Web, but we can 
also easily share our information and knowledge with others.  

The Web has also become an important channel for conducting busi-
nesses. We can buy almost anything from online stores without needing to 
go to a physical shop. The Web also provides convenient means for us to 
communicate with each other, to express our views and opinions on any-
thing, and to discuss with people from anywhere in the world. The Web is 
truly a virtual society. In this first chapter, we introduce the Web, its his-
tory, and the topics that we will study in the book.  

1.1 What is the World Wide Web? 

The World Wide Web is officially defined as a “wide-area hypermedia in-
formation retrieval initiative aiming to give universal access to a large uni-
verse of documents.” In simpler terms, the Web is an Internet-based 
computer network that allows users of one computer to access information 
stored on another through the world-wide network called the Internet.  

The Web's implementation follows a standard client-server model. In 
this model, a user relies on a program (called the client) to connect to a 
remote machine (called the server) where the data is stored. Navigating 
through the Web is done by means of a client program called the browser, 
e.g., Netscape, Internet Explorer, Firefox, etc. Web browsers work by 
sending requests to remote servers for information and then interpreting 
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the returned documents written in HTML and laying out the text and 
graphics on the user’s computer screen on the client side.  

The operation of the Web relies on the structure of its hypertext 
documents. Hypertext allows Web page authors to link their documents to 
other related documents residing on computers anywhere in the world. To 
view these documents, one simply follows the links (called hyperlinks).  

The idea of hypertext was invented by Ted Nelson in 1965 [403], who 
also created the well known hypertext system Xanadu (http://xanadu. 
com/). Hypertext that also allows other media (e.g., image, audio and video 
files) is called hypermedia. 

1.2 A Brief History of the Web and the Internet 

Creation of the Web: The Web was invented in 1989 by Tim Berners-
Lee, who, at that time, worked at CERN (Centre European pour la Recher-
che Nucleaire, or European Laboratory for Particle Physics) in Switzer-
land. He coined the term “World Wide Web,” wrote the first World Wide 
Web server, httpd, and the first client program (a browser and editor), 
“WorldWideWeb”. 

It began in March 1989 when Tim Berners-Lee submitted a proposal ti-
tled “Information Management: A Proposal” to his superiors at CERN. In 
the proposal, he discussed the disadvantages of hierarchical information 
organization and outlined the advantages of a hypertext-based system. The 
proposal called for a simple protocol that could request information stored 
in remote systems through networks, and for a scheme by which informa-
tion could be exchanged in a common format and documents of individu-
als could be linked by hyperlinks to other documents. It also proposed 
methods for reading text and graphics using the display technology at 
CERN at that time. The proposal essentially outlined a distributed hyper-
text system, which is the basic architecture of the Web.  

Initially, the proposal did not receive the needed support. However, in 
1990, Berners-Lee re-circulated the proposal and received the support to 
begin the work. With this project, Berners-Lee and his team at CERN laid 
the foundation for the future development of the Web as a distributed hy-
pertext system. They introduced their server and browser, the protocol 
used for communication between clients and the server, the HyperText 
Transfer Protocol (HTTP), the HyperText Markup Language (HTML) 
used for authoring Web documents, and the Universal Resource Locator 
(URL). And so it began.  
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Mosaic and Netscape Browsers: The next significant event in the de-
velopment of the Web was the arrival of Mosaic. In February of 1993, 
Marc Andreesen from the University of Illinois’ NCSA (National Center 
for Supercomputing Applications) and his team released the first "Mosaic 
for X" graphical Web browser for UNIX. A few months later, different 
versions of Mosaic were released for Macintosh and Windows operating 
systems. This was an important event. For the first time, a Web client, with 
a consistent and simple point-and-click graphical user interface, was im-
plemented for the three most popular operating systems available at the 
time. It soon made big splashes outside the academic circle where it had 
begun. In mid-1994, Silicon Graphics founder Jim Clark collaborated with 
Marc Andreessen, and they founded the company Mosaic Communica-
tions (later renamed as Netscape Communications). Within a few 
months, the Netscape browser was released to the public, which started the 
explosive growth of the Web. The Internet Explorer from Microsoft en-
tered the market in August, 1995 and began to challenge Netscape.  

The creation of the World Wide Web by Tim Berners-Lee followed by 
the release of the Mosaic browser are often regarded as the two most sig-
nificant contributing factors to the success and popularity of the Web.  

Internet: The Web would not be possible without the Internet, which 
provides the communication network for the Web to function. The Inter-
net started with the computer network ARPANET in the Cold War era. It 
was produced as the result of a project in the United States aiming at main-
taining control over its missiles and bombers after a nuclear attack. It was 
supported by Advanced Research Projects Agency (ARPA), which was 
part of the Department of Defense in the United States. The first 
ARPANET connections were made in 1969, and in 1972, it was demon-
strated at the First International Conference on Computers and Communi-
cation, held in Washington D.C. At the conference, ARPA scientists linked 
computers together from 40 different locations.  

In 1973, Vinton Cerf and Bob Kahn started to develop the protocol later 
to be called TCP/IP (Transmission Control Protocol/Internet Proto-
col). In the next year, they published the paper “Transmission Control Pro-
tocol”, which marked the beginning of TCP/IP. This new protocol allowed 
diverse computer networks to interconnect and communicate with each 
other. In subsequent years, many networks were built, and many compet-
ing techniques and protocols were proposed and developed. However, 
ARPANET was still the backbone to the entire system. During the period, 
the network scene was chaotic. In 1982, the TCP/IP was finally adopted, 
and the Internet, which is a connected set of networks using the TCP/IP 
protocol, was born.  
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Search Engines: With information being shared worldwide, there was a 
need for individuals to find information in an orderly and efficient manner. 
Thus began the development of search engines. The search system Excite 
was introduced in 1993 by six Stanford University students. EINet Galaxy 
was established in 1994 as part of the MCC Research Consortium at the 
University of Texas. Jerry Yang and David Filo created Yahoo! in 1994, 
which started out as a listing of their favorite Web sites, and offered direc-
tory search. In subsequent years, many search systems emerged, e.g., Ly-
cos, Inforseek, AltaVista, Inktomi, Ask Jeeves, Northernlight, etc.  

Google was launched in 1998 by Sergey Brin and Larry Page based on 
their research project at Stanford University. Microsoft started to commit 
to search in 2003, and launched the MSN search engine in spring 2005. It 
used search engines from others before. Yahoo! provided a general search 
capability in 2004 after it purchased Inktomi in 2003.  

W3C (The World Wide Web Consortium): W3C was formed in the 
December of 1994 by MIT and CERN as an international organization to 
lead the development of the Web. W3C's main objective was “to promote 
standards for the evolution of the Web and interoperability between 
WWW products by producing specifications and reference software.” The 
first International Conference on World Wide Web (WWW) was also 
held in 1994, which has been a yearly event ever since.  

From 1995 to 2001, the growth of the Web boomed. Investors saw 
commercial opportunities and became involved. Numerous businesses 
started on the Web, which led to irrational developments. Finally, the 
bubble burst in 2001. However, the development of the Web was not 
stopped, but has only become more rational since. 

1.3 Web Data Mining 

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. The Web has many unique char-
acteristics, which make mining useful information and knowledge a fasci-
nating and challenging task. Let us review some of these characteristics.  

1. The amount of data/information on the Web is huge and still growing. 
The coverage of the information is also very wide and diverse. One can 
find information on almost anything on the Web. 

2. Data of all types exist on the Web, e.g., structured tables, semi-
structured Web pages, unstructured texts, and multimedia files (images, 
audios, and videos). 
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3. Information on the Web is heterogeneous. Due to the diverse author-
ship of Web pages, multiple pages may present the same or similar in-
formation using completely different words and/or formats. This makes 
integration of information from multiple pages a challenging problem. 

4. A significant amount of information on the Web is linked. Hyperlinks 
exist among Web pages within a site and across different sites. Within a 
site, hyperlinks serve as information organization mechanisms. Across 
different sites, hyperlinks represent implicit conveyance of authority to 
the target pages. That is, those pages that are linked (or pointed) to by 
many other pages are usually high quality pages or authoritative pages 
simply because many people trust them.  

5. The information on the Web is noisy. The noise comes from two main 
sources. First, a typical Web page contains many pieces of information, 
e.g., the main content of the page, navigation links, advertisements, 
copyright notices, privacy policies, etc. For a particular application, only 
part of the information is useful. The rest is considered noise. To per-
form fine-grain Web information analysis and data mining, the noise 
should be removed. Second, due to the fact that the Web does not have 
quality control of information, i.e., one can write almost anything that 
one likes, a large amount of information on the Web is of low quality, 
erroneous, or even misleading. 

6. The Web is also about services. Most commercial Web sites allow 
people to perform useful operations at their sites, e.g., to purchase 
products, to pay bills, and to fill in forms. 

7. The Web is dynamic. Information on the Web changes constantly. 
Keeping up with the change and monitoring the change are important is-
sues for many applications.  

8. The Web is a virtual society. The Web is not only about data, informa-
tion and services, but also about interactions among people, organiza-
tions and automated systems. One can communicate with people any-
where in the world easily and instantly, and also express one’s views on 
anything in Internet forums, blogs and review sites.  

All these characteristics present both challenges and opportunities for min-
ing and discovery of information and knowledge from the Web. In this 
book, we only focus on mining textual data. For mining of images, videos 
and audios, please refer to [143, 441].  

To explore information mining on the Web, it is necessary to know data 
mining, which has been applied in many Web mining tasks. However, 
Web mining is not entirely an application of data mining. Due to the rich-
ness and diversity of information and other Web specific characteristics 
discussed above, Web mining has developed many of its own algorithms.  
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1.3.1 What is Data Mining?  

Data mining is also called knowledge discovery in databases (KDD). It 
is commonly defined as the process of discovering useful patterns or 
knowledge from data sources, e.g., databases, texts, images, the Web, etc. 
The patterns must be valid, potentially useful, and understandable. Data 
mining is a multi-disciplinary field involving machine learning, statistics, 
databases, artificial intelligence, information retrieval, and visualization. 

There are many data mining tasks. Some of the common ones are 
supervised learning (or classification), unsupervised learning (or 
clustering), association rule mining, and sequential pattern mining. We 
will study all of them in this book.  

A data mining application usually starts with an understanding of the 
application domain by data analysts (data miners), who then identify 
suitable data sources and the target data. With the data, data mining can be 
performed, which is usually carried out in three main steps:  

• Pre-processing: The raw data is usually not suitable for mining due to 
various reasons. It may need to be cleaned in order to remove noises or 
abnormalities. The data may also be too large and/or involve many 
irrelevant attributes, which call for data reduction through sampling and 
attribute selection. Details about data pre-processing can be found in 
any standard data mining textbook.  

• Data mining: The processed data is then fed to a data mining algorithm 
which will produce patterns or knowledge.  

• Post-processing: In many applications, not all discovered patterns are 
useful. This step identifies those useful ones for applications. Various 
evaluation and visualization techniques are used to make the decision.  

The whole process (also called the data mining process) is almost always 
iterative. It usually takes many rounds to achieve final satisfactory results, 
which are then incorporated into real-world operational tasks. 

Traditional data mining uses structured data stored in relational tables, 
spread sheets, or flat files in the tabular form. With the growth of the Web 
and text documents, Web mining and text mining are becoming 
increasingly important and popular. Web mining is the focus of this book. 

1.3.2 What is Web Mining? 

Web mining aims to discover useful information or knowledge from the 
Web hyperlink structure, page content, and usage data. Although Web 
mining uses many data mining techniques, as mentioned above it is not 



1.3 Web Data Mining      7 

purely an application of traditional data mining due to the heterogeneity 
and semi-structured or unstructured nature of the Web data. Many new 
mining tasks and algorithms were invented in the past decade. Based on 
the primary kinds of data used in the mining process, Web mining tasks 
can be categorized into three types: Web structure mining, Web content 
mining and Web usage mining.  

• Web structure mining: Web structure mining discovers useful knowl-
edge from hyperlinks (or links for short), which represent the structure 
of the Web. For example, from the links, we can discover important 
Web pages, which, incidentally, is a key technology used in search en-
gines. We can also discover communities of users who share common 
interests. Traditional data mining does not perform such tasks because 
there is usually no link structure in a relational table.  

• Web content mining: Web content mining extracts or mines useful in-
formation or knowledge from Web page contents. For example, we can 
automatically classify and cluster Web pages according to their topics. 
These tasks are similar to those in traditional data mining. However, we 
can also discover patterns in Web pages to extract useful data such as 
descriptions of products, postings of forums, etc, for many purposes. 
Furthermore, we can mine customer reviews and forum postings to dis-
cover consumer sentiments. These are not traditional data mining tasks.  

• Web usage mining: Web usage mining refers to the discovery of user 
access patterns from Web usage logs, which record every click made by 
each user. Web usage mining applies many data mining algorithms. One 
of the key issues in Web usage mining is the pre-processing of click-
stream data in usage logs in order to produce the right data for mining.  

In this book, we will study all these three types of mining. However, due 
to the richness and diversity of information on the Web, there are a large 
number of Web mining tasks. We will not be able to cover them all. We 
will only focus on some important tasks and their algorithms.  

The Web mining process is similar to the data mining process. The dif-
ference is usually in the data collection. In traditional data mining, the data 
is often already collected and stored in a data warehouse. For Web mining, 
data collection can be a substantial task, especially for Web structure and 
content mining, which involves crawling a large number of target Web 
pages. We will devote a whole chapter on crawling. 

Once the data is collected, we go through the same three-step process: 
data pre-processing, Web data mining and post-processing. However, the 
techniques used for each step can be quite different from those used in tra-
ditional data mining. 
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1.4 Summary of Chapters 

This book consists of two main parts. The first part, which includes Chaps. 
2–5, covers the major topics of data mining. The second part, which com-
prises the rest of the chapters, covers Web mining (including a chapter on 
Web search). In the Web mining part, Chaps. 7 and 8 are on Web structure 
mining, which are closely related to Web search (Chap. 6). Since it is dif-
ficult to draw a boundary between Web search and Web mining, Web 
search and mining are put together. Chaps 9–11 are on Web content min-
ing, and Chap. 12 is on Web usage mining. Below we give a brief intro-
duction to each chapter.  

Chapter 2 – Association Rules and Sequential Patterns: This chapter 
studies two important data mining models that have been used in many 
Web mining tasks, especially in Web usage and content mining. Associa-
tion rule mining finds sets of data items that occur together frequently. Se-
quential pattern mining finds sets of data items that occur together fre-
quently in some sequences. Clearly, they can be used to find regularities in 
the Web data. For example, in Web usage mining, association rule mining 
can be used to find users’ visit and purchase patterns, and sequential pat-
tern mining can be used to find users’ navigation patterns. 

Chapter 3 – Supervised Learning: Supervised learning is perhaps the 
most frequently used mining/learning technique in both practical data min-
ing and Web mining. It is also called classification, which aims to learn a 
classification function (called a classifier) from data that are labeled with 
pre-defined classes or categories. The resulting classifier is then applied to 
classify future data instances into these classes. Due to the fact that the 
data instances used for learning (called the training data) are labeled with 
pre-defined classes, the method is called supervised learning.  

Chapter 4 – Unsupervised Learning: In unsupervised learning, the data 
used for learning has no pre-defined classes. The learning algorithm has to 
find the hidden structures or regularities in the data. One of the key unsu-
pervised learning techniques is clustering, which organizes data instances 
into groups or clusters according to their similarities (or differences). 
Clustering is widely used in Web mining. For example, we can cluster 
Web pages into groups, where each group may represent a particular topic. 
We can also cluster documents into a hierarchy of clusters, which may rep-
resent a topic hierarchy.  

Chapter 5 – Partially Supervised Learning: Supervised learning re-
quires a large number of labeled data instances to learn an accurate classi-
fier. Labeling, which is often done manually, is labor intensive and time 
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consuming. To reduce the manual labeling effort, learning from labeled 
and unlabeled examples (or LU learning) was proposed to use a small 
set of labeled examples (data instances) and a large set of unlabeled exam-
ples for learning. This model is also called semi-supervised learning. 

Another learning model that we will study is called learning from posi-
tive and unlabeled examples (or PU learning), which is for two-class 
classification. However, there are no labeled negative examples for learn-
ing. This model is useful in many situations. For example, we have a set of 
Web mining papers and we want to identify other Web mining papers in a 
research paper repository which contains all kinds of papers. The set of 
Web mining papers can be treated as the positive data, and the papers in 
the research repository can be treated as the unlabeled data. 

Chapter 6 – Information Retrieval and Web Search: Search is probably 
the largest application on the Web. It has its root in information retrieval 
(or IR for short), which is a field of study that helps the user find needed 
information from a large collection of text documents. Given a query (e.g., 
a set of keywords), which expresses the user’s information need, an IR 
system finds a set of documents that is relevant to the query from its un-
derlying collection. This is also how a Web search engine works.  

Web search brings IR to a new height. It applies some IR techniques, 
but also presents a host of interesting problems due to special characteris-
tics of the Web data. First of all, Web pages are not the same as plain text 
documents because they are semi-structured and contain hyperlinks. Thus, 
new methods have been designed to produce better Web IR (or search) 
systems. Another major issue is efficiency. Document collections used in 
traditional IR systems are not large, but the number of pages on the Web is 
huge. For example, Google claimed that it indexed more than 8 billion 
pages when this book was written. Web users demand very fast responses. 
No matter how effective a retrieval algorithm is, if the retrieval cannot be 
done extremely efficiently, few people will use it. In the chapter, several 
other search related issues will also be discussed.  

Chapter 7 – Link Analysis: Hyperlinks are a special feature of the Web, 
which have been exploited for many purposes, especially for Web search. 
Google’s success is largely attributed to its hyperlink-based ranking algo-
rithm called PageRank, which is originated from social network analysis. 
In this chapter, we will first introduce some main concepts of social net-
work analysis and then describe two most well known Web link analysis 
algorithms, PageRank and HITS. In addition, we will also study several 
community finding algorithms. When Web pages link to one another, they 
form Web communities, which are groups of content creators that share 
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some common interests. Communities not only manifest in hyperlinks, but 
also in other contexts such as emails and Web page contents. 

Chapter 8 – Web Crawling: A Web crawler is a program that automati-
cally traverses the Web’s hyperlink structure and downloads each linked 
page to a local storage. Crawling is often the first step of Web mining or in 
building a Web search engine. Although conceptually easy, building a 
practical crawler is by no means simple. Due to efficiency and many other 
concerns, it involves a great deal of engineering. There are two types of 
crawlers: universal crawlers and topic crawlers. A universal crawler 
downloads all pages irrespective of their contents, while a topic crawler 
downloads only pages of certain topics. The difficulty in topic crawling is 
how to recognize such pages. We will study several techniques for this 
purpose.  

Chapter 9 – Structured Data Extraction: Wrapper Generation: A 
large number of pages on the Web contain structured data, which are usu-
ally data records retrieved from underlying databases and displayed in 
Web pages following some fixed templates. Structured data often represent 
their host pages’ essential information, e.g., lists of products and services. 
Extracting such data allows one to provide value added services, e.g., 
comparative shopping, and meta-search. There are two main approaches to 
extraction. One is the supervised approach, which uses supervised learning 
to learn data extraction rules. The other is the unsupervised pattern discov-
ery approach, which finds repeated patterns (hidden templates) in Web 
pages for data extraction.  

Chapter 10 – Information Integration: Due to diverse authorships of the 
Web, different Web sites typically use different words or terms to express 
the same or similar information. In order to make use of the data or infor-
mation extracted from multiple sites to provide value added services, we 
need to semantically integrate the data/information from these sites in or-
der to produce consistent and coherent databases. Intuitively, integration 
means to match columns in different data tables that contain the same type 
of information (e.g., product names) and to match data values that are se-
mantically the same but expressed differently in different sites. 

Chapter 11 – Opinion Mining: Apart from structured data, the Web also 
contains a huge amount of unstructured text. Analyzing such text is also of 
great importance. It is perhaps even more important than extracting struc-
tured data because of the sheer volume of valuable information of almost 
any imaginable types contained in it. This chapter will only focus on min-
ing people’s opinions or sentiments expressed in product reviews, fo-
rum discussions and blogs. The task is not only technically challenging, 
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but also very useful in practice because businesses and organizations al-
ways want to know consumer opinions on their products and services.  

Chapter 12 – Web Usage Mining: Web usage mining aims to study user 
clicks and their applications to e-commerce and business intelligence. The 
objective is to capture and model behavioral patterns and profiles of us-
ers who interact with a Web site. Such patterns can be used to better un-
derstand the behaviors of different user segments, to improve the organiza-
tion and structure of the site, and to create personalized experiences for 
users by providing dynamic recommendations of products and services.  

1.5 How to Read this Book 

This book is a textbook although two chapters are contributed by two other 
researchers. The contents of the two chapters have been carefully edited 
and integrated into the common framework of the whole book. The book is 
suitable for both graduate students and senior undergraduate students in 
the fields of computer science, information science, engineering, statistics, 
and social science. It can also be used as a reference by researchers and 
practitioners who are interested in or are working in the field of Web min-
ing, data mining or text mining.  

As mentioned earlier, the book is divided into two parts. Part I (Chaps. 
2–5) covers the major topics of data mining. Text classification and clus-
tering are included in this part as well. Part II, which includes the rest of 
the chapters, covers Web mining (and search). In general, all chapters in 
Part II require some techniques in Part I. Within each part, the dependency 
is minimal except Chap. 5, which needs several techniques from Chap. 4. 

To Instructors: This book can be used as a class text for a one-semester 
course on Web data mining. In this case, there are two possibilities. If the 
students already have data mining or machine learning background, the 
chapters in Part I can be skipped. If the students do not have any data min-
ing background, I recommend covering some selected sections from each 
chapter of Part I before going to Part II. The chapters in Part II can be cov-
ered in any sequence. You can also select a subset of the chapters accord-
ing to your needs. 

The book may also be used as a class text for an introductory data min-
ing course where Web mining concepts and techniques are introduced. In 
this case, I recommend first covering all the chapters in Part I and then se-
lectively covering some chapters or sections from each chapter in Part II 
depending on needs. It is usually a good idea to cover some sections of 
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Chaps. 6 and 7 as search engines fascinate most students. I also recom-
mend including one or two lectures on data pre-processing for data mining 
since the topic is important for practical data mining applications but is not 
covered in this book. You can find teaching materials on data pre-
processing from most introductory data mining books.  

Supporting Materials: Updates to chapters and teaching materials, in-
cluding lecture slides, data sets, implemented algorithms, and other re-
sources, are available at http://www.springer.com/3-540-37881-2.  

Bibliographic Notes 

The W3C Web site (http://www.w3.org/) is the most authoritative resource 
site for information on Web developments, standards and guidelines. The 
history of the Web and hypertext, and Tim Berners-Lee’s original proposal 
can all be found there. Many other sites also contain information about the 
history of the Web, the Internet and search engines, e.g., http://www.elsop. 
com/wrc/h_web.htm, http://www.zeltser.com/web-history/, http://www.isoc. 
org/internet/history/, http://www.livinginternet.com, http://www.w3c.rl.ac.uk/ 
primers/history/origins.htm and http://searchenginewatch.com/. 

There are some earlier introductory texts on Web mining, e.g., those by 
Baldi et al. [33] and Chakrabarti [85]. There are also several application 
oriented books, e.g., those by Linoff and Berry [338], and Thuraisingham 
[515], and edited volumes by Djeraba et al. [143], Scime [480], and Zhong 
et al. [617].  

On data mining, there are many textbooks, e.g., those by Duda et al. 
[155], Dunham [156], Han and Kamber [218], Hand et al. [221], Larose 
[305], Langley [302], Mitchell [385], Roiger and Geatz [467], Tan et al. 
[512], and Witten and Frank [549]. Application oriented books include 
those by Berry and Linoff [49], Pyle [450], Parr Rud [468], and Tang and 
MacLennan [514]. Several edited volumes exist as well, e.g., those by 
Fayyad et al. [174], Grossman et al. [208], and Wang et al. [533]. 

Latest research results on Web mining can be found in a large number 
of conferences and journals (too many to list) due to the interdisciplinary 
nature of the field. All the journals and conferences related to the Web 
technology, information retrieval, data mining, databases, artificial intelli-
gence, and machine learning may contain Web mining related papers.  



 

2 Association Rules and Sequential Patterns 

Association rules are an important class of regularities in data. Mining of 
association rules is a fundamental data mining task. It is perhaps the most 
important model invented and extensively studied by the database and data 
mining community. Its objective is to find all co-occurrence relationships, 
called associations, among data items. Since it was first introduced in 
1993 by Agrawal et al. [9], it has attracted a great deal of attention. Many 
efficient algorithms, extensions and applications have been reported.  

The classic application of association rule mining is the market basket 
data analysis, which aims to discover how items purchased by customers in 
a supermarket (or a store) are associated. An example association rule is  

 Cheese → Beer  [support = 10%, confidence = 80%]. 

The rule says that 10% customers buy Cheese and Beer together, and 
those who buy Cheese also buy Beer 80% of the time. Support and confi-
dence are two measures of rule strength, which we will define later.  

This mining model is in fact very general and can be used in many ap-
plications. For example, in the context of the Web and text documents, it 
can be used to find word co-occurrence relationships and Web usage pat-
terns as we will see in later chapters.  

Association rule mining, however, does not consider the sequence in 
which the items are purchased. Sequential pattern mining takes care of 
that. An example of a sequential pattern is “5% of customers buy bed first, 
then mattress and then pillows”. The items are not purchased at the same 
time, but one after another. Such patterns are useful in Web usage mining 
for analyzing clickstreams in server logs. They are also useful for finding 
language or linguistic patterns from natural language texts. 

2.1 Basic Concepts of Association Rules 

The problem of mining association rules can be stated as follows: Let I = 
{i1, i2, …, im} be a set of items. Let T = (t1, t2, …, tn) be a set of transac-
tions (the database), where each transaction ti is a set of items such that ti 
⊆ I. An association rule is an implication of the form,  
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 X → Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅.  

X (or Y) is a set of items, called an itemset.  

Example 1: We want to analyze how the items sold in a supermarket are 
related to one another. I is the set of all items sold in the supermarket. A 
transaction is simply a set of items purchased in a basket by a customer. 
For example, a transaction may be:  

{Beef, Chicken, Cheese},  

which means that a customer purchased three items in a basket, Beef, 
Chicken, and Cheese. An association rule may be: 

 Beef, Chicken → Cheese, 

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets 
“{” and “}” are usually omitted in transactions and rules. ▀ 

A transaction ti ∈ T is said to contain an itemset X if X is a subset of ti 
(we also say that the itemset X covers ti). The support count of X in T 
(denoted by X.count) is the number of transactions in T that contain X. The 
strength of a rule is measured by its support and confidence.  
Support: The support of a rule, X → Y, is the percentage of transactions in 

T that contains X ∪ Y, and can be seen as an estimate of the probability, 
Pr(X∪Y). The rule support thus determines how frequent the rule is ap-
plicable in the transaction set T. Let n be the number of transactions in T. 
The support of the rule X → Y is computed as follows: 

.).  (
n

countYXsupport ∪
=  (1) 

Support is a useful measure because if it is too low, the rule may just oc-
cur due to chance. Furthermore, in a business environment, a rule cover-
ing too few cases (or transactions) may not be useful because it does not 
make business sense to act on such a rule (not profitable).  

Confidence: The confidence of a rule, X → Y, is the percentage of transac-
tions in T that contain X also contain Y. It can be seen as an estimate of 
the conditional probability, Pr(Y | X). It is computed as follows:  

.
.

).  (
countX

countYXconfidence ∪
=  (2) 

Confidence thus determines the predictability of the rule. If the confi-
dence of a rule is too low, one cannot reliably infer or predict Y from X. 
A rule with low predictability is of limited use.    
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Objective: Given a transaction set T, the problem of mining association 
rules is to discover all association rules in T that have support and confi-
dence greater than or equal to the user-specified minimum support (de-
noted by minsup) and minimum confidence (denoted by minconf).  

The keyword here is “all”, i.e., association rule mining is complete. Previ-
ous methods for rule mining typically generate only a subset of rules based 
on various heuristics (see Chap. 3).  

Example 2: Figure 2.1 shows a set of seven transactions. Each transaction 
ti is a set of items purchased in a basket in a store by a customer. The set I 
is the set of all items sold in the store.  

t1: Beef, Chicken, Milk 
t2: Beef, Cheese 
t3: Cheese, Boots 
t4: Beef, Chicken, Cheese 
t5: Beef, Chicken, Clothes, Cheese, Milk 
t6: Chicken, Clothes, Milk 
t7: Chicken, Milk, Clothes 

Fig. 2.1.  An example of a transaction set 

Given the user-specified minsup = 30% and minconf = 80%, the following 
association rule (sup is the support, and conf is the confidence) 

Chicken, Clothes → Milk  [sup = 3/7, conf = 3/3] 

is valid as its support is 42.86% (> 30%) and its confidence is 100% (> 
80%). The rule below is also valid, whose consequent has two items:  

 Clothes → Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Clearly, more association rules can be discovered, as we will see later.  ▀ 

We note that the data representation in the transaction form of Fig. 2.1 is 
a simplistic view of shopping baskets. For example, the quantity and price 
of each item are not considered in the model.  

We also note that a text document or even a sentence in a single docu-
ment can be treated as a transaction without considering word sequence 
and the number of occurrences of each word. Hence, given a set of docu-
ments or a set of sentences, we can find word co-occurrence relations.  

A large number of association rule mining algorithms have been re-
ported in the literature, which have different mining efficiencies. Their re-
sulting sets of rules are, however, all the same based on the definition of 
association rules. That is, given a transaction data set T, a minimum sup-
port and a minimum confidence, the set of association rules existing in T is 
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uniquely determined. Any algorithm should find the same set of rules al-
though their computational efficiencies and memory requirements may be 
different. The best known mining algorithm is the Apriori algorithm pro-
posed in [11], which we study next.  

2.2 Apriori Algorithm 

The Apriori algorithm works in two steps: 

1. Generate all frequent itemsets: A frequent itemset is an itemset that 
has transaction support above minsup.  

2. Generate all confident association rules from the frequent itemsets: 
A confident association rule is a rule with confidence above minconf.   

We call the number of items in an itemset its size, and an itemset of size k 
a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-
quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we 
can generate the following three association rules (minconf = 80%): 

Rule 1: Chicken, Clothes → Milk  [sup = 3/7, conf = 3/3] 
Rule 2:  Clothes, Milk  → Chicken  [sup = 3/7, conf = 3/3] 
Rule 3:  Clothes → Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Below, we discuss the two steps in turn.  

2.2.1 Frequent Itemset Generation 

The Apriori algorithm relies on the apriori or downward closure property 
to efficiently generate all frequent itemsets.  

Downward Closure Property: If an itemset has minimum support, then 
every non-empty subset of this itemset also has minimum support. 

The idea is simple because if a transaction contains a set of items X, then 
it must contain any non-empty subset of X. This property and the minsup 
threshold prune a large number of itemsets that cannot be frequent.  

To ensure efficient itemset generation, the algorithm assumes that the 
items in I are sorted in lexicographic order (a total order). The order is 
used throughout the algorithm in each itemset. We use the notation {w[1], 
w[2], …, w[k]} to represent a k-itemset w consisting of items w[1], w[2], 
…, w[k], where w[1] < w[2] < … < w[k] according to the total order.  

The Apriori algorithm for frequent itemset generation, which is given in 
Fig. 2.2, is based on level-wise search. It generates all frequent itemsets by 
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making multiple passes over the data. In the first pass, it counts the sup-
ports of individual items (line 1) and determines whether each of them is 
frequent (line 2). F1 is the set of frequent 1-itemsets. In each subsequent 
pass k, there are three steps: 

1. It starts with the seed set of itemsets Fk−1 found to be frequent in the 
(k−1)-th pass. It uses this seed set to generate candidate itemsets Ck 
(line 4), which are possible frequent itemsets. This is done using the 
candidate-gen() function.  

2. The transaction database is then scanned and the actual support of each 
candidate itemset c in Ck is counted (lines 5–10). Note that we do not 
need to load the whole data into memory before processing. Instead, at 

Algorithm Apriori(T) 
1 C1 ← init-pass(T);   // the first pass over T  
2 F1 ← {f | f ∈ C1, f.count/n ≥ minsup};  // n is the no. of transactions in T 
3 for (k = 2; Fk−1 ≠ ∅; k++) do // subsequent passes over T 
4 Ck ← candidate-gen(Fk−1); 
5 for each transaction t ∈ T do // scan the data once 
6 for each candidate c ∈ Ck do    
7 if c is contained in t then  
8  c.count++;  
9 endfor 
10 endfor 
11 Fk ← {c ∈ Ck | c.count/n ≥ minsup} 
12 endfor 
13 return F ← Uk Fk; 

Fig. 2.2. The Apriori algorithm for generating frequent itemsets 

Function candidate-gen(Fk−1)  
1 Ck ← ∅;  // initialize the set of candidates 
2 forall f1, f2 ∈ Fk−1  // find all pairs of frequent itemsets 
3 with f1 = {i1, … , ik−2, ik−1}  // that differ only in the last item  
4 and  f2 = {i1, … , ik−2, i’k−1}   
5 and ik−1 < i’k−1 do  // according to the lexicographic order 
6 c ← {i1, …, ik−1, i’k−1};  // join the two itemsets f1 and f2 
7 Ck ← Ck ∪ {c};  // add the new itemset c to the candidates  
8 for each (k−1)-subset s of c do 
9 if (s ∉ Fk−1) then   
10 delete c from Ck; // delete c from the candidates 
11 endfor 
12 endfor 
13 return Ck;  // return the generated candidates 

Fig. 2.3. The candidate-gen function  
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any time, only one transaction resides in memory. This is a very impor-
tant feature of the algorithm. It makes the algorithm scalable to huge 
data sets, which cannot be loaded into memory.  

3. At the end of the pass or scan, it determines which of the candidate 
itemsets are actually frequent (line 11).  

The final output of the algorithm is the set F of all frequent itemsets (line 
13). The candidate-gen() function is discussed below.  

Candidate-gen function: The candidate generation function is given in 
Fig. 2.3. It consists of two steps, the join step and the pruning step.  

Join step (lines 2–6 in Fig. 2.3): This step joins two frequent (k−1)-
itemsets to produce a possible candidate c (line 6). The two frequent 
itemsets f1 and f2 have exactly the same items except the last one (lines 
3–5). c is added to the set of candidates Ck (line 7).  

Pruning step (lines 8–11 in Fig. 2.3): A candidate c from the join step may 
not be a final candidate. This step determines whether all the k−1 sub-
sets (there are k of them) of c are in Fk−1. If anyone of them is not in 
Fk−1, c cannot be frequent according to the downward closure property, 
and is thus deleted from Ck.  

The correctness of the candidate-gen() function is easy to show (see [11]). 
Here, we use an example to illustrate the working of the function.  

Example 3: Let the set of frequent itemsets at level 3 be 
F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}. 

For simplicity, we use numbers to represent items. The join step (which 
generates candidates for level 4) will produce two candidate itemsets, {1, 2, 
3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the 
second itemsets in F3 as their first and second items are the same respec-
tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.  

After the pruning step, we have only: 
C4 = {{1, 2, 3, 4}} 

because {1, 4, 5} is not in F3 and thus {1, 3, 4, 5} cannot be frequent.  

Example 4: Let us see a complete running example of the Apriori algo-
rithm based on the transactions in Fig. 2.1. We use minsup = 30%.  

F1:   {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4} 

 Note: the number after each frequent itemset is the support count of the 
itemset, i.e., the number of transactions containing the itemset. A mini-
mum support count of 3 is sufficient because the support of 3/7 is greater 
than 30%, where 7 is the total number of transactions.  
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C2:  {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},  
 {Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},  
 {Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}} 

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,  
  {Chicken, Milk}:4, {Clothes, Milk}:3} 

C3: {{Chicken, Clothes, Milk}} 

 Note: {Beef, Cheese, Chicken} is also produced in line 6 of Fig. 2.3. 
However, {Cheese, Chicken} is not in F2, and thus the itemset {Beef, 
Cheese, Chicken} is not included in C3.  

F3: {{Chicken, Clothes, Milk}:3}. ▀ 

Finally, some remarks about the Apriori algorithm are in order:  

• Theoretically, this is an exponential algorithm. Let the number of items 
in I be m. The space of all itemsets is O(2m) because each item may or 
may not be in an itemset. However, the mining algorithm exploits the 
sparseness of the data and the high minimum support value to make the 
mining possible and efficient. The sparseness of the data in the context 
of market basket analysis means that the store sells a lot of items, but 
each shopper only purchases a few of them.  

• The algorithm can scale up to large data sets as it does not load the en-
tire data into the memory. It only scans the data K times, where K is the 
size of the largest itemset. In practice, K is often small (e.g., < 10). This 
scale-up property is very important in practice because many real-world 
data sets are so large that they cannot be loaded into the main memory.  

• The algorithm is based on level-wise search. It has the flexibility to stop 
at any level. This is useful in practice because in many applications, 
long frequent itemsets or rules are not needed as they are hard to use.  

• As mentioned earlier, once a transaction set T, a minsup and a minconf 
are given, the set of frequent itemsets that can be found in T is uniquely 
determined. Any algorithm should find the same set of frequent item-
sets. This property about association rule mining does not hold for many 
other data mining tasks, e.g., classification or clustering, for which dif-
ferent algorithms may produce very different results.  

• The main problem with association rule mining is that it often produces 
a huge number of itemsets (and rules), tens of thousands, or more, 
which makes it hard for the user to analyze them to find those useful 
ones. This is called the interestingness problem. Researchers have pro-
posed several methods to tackle this problem (see Bibliographic Notes). 

An efficient implementation of the Apriori algorithm involves sophisti-
cated data structures and programming techniques, which are beyond the 
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scope of this book. Apart from the Apriori algorithm, there is a large num-
ber of other algorithms, e.g., FP-growth [220] and many others. 

2.2.2 Association Rule Generation 

In many applications, frequent itemsets are already useful and sufficient. 
Then, we do not need to generate association rules. In applications where 
rules are desired, we use frequent itemsets to generate all association rules.  

Compared with frequent itemset generation, rule generation is relatively 
simple. To generate rules for every frequent itemset f, we use all non-
empty subsets of f. For each such subset α, we output a rule of the form   

(f − α) → α,  if 

,
).(

. minconf
countf

countfconfidence ≥
−

=
α

 (3) 

where f.count (or (f−α).count) is the support count of f (or (f − α)). The 
support of the rule is f.count/n, where n is the number of transactions in the 
transaction set T. All the support counts needed for confidence computa-
tion are available because if f is frequent, then any of its non-empty subsets 
is also frequent and its support count has been recorded in the mining 
process. Thus, no data scan is needed in rule generation.  

This exhaustive rule generation strategy is, however, inefficient. To de-
sign an efficient algorithm, we observe that the support count of f in the 
above confidence computation does not change as α changes. It follows 
that for a rule (f − α) → α to hold, all rules of the form (f − αsub) → αsub 
must also hold,  where αsub is a non-empty subset of α, because the support 
count of (f − αsub) must be less than or equal to the support count of (f − α). 
For example, given an itemset {A, B, C, D}, if the rule (A, B → C, D) holds, 
then the rules (A, B, C → D) and (A, B, D → C) must also hold. 

Thus, for a given frequent itemset f, if a rule with consequent α holds, 
then so do rules with consequents that are subsets of α. This is similar to 
the downward closure property that, if an itemset is frequent, then so are 
all its subsets. Therefore, from the frequent itemset f, we first generate all 
rules with one item in the consequent. We then use the consequents of 
these rules and the function candidate-gen() (Fig. 2.3) to generate all pos-
sible consequents with two items that can appear in a rule, and so on. An 
algorithm using this idea is given in Fig. 2.4. Note that all 1-item conse-
quent rules (rules with one item in the consequent) are first generated in 
line 2 of the function genRules(). The confidence is computed using (3).   
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Example 5: We again use transactions in Fig. 2.1, minsup = 30% and min-
conf = 80%. The frequent itemsets are as follows (see Example 4):  

F1:   {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4} 
F2: {{Beef, Cheese}:3, {Beef, Chicken}:3, {Chicken, Clothes}:3,  
 {Chicken, Milk}:4, {Clothes, Milk}:3} 
F3: {{Chicken, Clothes, Milk}:3}. 

We use only the itemset in F3 to generate rules (generating rules from each 
itemset in F2 can be done in the same way). The itemset in F3 generates the 
following possible 1-item consequent rules:  

Rule 1: Chicken, Clothes → Milk  [sup = 3/7, conf = 3/3] 
Rule 2:  Chicken, Milk → Clothes  [sup = 3/7, conf = 3/4] 
Rule 3:  Clothes, Milk  → Chicken  [sup = 3/7, conf = 3/3]. 

Due to the minconf requirement, only Rule 1 and Rule 3 are output in line 
2 of the algorithm genRules(). Thus, H1 = {{Chicken}, {Milk}}. The function 
ap-genRules() is then called. Line 2 of ap-genRules() produces H2 = 
{{Chicken, Milk}}. The following rule is then generated:  

Rule 4:  Clothes → Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Algorithm genRules(F) // F is the set of all frequent itemsets 
1 for each frequent k-itemset fk in F, k ≥ 2 do 
2 output every 1-item consequent rule of fk with confidence ≥ minconf and 

support ← fk.count / n // n is the total number of transactions in T 
3  H1 ←{consequents of all 1-item consequent rules derived from fk above}; 
4  ap-genRules(fk, H1); 
5  endfor 
 
Procedure ap-genRules(fk, Hm) // Hm is the set of m-item consequents 
1 if (k > m + 1) AND (Hm ≠ ∅) then  
2 Hm+1 ← candidate-gen(Hm); 
3 for each hm+1 in Hm+1 do 
4 conf  ← fk.count / (fk − hm+1).count; 
5 if (conf ≥ minconf) then 
6 output the rule (fk − hm+1) → hm+1 with confidence = conf and 

support = fk.count / n; // n is the total number of transactions in T 
7 else 
8 delete hm+1 from Hm+1; 
9 endfor 
10 ap-genRules(fk, Hm+1); 
11 endif 

Fig. 2.4. The association rule generation algorithm 
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Thus, three association rules are generated from the frequent itemset 
{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4.  ▀ 

2.3  Data Formats for Association Rule Mining 

So far, we have used only transaction data for mining association rules. 
Market basket data sets are naturally of this format. Text documents can be 
seen as transaction data as well. Each document is a transaction, and each 
distinctive word is an item. Duplicate words are removed.  

However, mining can also be performed on relational tables. We just 
need to convert a table data set to a transaction data set, which is fairly 
straightforward if each attribute in the table takes categorical values. We 
simply change each value to an attribute–value pair.  
Example 6: The table data in Fig. 2.5(A) can be converted to the transac-
tion data in Fig. 2.5(B). Each attribute–value pair is considered an item. 
Using only values is not sufficient in the transaction form because different 
attributes may have the same values. For example, without including at-
tribute names, value a’s for Attribute1 and Attribute2 are not distinguish-
able. After the conversion, Fig. 2.5(B) can be used in mining. ▀ 

If an attribute takes numerical values, it becomes complex. We need to 
first discretize its value range into intervals, and treat each interval as a 
categorical value. For example, an attribute’s value range is from 1–100. 
We may want to divide it into 5 equal-sized intervals, 1–20, 21–40, 41–60, 
61–80, and 81–100. Each interval is then treated as a categorical value. 
Discretization can be done manually based on expert knowledge or auto-
matically. There are several existing algorithms [151, 501].  

A point to note is that for a table data set, the join step of the candidate 
generation function (Fig. 2.3) needs to be slightly modified in order to en-
sure that it does not join two itemsets to produce a candidate itemset con-
taining two items from the same attribute. 

 Clearly, we can also convert a transaction data set to a table data set us-
ing a binary representation and treating each item in I as an attribute. If a 
transaction contains an item, its attribute value is 1, and 0 otherwise.  

2.4 Mining with Multiple Minimum Supports  

The key element that makes association rule mining practical is the minsup 
threshold. It is used to prune the search space and to limit the number of 
frequent itemsets and rules generated. However, using only a single min-
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sup implicitly assumes that all items in the data are of the same nature 
and/or have similar frequencies in the database. This is often not the case 
in real-life applications. In many applications, some items appear very fre-
quently in the data, while some other items rarely appear. If the frequen-
cies of items vary a great deal, we will encounter two problems [344]:  

1. If the minsup is set too high, we will not find rules that involve infre-
quent items or rare items in the data.  

2. In order to find rules that involve both frequent and rare items, we have 
to set the minsup very low. However, this may cause combinatorial ex-
plosion and make mining impossible because those frequent items will 
be associated with one another in all possible ways.  

Let us use an example to illustrate the above problem with a very low min-
sup, which will actually introduce another problem.  

Example 7: In a supermarket transaction data set, in order to find rules in-
volving those infrequently purchased items such as FoodProcessor and 
CookingPan (they generate more profits per item), we need to set the min-
sup very low. Let us use only frequent itemsets in this example as they are 
generated first and rules are produced from them. They are also the source 
of all the problems. Now assume we set a very low minsup of 0.005%. We 
find the following meaningful frequent itemset: 
 {FoodProcessor, CookingPan}    [sup = 0.006%]. 

However, this low minsup may also cause the following two meaningless 
itemsets being discovered:  

f1:  {Bread, Cheese, Egg, Bagel, Milk, Sugar, Butter}   [sup = 0.007%], 

f2:  {Bread, Egg, Milk, CookingPan}   [sup = 0.006%]. 

Knowing that 0.007% of the customers buy the seven items in f1 together is 
useless because all these items are so frequently purchased in a supermar-

Attribute1 Attribute2 Atribute3 
a a x 
b n y 

(A) Table data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x) 
t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y) 

(B) Transaction data 

Fig. 2.5. From a table data set to a transaction data set  
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ket. Worst still, they will almost certainly cause combinatorial explosion! 
For itemsets involving such items to be useful, their supports have to be 
much higher. Similarly, knowing that 0.006% of the customers buy the 
four items in f2 together is also meaningless because Bread, Egg and Milk 
are purchased on almost every grocery shopping trip.  ▀ 

This dilemma is called the rare item problem. Using a single minsup 
for the whole data set is inadequate because it cannot capture the inherent 
natures and/or frequency differences of items in the database. By the na-
tures of items we mean that some items, by nature, appear more frequently 
than others. For example, in a supermarket, people buy FoodProcessor and 
CookingPan much less frequently than Bread and Milk. The situation is the 
same for online stores. In general, those durable and/or expensive goods 
are bought less often, but each of them generates more profit. It is thus im-
portant to capture rules involving less frequent items. However, we must 
do so without allowing frequent items to produce too many meaningless 
rules with very low supports and cause combinatorial explosion [344]. 

One common solution to this problem is to partition the data into several 
smaller blocks (subsets), each of which contains only items of similar fre-
quencies. Mining is then done separately for each block using a different 
minsup. This approach is, however, not satisfactory because itemsets or 
rules that involve items across different blocks will not be found.  

A better solution is to allow the user to specify multiple minimum sup-
ports, i.e., to specify a different minimum item support (MIS) to each 
item. Thus, different itemsets need to satisfy different minimum supports 
depending on what items are in the itemsets. This model thus enables us to 
achieve our objective of finding itemsets involving rare items without 
causing frequent items to generate too many meaningless itemsets. This 
method helps solve the problem of f1. To deal with the problem of f2, we 
prevent itemsets that contain both very frequent items and very rare items 
from being generated. A constraint will be introduced to realize this.  

An interesting by-product of this extended model is that it enables the 
user to easily instruct the algorithm to generate only itemsets that contain 
certain items but not itemsets that contain only the other items. This can be 
done by setting the MIS values to more than 100% (e.g., 101%) for these 
other items. This capability is very useful in practice because in many ap-
plications the user is only interested in certain types of itemsets or rules.  

2.4.1 Extended Model 

To allow multiple minimum supports, the original model in Sect. 2.1 needs 
to be extended. In the extended model, the minimum support of a rule is 
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expressed in terms of minimum item supports (MIS) of the items that 
appear in the rule. That is, each item in the data can have a MIS value 
specified by the user. By providing different MIS values for different 
items, the user effectively expresses different support requirements for dif-
ferent rules. It seems that specifying a MIS value for each item is a diffi-
cult task. This is not so as we will see at the end of Sect. 2.4.2.  

Let MIS(i) be the MIS value of item i. The minimum support of a rule 
R is the lowest MIS value among the items in the rule. That is, a rule R,  

 i1, i2, …, ik → ik+1, …, ir, 

satisfies its minimum support if the rule’s actual support in the data is 
greater than or equal to:  

 min(MIS(i1), MIS(i2), …, MIS(ir)).  

Minimum item supports thus enable us to achieve the goal of having 
higher minimum supports for rules that involve only frequent items, and 
having lower minimum supports for rules that involve less frequent items.  

Example 8: Consider the set of items in a data set, {Bread, Shoes, 
Clothes}. The user-specified MIS values are as follows: 

MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%. 

The following rule doesn’t satisfy its minimum support: 

 Clothes → Bread  [sup = 0.15%, conf = 70%]. 

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following 
rule satisfies its minimum support: 

 Clothes → Shoes  [sup = 0.15%, conf = 70%]. 

because min(MIS(Clothes), MIS(Shoes)) = 0.1%.  ▀  

As we explained earlier, the downward closure property holds the key 
to pruning in the Apriori algorithm. However, in the new model, if we use 
the Apriori algorithm to find all frequent itemsets, the downward closure 
property no longer holds.  

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their 
minimum item supports are: 

 MIS(1) = 10%  MIS(2) = 20% MIS(3) = 5%  MIS(4) = 6%. 

If we find that itemset {1, 2} has a support of 9% at level 2, then it does not 
satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset 
is discarded since it is not frequent. Then, the potentially frequent itemsets 
{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1, 
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2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4) 
is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1, 
2}, the downward closure property is lost.   ▀ 

Below, we present an algorithm to solve this problem. The essential idea 
is to sort the items according to their MIS values in ascending order to 
avoid the problem.  

Note that MIS values prevent low support itemsets involving only fre-
quent items from being generated because their individual MIS values are 
all high. To prevent very frequent items and very rare items from appear-
ing in the same itemset, we introduce the support difference constraint.  

Let sup(i) be the actual support of item i in the data. For each itemset s, 
the support difference constraint is as follows: 

 maxi∈s{sup(i)} − mini∈s{sup(i)} ≤ ϕ, 

where 0 ≤ ϕ ≤ 1 is the user-specified maximum support difference, and it 
is the same for all itemsets. The constraint basically limits the difference 
between the largest and the smallest actual supports of items in itemset s to 
ϕ. This constraint can reduce the number of itemsets generated dramati-
cally, and it does not affect the downward closure property.  

2.4.2 Mining Algorithm 

The new algorithm generalizes the Apriori algorithm for finding frequent 
itemsets. We call the algorithm, MS-Apriori. When there is only one MIS 
value (for all items), it reduces to the Apriori algorithm.  

Like Apriori, MS-Apriori is also based on level-wise search. It generates 
all frequent itemsets by making multiple passes over the data. However, 
there is an exception in the second pass as we will see later.  

The key operation in the new algorithm is the sorting of the items in I in 
ascending order of their MIS values. This order is fixed and used in all 
subsequent operations of the algorithm. The items in each itemset follow 
this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and 
their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-
der helps solve the problem identified above. 

Let Fk denote the set of frequent k-itemsets. Each itemset w is of the fol-
lowing form, {w[1], w[2], …, w[k]}, which consists of items, w[1], w[2], 
…, w[k], where MIS(w[1]) ≤ MIS(w[2]) ≤ … ≤ MIS(w[k]). The algorithm 
MS-Apriori is given in Fig. 2.6. Line 1 performs the sorting on I according 
to the MIS value of each item (stored in MS). Line 2 makes the first pass 
over the data using the function init-pass(), which takes two arguments, the 
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data set T and the sorted items M, to produce the seeds L for generating 
candidate itemsets of length 2, i.e., C2. init-pass() has two steps:  

1. It first scans the data once to record the support count of each item.  
2. It then follows the sorted order to find the first item i in M that meets 

MIS(i). i is inserted into L. For each subsequent item j in M after i, if 
j.count/n ≥ MIS(i), then j is also inserted into L, where j.count is the 
support count of j, and n is the total number of transactions in T.  

Frequent 1-itemsets (F1) are obtained from L (line 3). It is easy to show 
that all frequent 1-itemsets are in F1.  

Example 10: Let us follow Example 9 and the given MIS values for the 
four items. Assume our data set has 100 transactions (not limited to the 
four items). The first pass over the data gives us the following support 
counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,  

L = {3, 1, 2}, and F1 = {{3}, {2}}. 

Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F1 
because 1.count / n < MIS(1) (= 10%).  ▀ 

For each subsequent pass (or data scan), say pass k, the algorithm per-
forms three operations.  

Algorithm MS-Apriori(T, MS, ϕ) // MS stores all MIS values
1 M ← sort(I, MS);  // according to MIS(i)’s stored in MS  
2 L ← init-pass(M, T);   // make the first pass over T  
3 F1 ← {{l} | l ∈ L, l.count/n ≥ MIS(l)};  // n is the size of T 
4 for (k = 2; Fk−1 ≠ ∅; k++) do 
5 if k = 2 then   
6 Ck ← level2-candidate-gen(L, ϕ) // k = 2 
7 else Ck ← MScandidate-gen(Fk−1, ϕ)  
8 endif; 
9 for each transaction t ∈ T do 
10 for each candidate c ∈ Ck do   
11 if c is contained in t then // c is a subset of t 
12  c.count++ 
13 if c – {c[1]} is contained in t then // c without the first item 
14  (c – {c[1]}).count++  
15 endfor 
16 endfor 
17 Fk ← {c ∈ Ck | c.count/n ≥ MIS(c[1])} 
18 endfor 
19 return F ← Uk Fk; 

Fig. 2.6. The MS-Apriori algorithm 
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1. The frequent itemsets in Fk−1 found in the (k–1)th pass are used to gener-
ate the candidates Ck using the MScandidate-gen() function (line 7). 
However, there is a special case, i.e., when k = 2 (line 6), for which the 
candidate generation function is different, i.e., level2-candidate-gen().  

2. It then scans the data and updates various support counts of the candi-
dates in Ck (line 9–16). For each candidate c, we need to update its sup-
port count (lines 11–12) and also the support count of c without the first 
item (lines 13–14), i.e., c – {c[1]}, which is used in rule generation and 
will be discussed in Sect. 2.4.3. If rule generation is not required, lines 
13 and 14 can be deleted.  

3. The frequent itemsets (Fk) for the pass are identified in line 17.  
We present candidate generation functions level2-candidate-gen() and 

MScandidate-gen() below. 

Level2-candidate-gen function: It takes an argument L, and returns a su-
perset of the set of all frequent 2-itemsets. The algorithm is given in Fig. 
2.7. Note that in line 5, we use |sup(h) − sup(l)| ≤ ϕ because sup(l) may not 
be lower than sup(h), although MIS(l) ≤ MIS(h).  

Example 11: Let us continue with Example 10. We set ϕ = 10%. Recall 
the MIS values of the four items are (in Example 9): 

 MIS(1) = 10%  MIS(2) = 20% 
 MIS(3) = 5%  MIS(4) = 6%. 

The level2-candidate-gen() function in Fig. 2.7 produces   

 C2 = {{3, 1}}. 

{1, 2} is not a candidate because the support count of item 1 is only 9 (or 
9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. {3, 2} is 
not a candidate because sup(3) = 6% and sup(2) = 25% and their difference 
is greater than ϕ = 10%  ▀ 

Note that we must use L rather than F1 because F1 does not contain those 
items that may satisfy the MIS of an earlier item (in the sorted order) but 
not the MIS of itself, e.g., item 1 in the above example. Using L, the prob-
lem discussed in Sect. 2.4.1 is solved for C2.   

MScandidate-gen function: The algorithm is given in Fig. 2.8, which is 
similar to the candidate-gen function in the Apriori algorithm. It also has 
two steps, the join step and the pruning step. The join step (lines 2–6) is 
the same as that in the candidate-gen() function. The pruning step (lines 8–
12) is, however, different.  

For each (k-1)-subset s of c, if s is not in Fk−1, c can be deleted from Ck. 
However, there is an exception, which is when s does not include c[1] 
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(there is only one such s). That is, the first item of c, which has the lowest 
MIS value, is not in s. Even if s is not in Fk−1, we cannot delete c because 
we cannot be sure that s does not satisfy MIS(c[1]), although we know that 
it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9). 

Example 12: Let F3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4, 
6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step 
produces (we ignore the support difference constraint here) 

 {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 4, 5, 6}. 

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are 
then left with C4 = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-
though {3, 4, 5} is not in F3 because the minimum support of {3, 4, 5} is 
MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-
isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if 
MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted.  ▀ 

Function level2-candidate-gen(L, ϕ) 
1 C2 ← ∅; // initialize the set of candidates 
2 for each item l in L in the same order do 
3 if l.count/n ≥ MIS(l) then 
4 for each item h in L that is after l do 
5 if h.count/n ≥ MIS(l) and |sup(h) − sup(l)| ≤ ϕ then 
6 C2 ← C2 ∪ {{l, h}};  // insert the candidate {l, h} into C2 

Fig. 2.7. The level2-candidate-gen function 

Function MScandidate-gen(Fk−1, ϕ)  
1 Ck ← ∅;  // initialize the set of candidates 
2 forall f1, f2 ∈ Fk  // find all pairs of frequent itemsets 
3 with f1 = {i1, … , ik−2, ik−1}  // that differ only in the last item  
4 and  f2 = {i1, … , ik−2,  i’k−1}  
5 and ik-1 < i’k−1 and |sup(ik-1) − sup(i’k−1)| ≤ ϕ  do   
6 c ← {i1, …, ik−1, i’k−1};  // join the two itemsets f1 and f2 
7 Ck ← Ck ∪ {c};  // insert the candidate itemset c into Ck  
8 for each (k−1)-subset s of c do 
9 if (c[1] ∈ s) or (MIS(c[2]) = MIS(c[1])) then 
10 if (s ∉ Fk−1) then   
11 delete c from Ck; // delete c from the set of candidates 
12 endfor 
13 endfor 
14 return Ck;  // return the generated candidates 

Fig. 2.8. The MScandidate-gen function 
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The problem discussed in Sect. 2.4.1 is solved for Ck (k > 2) because, 
due to the sorting, we do not need to extend a frequent (k−1)-itemset with 
any item that has a lower MIS value. Let us see a complete example.  

Example 13: Given the following seven transactions,  
 Beef, Bread 

 Bread, Clothes 
Bread, Clothes, Milk 
Cheese, Boots 
Beef, Bread, Cheese, Shoes 
Beef, Bread, Cheese, Milk 
Bread, Milk, Clothes 

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items. 
Again, the support difference constraint is not used. The following fre-
quent itemsets are produced: 

F1 = {{Beef}, {Cheese}, {Clothes}, {Bread}} 
F2 = {{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}  
 {Clothes, Bread}, {Clothes, Milk}} 
F3 = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}}. ▀ 

To conclude this sub-section, let us further discuss two important issues: 

1. Specify MIS values for items: This is usually done in two ways:  
• Assign a MIS value to each item according to its actual sup-

port/frequency in the data set T.  For example, if the actual support of 
item i in T is sup(i), then the MIS value for i may be computed with 
λ×sup(i), where λ is a parameter (0 ≤ λ ≤ 1) and is the same for all 
items in T.  

• Group items into clusters (or blocks). Items in each cluster have simi-
lar frequencies. All items in the same cluster are given the same MIS 
value. We should note that in the extended model frequent itemsets 
involving items from different clusters will be found.   

2. Generate itemsets that must contain certain items: As mentioned earlier, 
the extended model enables the user to instruct the algorithm to generate 
itemsets that must contain certain items, or not to generate any itemsets 
consisting of only the other items. Let us see an example.  

Example 14: Given the data set in Example 13, if we want to generate 
frequent itemsets that must contain at least one item in {Boots, Bread, 
Cheese, Milk, Shoes}, or not to generate itemsets involving only Beef 
and/or Clothes, we can simply set  

 MIS(Beef) = 101%, and MIS(Clothes) = 101% 
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Then the algorithm will not generate the itemsets, {Beef}, {Clothes} 
and {Beef, Clothes}. However, it will still generate such frequent item-
sets as {Cheese, Beef} and {Cheese, Bread, Beef}. ▀ 

In many applications, this feature comes quite handy because the user 
is often only interested in certain types of itemsets or rules.  

2.4.3  Rule Generation 

Association rules are generated using frequent itemsets. In the case of a 
single minsup, if f is a frequent itemset and fsub is a subset of f, then fsub 
must also be a frequent itemset. All their support counts are computed and 
recorded by the Apriori algorithm. Then, the confidence of each possible 
rule can be easily calculated without seeing the data again.       

However, in the case of MS-Apriori, if we only record the support count 
of each frequent itemset, it is not sufficient. Let us see why.  

Example 15: Recall in Example 8, we have 
MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%. 

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the 
itemset {Shoes, Clothes, Bread} is 0.12%, according to MS-Apriori, 
{Clothes, Bread} is not a frequent itemset since its support is less than 
MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as 
its actual support is greater than  
 min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)). 

We now have a problem in computing the confidence of the rule,  

Clothes, Bread → Shoes 

because the itemset {Clothes, Bread} is not a frequent itemset and thus its 
support count is not recorded. In fact, we may not be able to compute the 
confidences of the following rules either: 

Clothes → Shoes, Bread 
Bread → Shoes, Clothes 

because {Clothes} and {Bread} may not be frequent.  ▀ 

Lemma: The above problem may occur only when the item that has the 
lowest MIS value in the itemset is in the consequent of the rule (which 
may have multiple items). We call this problem the head-item problem. 

Proof by contradiction: Let f be a frequent itemset, and a ∈ f be the item 
with the lowest MIS value in f (a is called the head item). Thus, f uses 
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MIS(a) as its minsup. We want to form a rule, X → Y, where X, Y ⊂ f, X ∪ 
Y = f and X ∩ Y = ∅. Our examples above already show that the head-item 
problem may occur when a ∈ Y. Now assume that the problem can also 
occur when a ∈ X. Since a ∈ X and X ⊂ f, a must have the lowest MIS 
value in X and X must be a frequent itemset, which is ensured by the MS-
Apriori algorithm. Hence, the support count of X is recorded. Since f is a 
frequent itemset and its support count is also recorded, then we can com-
pute the confidence of X → Y. This contradicts our assumption.  ▀ 

The lemma indicates that we need to record the support count of f – {a}. 
This is achieved by lines 13–14 in MS-Apriori (Fig. 2.6). All problems in 
Example 15 are solved. A similar rule generation function as genRules() in 
Apriori can be designed to generate rules with multiple minimum supports.  

2.5 Mining Class Association Rules 

The mining models studied so far do not use any targets. That is, any item 
can appear as a consequent or condition of a rule. However, in some appli-
cations, the user is interested in only rules with some fixed target items on 
the right-hand side. For example, the user has a collection of text docu-
ments from some topics (target items), and he/she wants to know what 
words are correlated with each topic. In [352], a data mining system based 
entirely on such rules (called class association rules) is reported, which is 
in production use in Motorola for many different applications. In the Web 
environment, class association rules are also useful because many types of 
Web data are in the form of transactions, e.g., search queries issued by us-
ers, and pages clicked by visitors. There are often target items as well, e.g., 
advertisements. Web sites want to know how user activities are associated 
with advertisements that they may like to view. This touches the issue of 
classification or prediction, which we will study in the next chapter. 

2.5.1 Problem Definition 

Let T be a transaction data set consisting of n transactions. Each transac-
tion is labeled with a class y. Let I be the set of all items in T, Y be the set 
of all class labels (or target items) and I ∩ Y = ∅. A class association 
rule (CAR) is an implication of the form  

 X → y, where X ⊆ I, and y ∈ Y.  

The definitions of support and confidence are the same as those for nor-
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mal association rules. In general, a class association rule is different from a 
normal association rule in two ways: 
1. The consequent of a CAR has only a single item, while the consequent 

of a normal association rule can have any number of items.  
2. The consequent y of a CAR can only be from the class label set Y, i.e., y 
∈ Y. No item from I can appear as the consequent, and no class label can 
appear as a rule condition. In contrast, a normal association rule can 
have any item as a condition or a consequent.  

Objective: The problem of mining CARs is to generate the complete set of 
CARs that satisfies the user-specified minimum support (minsup) and 
minimum confidence (minconf) constraints.  

Example 16: Figure 2.9 shows a data set which has seven text documents. 
Each document is a transaction and consists of a set of keywords. Each 
transaction is also labeled with a topic class (education or sport).  

I = {Student, Teach, School, City, Game, Baseball, Basketball, Team, 
Coach, Player, Spectator} 

Y = {Education, Sport}. 

 Transactions  Class 
doc 1:  Student, Teach, School  : Education 
doc 2:  Student, School  : Education   
doc 3:  Teach, School, City, Game  : Education 
doc 4:  Baseball, Basketball : Sport 
doc 5:  Basketball, Player, Spectator   : Sport 
doc 6:  Baseball, Coach, Game, Team  : Sport 
doc 7:  Basketball, Team, City, Game  : Sport 

Fig. 2.9. An example of a data set for mining class association rules 

Let minsup = 20% and minconf = 60%. The following are two examples of 
class association rules: 

Student, School → Education [sup= 2/7, conf = 2/2] 
Game → Sport [sup= 2/7, conf = 2/3]. ▀ 

A question that one may ask is: can we mine the data by simply using the 
Apriori algorithm and then perform a post-processing of the resulting rules 
to select only those class association rules? In principle, the answer is yes 
because CARs are a special type of association rules. However, in practice 
this is often difficult or even impossible because of combinatorial explo-
sion, i.e., the number of rules generated in this way can be huge.   
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2.5.2 Mining Algorithm 

Unlike normal association rules, CARs can be mined directly in a single 
step. The key operation is to find all ruleitems that have support above 
minsup. A ruleitem is of the form: 

(condset, y), 

where condset ⊆ I is a set of items, and  y ∈ Y is a class label. The support 
count of a condset (called condsupCount) is the number of transactions in 
T that contain the condset. The support count of a ruleitem (called rule-
supCount) is the number of transactions in T that contain the condset and 
are labeled with class y. Each ruleitem basically represents a rule:     

 condset → y, 

whose support is (rulesupCount / n), where n is the total number of trans-
actions in T, and whose confidence is (rulesupCount / condsupCount).  

Ruleitems that satisfy the minsup are called frequent ruleitems, while 
the rest are called infrequent ruleitems. For example, ({Student, School}, 
Education) is a ruleitem in T of Fig. 2.9. The support count of the condset 
{Student, School} is 2, and the support count of the ruleitem is also 2. Then 
the support of the ruleitem is 2/7 (= 28.6%), and the confidence of the rule-
item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup 
threshold. We say that it is frequent. If minconf = 80%, then the ruleitem 
satisfies the minconf threshold. We say that the ruleitem is confident. We 
thus have the class association rule: 

Student, School → Education [sup= 2/7, conf = 2/2]. 

The rule generation algorithm, called CAR-Apriori, is given in Fig. 
2.10, which is based on the Apriori algorithm. Like the Apriori algorithm, 
CAR-Apriori generates all the frequent ruleitems by making multiple 
passes over the data. In the first pass, it computes the support count of each 
1-ruleitem (containing only one item in its condset) (line 1). The set of all 
1-candidate ruleitems considered is:  

C1 = {({i}, y) | i ∈ I, and y ∈ Y}, 

which basically associates each item in I (or in the transaction data set T) 
with every class label. Line 2 determines whether the candidate 1-
ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition 
CARs (rules with only one condition) (line 3). In a subsequent pass, say k, 
it starts with the seed set of (k−1)-ruleitems found to be frequent in the 
(k−1)-th pass, and uses this seed set to generate new possibly frequent k-
ruleitems, called candidate k-ruleitems (Ck in line 5). The actual support 



2.5 Mining Class Association Rules      35 

counts, both condsupCount and rulesupCount, are updated during the scan 
of the data (lines 6–13) for each candidate k-ruleitem. At the end of the 
data scan, it determines which of the candidate k-ruleitems in Ck are actu-
ally frequent (line 14). From the frequent k-ruleitems, line 15 generates k-
condition CARs (class association rules with k conditions).  

One interesting note about ruleitem generation is that if a ruleitem/rule 
has a confidence of 100%, then extending the ruleitem with more condi-
tions (adding items to its condset) will also result in rules with 100% con-
fidence although their supports may drop with additional items. In some 
applications, we may consider these subsequent rules redundant because 
additional conditions do not provide any more information. Then, we 
should not extend such ruleitems in candidate generation for the next level, 
which can reduce the number of generated rules substantially. If desired, 
redundancy handling can be added in the CAR-Apriori algorithm easily.  

The CARcandidate-gen() function is very similar to the candidate-gen() 
function in the Apriori algorithm, and it is thus omitted. The only differ-
ence is that in CARcandidate-gen() ruleitems with the same class are 
joined by joining their condsets. 

Example 17: Let us work on a complete example using our data in Fig. 
2.9. We set minsup = 15%, and minconf = 70%  

F1:    { ({School}, Education):(3, 3),  ({Student}, Education):(2, 2), 
  ({Teach}, Education):(2, 2),  ({Baseball}, Sport):(2, 2), 

Algorithm CAR-Apriori(T) 
1 C1 ← init-pass(T);   // the first pass over T  
2 F1 ← {f | f ∈ C1, f. rulesupCount / n ≥ minsup};  
3 CAR1 ← {f | f ∈ F1, f.rulesupCount / f.condsupCount ≥ minconf};  
4 for (k = 2; Fk−1 ≠ ∅; k++) do  
5 Ck ← CARcandidate-gen(Fk−1);    
6 for each transaction t ∈ T do  
7 for each candidate c ∈ Ck do    
8 if c.condset is contained in t then // c is a subset of t 
9 c.condsupCount++;  
10 if t.class = c.class then  
11 c.rulesupCount++ 
12 endfor 
13 end-for 
14 Fk ← {c ∈ Ck | c.rulesupCount / n ≥ minsup}; 
15 CARk ← {f | f ∈ Fk, f.rulesupCount / f.condsupCount ≥ minconf};  
16 endfor 
17 return CAR ← Uk CARk; 

Fig. 2.10. The CAR-Apriori algorithm 
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  ({Basketball}, Sport):(3, 3), ({Game}, Sport):(3, 2),  
  ({Team}, Sport):(2, 2)} 

Note: The two numbers within the parentheses after each ruleitem are its 
condSupCount and ruleSupCount respectively. 

CAR1:  School → Education [sup = 3/7, conf = 3/3] 
 Student → Education [sup = 2/7, conf = 2/2] 
 Teach → Education [sup = 2/7, conf = 2/2] 
 Baseball → Sport [sup = 2/7, conf = 2/2] 
 Basketball → Sport [sup = 3/7, conf = 3/3] 
 Game → Sport [sup = 2/7, conf = 2/3]  
 Team → Sport [sup = 2/7, conf = 2/2]  

Note: We do not deal with rule redundancy in this example.   

C2:   { ({School, Student}, Education),  ({School, Teach}, Education),  
  ({Student, Teach}, Education),  ({Baseball, Basketball}, Sport), 
  ({Baseball, Game}, Sport), ({Baseball, Team}, Sport),  

  ({Basketball, Game}, Sport),  ({Basketball, Team}, Sport), 
  ({Game, Team}, Sport)} 

F2:   { ({School, Student}, Education):(2, 2),   
 ({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)} 

CAR2:  School, Student → Education [sup = 2/7, conf = 2/2] 
 School, Teach → Education [sup = 2/7, conf = 2/2] 
 Game, Team → Sport [sup = 2/7, conf = 2/2] ▀ 

We note that for many applications involving target items, the data sets 
used are relational tables. They need to be converted to transaction forms 
before mining. We can use the method in Sect. 2.3 for the purpose.  

Example 18: In Fig. 2.11(A), the data set has three data attributes and a 
class attribute with two possible values, positive and negative. It is con-
verted to the transaction data in Fig. 2.11(B). Notice that for each class, we 
only use its original value. There is no need to attach the attribute “Class” 

Attribute1 Attribute2 Atribute3 Class 
a a x positive 
b n y negative 

(A) Table data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x)  : Positive 
t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y)  : negative 

(B) Transaction data 

Fig. 2.11. Converting a table data set (A) to a transaction data set (B)  
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because there is no ambiguity. As discussed in Sect. 2.3, for each numeric 
attribute, its value range needs to be discretized into intervals either manu-
ally or automatically before conversion and rule mining. There are many 
discretization algorithms. Interested readers are referred to [151]. ▀ 

2.5.3 Mining with Multiple Minimum Supports 

The concept of mining with multiple minimum supports discussed in Sect. 
2.4 can be incorporated in class association rule mining in two ways: 

1. Multiple minimum class supports: The user can specify different 
minimum supports for different classes. For example, the user has a data 
set with two classes, Yes and No. Based on the application requirement, 
he/she may want all rules of class Yes to have the minimum support of 
5% and all rules of class No to have the minimum support of 20%.  

2. Multiple minimum item supports: The user can specify a minimum 
item support for every item (either a class item/label or a non-class 
item). This is more general and is similar to normal association rule 
mining discussed in Sect. 2.4.  

For both approaches, similar mining algorithms to that given in Sect. 2.4 
can be devised. The support difference constraint in Sect. 2.4.1 can be in-
corporated as well. Like normal association rule mining with multiple 
minimum supports, by setting minimum class and/or item supports to more 
than 100% for some items, the user effectively instructs the algorithm not 
to generate rules involving only these items.  

Finally, although we have discussed only multiple minimum supports so 
far, we can easily use different minimum confidences for different classes 
as well, which provides an additional flexibility in applications.  

2.6 Basic Concepts of Sequential Patterns  

Association rule mining does not consider the order of transactions. How-
ever, in many applications such orderings are significant. For example, in 
market basket analysis, it is interesting to know whether people buy some 
items in sequence, e.g., buying bed first and then buying bed sheets some 
time later. In Web usage mining, it is useful to find navigational patterns 
in a Web site from sequences of page visits of users (see Chap. 12). In text 
mining, considering the ordering of words in a sentence is vital for finding 
linguistic or language patterns (see Chap. 11). For these applications, asso-
ciation rules will not be appropriate. Sequential patterns are needed. Be-
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low, we define the problem of mining sequential patterns and introduce the 
main concepts involved.  

Let I = {i1, i2, …, im} be a set of items. A sequence is an ordered list of 
itemsets. Recall an itemset X is a non-empty set of items X ⊆ I. We denote 
a sequence s by 〈a1a2…ar〉, where ai is an itemset, which is also called an 
element of s.  We denote an element (or an itemset) of a sequence by {x1, 
x2, …, xk}, where xj ∈ I is an item. We assume without loss of generality 
that items in an element of a sequence are in lexicographic order. An item 
can occur only once in an element of a sequence, but can occur multiple 
times in different elements. The size of a sequence is the number of ele-
ments (or itemsets) in the sequence. The length of a sequence is the num-
ber of items in the sequence. A sequence of length k is called a k-sequence. 
If an item occurs multiple times in different elements of a sequence, each 
occurrence contributes to the value of k. A sequence s1 = 〈a1a2…ar〉 is a 
subsequence of another sequence s2 = 〈b1b2…bv〉, or s2 is a supersequence 
of s1, if there exist integers 1 ≤ j1 < j2 < … < jr−1 < jr ≤ v such that a1 ⊆ bj1, 
a2 ⊆ bj2, …, ar ⊆ bjr. We also say that s2 contains s1.  

Example 19: Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The sequence 〈{3}{4, 5}{8}〉 is 
contained in (or is a subsequence of) 〈{6} {3, 7}{9}{4, 5, 8}{3, 8}〉 because {3} 
⊆ {3, 7}, {4, 5} ⊆ {4, 5, 8}, and {8} ⊆ {3, 8}. However, 〈{3}{8}〉 is not con-
tained in 〈{3, 8}〉 or vice versa. The size of the sequence 〈{3}{4, 5}{8}〉 is 3, 
and the length of the sequence is 4.  ▀ 

Objective: Given a set S of input data sequences (or sequence database), 
the problem of mining sequential patterns is to find all sequences that 
have a user-specified minimum support. Each such sequence is called a 
frequent sequence, or a sequential pattern. The support for a se-
quence is the fraction of total data sequences in S that contains this se-
quence.  

Example 20: We use the market basket analysis as an example. Each se-
quence in this context represents an ordered list of transactions of a par-
ticular customer. A transaction is a set of items that the customer pur-
chased at a time (called the transaction time). Then transactions in the 
sequence are ordered by increasing transaction time. Table 2.1 shows a 
transaction database which is already sorted according to customer ID (the 
major key) and transaction time (the minor key). Table 2.2 gives the data 
sequences (also called customer sequences). Table 2.3 gives the output 
sequential patterns with the minimum support of 25%, i.e., two customers. 
 ▀ 
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Table 2.1. A set of transactions sorted by customer ID and transaction time 

Customer ID Transaction Time Transaction (items bought) 
1 July 20, 2005 30 
1 July 25, 2005 90 
2 July 9, 2005 10, 20 
2 July 14, 2005 30 
2 July 20, 2005 10, 40, 60, 70 
3 July 25, 2005 30, 50, 70, 80 
4 July 25, 2005 30 
4 July 29, 2005 30, 40, 70, 80 
4 August 2, 2005 90 
5 July 12, 2005 90 

Table 2.2. The sequence database produced from the transactions in Table 2.1. 

Customer ID Data Sequence 
1 〈{30} {90}〉 
2 〈{10, 20} {30} {10, 40, 60, 70}〉
3 〈{30, 50, 70, 80}〉 
4 〈{30} {30, 40, 70, 80} {90}〉 
5 〈{90}〉 

Table 2.3. The final output sequential patterns 

 Sequential Patterns with Support ≥ 25% 
1-sequences 〈{30}〉, 〈{40}〉, 〈{70}〉, 〈{80}〉, 〈{90}〉  
2-sequences 〈{30} {40}〉, 〈{30} {70}〉, 〈{30}, {90}〉, 〈{30, 70}〉, 

〈{30, 80}〉, 〈{40, 70}〉,  〈{70, 80}〉 
3-sequences 〈{30} {40, 70}〉, 〈{30, 70, 80}〉 

2.7 Mining Sequential Patterns Based on GSP 

This section describes two algorithms for mining sequential patterns based 
on the GSP algorithm in [500]: the original GSP, which uses a single mini-
mum support, and MS-GSP, which uses multiple minimum supports.  

2.7.1 GSP Algorithm 

GSP works in almost the same way as the Apriori algorithm. We still use 
Fk to store the set of all frequent k-sequences, and Ck to store the set of all 
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candidate k-sequences. The algorithm is given in Fig. 2.12. The main dif-
ference is in the candidate generation, candidate-gen-SPM(), which is 
given in Fig. 2.13. We use an example to illustrate the function.  

Example 21:  Table 2.4 shows F3, and C4 after the join and prune steps. In 
the join step, the sequence 〈{1, 2}{4}〉 joins with 〈{2}{4, 5}〉 to produce 〈{1, 
2}{4, 5}〉, and joins with 〈{2}{4}{6}〉 to produce 〈{1, 2}{4} {6}〉. The other se-
quences cannot be joined. For instance, 〈{1}{4, 5}〉 does not join with any 
sequence since there is no sequence of the form 〈{4, 5}{x}〉 or 〈{4, 5, x}〉. In 
the prune step, 〈{1, 2}{4} {6}〉 is removed since 〈{1}{4} {6}〉 is not in F3.  ▀ 

Algorithm GSP(S) 
1 C1 ← init-pass(S);   // the first pass over S  
2 F1 ← {〈{f}〉| f ∈ C1, f.count/n ≥ minsup};  // n is the number of sequences in S 
3 for (k = 2; Fk−1 ≠ ∅; k++) do // subsequent passes over S 
4 Ck ← candidate-gen-SPM(Fk−1); 
5 for each data sequence s ∈ S do // scan the data once 
6 for each candidate c ∈ Ck do    
7 if c is contained in s then  
8  c.count++;  // increment the support count 
9 endfor 
10 endfor 
11 Fk ← {c ∈ Ck | c.count/n ≥ minsup} 
12 endfor 
13 return Uk Fk; 

Fig. 2.12. The GSP Algorithm for generating sequential patterns 

Function candidate-gen-SPM(Fk−1)  // SPM: Sequential Pattern Mining 
1. Join step. Candidate sequences are generated by joining Fk−1 with Fk−1. A se-

quence s1 joins with s2 if the subsequence obtained by dropping the first item 
of s1 is the same as the subsequence obtained by dropping the last item of s2. 
The candidate sequence generated by joining s1 with s2 is the sequence s1 ex-
tended with the last item in s2. There are two cases:  
• the added item forms a separate element if it was a separate element in s2, 

and is appended at the end of s1 in the merged sequence, and    
• the added item is part of the last element of s1 in the merged sequence oth-

erwise.  
When joining F1 with F1, we need to add the item in s2 both as part of an 
itemset and as a separate element. That is, joining 〈{x}〉 with 〈{y}〉 gives us 
both 〈{x, y}〉 and 〈{x}{y}〉. Note that x and y in {x, y} are ordered.  

2. Prune step. A candidate sequence is pruned if any one of its (k−1)-
subsequences is infrequent (without minimum support).  

Fig. 2.13. The candidate-gen-SPM function  
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Table 2.4. Candidate generation: an example 

Candidate 4-sequences Frequent 
3-sequences after joining after pruning
〈{1, 2} {4}〉 〈{1, 2} {4, 5}〉 〈{1, 2} {4, 5}〉 
〈{1, 2} {5}〉 〈{1, 2} {4} {6}〉  
〈{1} {4, 5}〉   
〈{1, 4} {6}〉   
〈{2} {4, 5}〉   
〈{2} {4} {6}〉   

2.7.2 Mining with Multiple Minimum Supports 

As in association rule mining, using a single minimum support in sequen-
tial pattern mining is also a limitation for many applications because some 
items appear very frequently in the data, while some others appear rarely.  

Example 22: One of the Web mining tasks is the mining of comparative 
sentences such as “the picture quality of camera X is better than that of 
camera Y.” from product reviews, forum postings and blogs (see Chap. 
11). Such a sentence usually contains a comparative indicator word such as 
better in the example. We want to discover linguistic patterns involving a 
set of given comparative indicators, e.g., better, more, less, ahead, win, 
superior, etc. Some of these indicators (e.g., more and better) appear very 
frequently in natural language sentences, while some others (e.g., win and 
ahead) appear rarely. In order to find patterns that contain such rare indi-
cators, we have to use a very low minsup. However, this causes patterns 
involving frequent indicators to generate a huge number of spurious pat-
terns. Moreover, we need a way to tell the algorithm that we only want pat-
terns that contain at least one comparative indicator. Using GSP with a 
single minsup is no longer appropriate. The multiple minimum supports 
model solves both problems nicely.  ▀ 

We again use the concept of minimum item supports (MIS). The user 
is allowed to assign each item a MIS value. By providing different MIS 
values for different items, the user essentially expresses different support 
requirements for different sequential patterns. To ease the task of specify-
ing many MIS values by the user, the same strategies as those for mining 
association rules can also be applied here (see Sect. 2.4.2).  

Let MIS(i) be the MIS value of item i. The minimum support of a se-
quential pattern P is the lowest MIS value among the items in the pattern. 
Let the set of items in P be: i1, i2, …, ir. The minimum support for P is:  
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 minsup(P) = min(MIS(i1), MIS(i2), …, MIS(ir)). 

The new algorithm, called MS-GSP, is given in Fig. 2.14. It generalizes 
the GSP algorithm in Fig. 2.12. Like GSP, MS-GSP is also based on level-
wise search. Line 1 sorts the items in ascending order according to their 
MIS values stored in MS. Line 2 makes the first pass over the sequence 
data using the function init-pass(), which performs the same function as 
that in MS-Apriori to produce the seeds set L for generating the set of can-
didate sequences of length 2, i.e., C2. Frequent 1-sequences (F1) are ob-
tained from L (line 3).  

For each subsequent pass, the algorithm works similarly to MS-Apriori. 
The function level2-candidate-gen-SPM() can be designed based on 
level2-candidate-gen in MS-Apriori and the join step in Fig. 2.13. MScan-
didate-gen-SPM() is, however, complex, which we will discuss shortly.  

In line 13, c.minMISItem gives the item that has the lowest MIS value in 
the candidate sequence c. Unlike that in MS-Apriori, where the first item 
in each itemset has the lowest MIS value, in sequential pattern mining the 
item with the lowest MIS value may appear anywhere in a sequence. Simi-
lar to those in MS-Apriori, lines 13 and 14 are used to ensure that all se-
quential rules can be generated after MS-GSP without scanning the origi-
nal data. Note that in traditional sequential pattern mining, sequential rules 
are not defined. We will define several types in Sect. 2.9. 

Algorithm MS-GSP(S, MS) // MS stores all MIS values
1 M ← sort(I, MS);  // according to MIS(i)’s stored in MS  
2 L ← init-pass(M, S);   // make the first pass over S  
3 F1 ← {〈{l}〉 | l ∈ L, l.count/n ≥ MIS(l)};  // n is the size of S 
4 for (k = 2; Fk−1 ≠ ∅; k++) do 
5  if k = 2 then   
6 Ck ← level2-candidate-gen-SPM(L)  
7 else Ck ← MScandidate-gen-SPM(Fk−1) 
8 endif 
9 for each data sequence s ∈ S do 
10 for each candidate c ∈ Ck do   
11 if c is contained in s then  
12  c.count++ 
13 if c’ is contained in s, where c’ is c after an occurrence of 

c.minMISItem is removed from c then 
14  c.rest.count++ // c.rest: c without c.minMISItem 
15 endfor 
16 endfor 
17 Fk ← {c ∈ Ck | c.count/n ≥ MIS(c.minMISItem)} 
18 endfor 
19 return F ← Uk Fk; 

Fig. 2.14. The MS-GSP algorithm 
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Let us now discuss MScandidate-gen-SPM(). In MS-Apriori, the order-
ing of items is not important and thus we put the item with the lowest MIS 
value in each itemset as the first item of the itemset, which simplifies the 
join step. However, for sequential pattern mining, we cannot artificially 
put the item with the lowest MIS value as the first item in a sequence be-
cause the ordering of items is significant. This causes problems for joining. 

Example 23: Assume we have a sequence s1 = 〈{1, 2}{4}〉 in F3, from 
which we want to generate candidate sequences for the next level. Suppose 
that item 1 has the lowest MIS value in s1. We use the candidate generation 
function in Fig. 2.13. Assume also that the sequence s2 = 〈{2}{4, 5}〉 is not 
in F3 because its minimum support is not satisfied. Then we will not gen-
erate the candidate 〈{1, 2}{4, 5}〉. However, 〈{1, 2}{4, 5}〉 can be frequent be-
cause items 2, 4, and 5 may have higher MIS values than item 1.  ▀ 

To deal with this problem, let us make an observation. The problem 
only occurs when the first item in the sequence s1 or the last item in the se-
quence s2 is the only item with the lowest MIS value, i.e., no other item in 
s1 (or s2) has the same lowest MIS value. If the item (say x) with the lowest 
MIS value is not the first item in s1, then s2 must contain x, and the candi-
date generation function in Fig. 2.13 will still be applicable. The same rea-
soning goes for the last item of s2. Thus, we only need special treatment for 
these two cases.  

Let us see how to deal with the first case, i.e., the first item is the only 
item with the lowest MIS value. We use an example to develop the idea. 
Assume we have the frequent 3-sequence of s1 = 〈{1, 2}{4}〉. Based on the 
algorithm in Fig. 2.13, s1 may be extended to generate two possible candi-
dates using 〈{2}{4}{x}〉 and 〈{2}{4, x}〉  

c1 = 〈{1, 2}{4}{x}〉  and  c2 = 〈{1, 2}{4, x}〉, 

where x is an item. However, 〈{2}{4}{x}〉 and 〈{2}{4, x}〉 may not be frequent 
because items 2, 4, and x may have higher MIS values than item 1,  but we 
still need to generate c1 and c2 because they can be frequent. A different 
join strategy is thus needed.  

We observe that for c1 to be frequent, the subsequence s2 = 〈{1}{4}{x}〉 
must be frequent. Then, we can use s1 and s2 to generate c1. c2 can be gen-
erated in a similar manner with s2 = 〈{1}{4, x}〉. s2 is basically the subse-
quence of c1 (or c2) without the second item. Here we assume that the MIS 
value of x is higher than item 1. Otherwise, it falls into the second case. 

Let us see the same problem for the case where the last item has the 
only lowest MIS value. Again, we use an example to illustrate. Assume we 
have the frequent 3-sequence s2 = 〈{3, 5}{1}〉. It can be extended to produce 
two possible candidates based on the algorithm in Fig. 2.13,  
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c1 = 〈{x}{3, 5}{1}〉, and c2 = 〈{x, 3, 5}{1}〉. 

For c1 to be frequent, the subsequence s1 = 〈{x}{3}{1}〉 has to be frequent 
(we assume that the MIS value of x is higher than that of item 1). Thus, we 
can use s1 and s2 to generate c1. c2 can be generated with s1 = 〈{x, 3}{1}〉. s1 
is basically the subsequence of c1 (or c2) without the second last item.  

The MScandidate-gen-SPM() function is given in Fig. 2.15, which is 
self-explanatory. Some special treatments are needed for 2-sequences be-
cause the same s1 (or s2) may generate two candidate sequences. We use 
two examples to show the working of the function.  

Example 24: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,  
MIS(1) = 0.03  MIS(2) = 0.05  MIS(3) = 0.03  
MIS(4) = 0.07  MIS(5) = 0.08  MIS(6) = 0.09. 

Function MScandidate-gen-SPM(Fk−1)  
1 Join Step. Candidate sequences are generated by joining Fk−1 with Fk−1. 
2 if the MIS value of the first item in a sequence (denoted by s1) is less than (<) 

the MIS value of every other item in s1 then // s1 and s2 can be equal  
 Sequence s1 joins with s2 if (1) the subsequences obtained by dropping the 

second item of s1 and the last item of s2 are the same, and (2) the MIS 
value of the last item of s2 is greater than that of the first item of s1. Candi-
date sequences are generated by extending s1 with the last item of s2:  
• if the last item l in s2 is a separate element then  
 {l} is appended at the end of s1 as a separate element to form a candi-

date sequence c1. 
if (the length and the size of s1 are both 2) AND (the last item of s2 is 

greater than the last item of s1) then  // maintain lexicographic order 
l is added at the end of the last element of s1 to form another candi-

date sequence c2. 
• else  if ((the length of s1 is 2 and the size of s1 is 1) AND (the last item 

of s2 is greater than the last item of s1)) OR (the length of s1 
is greater than 2) then  

 the last item in s2 is added at the end of the last element of s1 to 
form the candidate sequence c2. 

3 elseif the MIS value of the last item in a sequence (denoted by s2) is less than 
(<) the MIS value of every other item in s2 then 

 A similar method to the one above can be used in the reverse order.  
4  else  use the Join Step in Fig. 2.13  
5 Prune step: A candidate sequence is pruned if any one of its (k−1)-

subsequences is infrequent (without minimum support) except the subse-
quence that does not contain the item with strictly the lowest MIS value.  

Fig. 2.15. The MScandidate-gen-SPM function 
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The data set has 100 sequences. The following frequent 3-sequences are in 
F3 with their actual support counts attached after “:”:  

(a). 〈{1}{4}{5}〉:4  (b). 〈{1}{4}{6}〉:5  (c). 〈{1}{5}{6}〉:6 
(d). 〈{1}{5, 6}〉:5 (e). 〈{1}{6}{3}〉:4  (f).  〈{6}{3}{6}〉:9 
(g). 〈{5, 6}{3}〉:5  (h). 〈{5}{4}{3}〉:4 (i).  〈{4}{5}{3}〉:7. 

For sequence (a) (= s1), item 1 has the lowest MIS value. It cannot join 
with sequence (b) because condition (1) in Fig. 2.15 is not satisfied. How-
ever, (a) can join with (c) to produce the candidate sequence, 〈{1}{4}{5}{6}〉. 
(a) can also join with (d) to produce 〈{1}{4}{5, 6}〉. (b) can join with (e) to 
produce 〈{1}{4}{6}{3}〉, which is pruned subsequently because 〈{1}{4}{3}〉 is 
infrequent. (d) and (e) can be joined to give 〈{1}{5, 6}{3}〉, but it is pruned 
because 〈{1}{5}{3}〉 does not exist. (e) can join with (f) to produce 
〈{1}{6}{3}{6}〉 which is done in line 4 because both item 1 and item 3 in (e) 
have the same MIS value. However, it is pruned because 〈{1}{3}{6}〉 is in-
frequent. We do not join (d) and (g), although they can be joined based on 
the algorithm in Fig. 2.13, because the first item of (d) has the lowest MIS 
value and we use a different join method for such sequences.  

Now we look at 3-sequences whose last item has strictly the lowest MIS 
value. (i) (= s1) can join with (h) (= s2) to produce 〈{4}{5}{4}{3}〉. However, 
it is pruned because 〈{4}{4}{3}〉 is not in F3. ▀ 

Example 25: Now we consider generating candidates from frequent 2-
sequences, which is special as we noted earlier. We use the same items and 
MIS values in Example 24. The following frequent 2-sequences are in F2 
with their actual support counts attached after “:”:  

(a). 〈{1}{5}〉:6  (b). 〈{1}{6}〉:7  (c) 〈{5}{4}〉:8  
(d). 〈{1, 5}〉:6 (e). 〈{1, 6}〉:6.  

(a) can join with (b) to produce both 〈{1}{5}{6}〉 and 〈{1}{5, 6}〉. (b) can join 
with (d) to produce 〈{1, 5}{6}〉. (e) can join with (a) to produce 〈{1, 6}{5}〉. 
Clearly, there are other joins. Again, (a) will not join with (c).  ▀ 

Note that the support difference constraint in Sect. 2.4.1 can also be 
included. We omitted it to simplify the algorithm as it is already complex. 
Also, the user can instruct the algorithm to generate only certain sequential 
patterns or not to generate others by setting the MIS values suitably.  

2.8  Mining Sequential Patterns Based on PrefixSpan 

We now introduce another sequential pattern mining algorithm, called Pre-
fixSpan [439], which does not generate candidates. Different from the GSP 



46       2 Association Rules and Sequential Patterns 

algorithm [500], which can be regarded as performing breadth-first search 
to find all sequential patterns, PrefixSpan performs depth-first search.  

2.8.1  PrefixSpan Algorithm 

It is easy to introduce the original PrefixSpan algorithm using an example.  

Example 26: Consider again mining sequential patterns from Table 2.2 
with minsup = 25%. PrefixSpan first sorts all items in each element (or 
itemset) as shown in the table. Then, by one scan of the sequence database, 
it finds all frequent items, i.e., 30, 40, 70, 80 and 90. The corresponding 
length one sequential patterns are 〈{30}〉, 〈{40}〉, 〈{70}〉, 〈{80}〉 and 〈{90}〉. 

We notice that the complete set of sequential patterns can actually be 
divided into five mutually exclusive subsets: the subset with prefix 〈{30}〉, 
the subset with prefix 〈{40}〉, the subset with prefix 〈{70}〉, the subset with 
prefix 〈{80}〉, and the subset with prefix 〈{90}〉. We only need to find the 
five subsets one by one.  

To find sequential patterns having prefix 〈{30}〉, the algorithm extends 
the prefix by adding items to it one at a time. To add the next item x, there 
are two possibilities, i.e., x joining the last itemset of the prefix (i.e., 〈{30, 
x}〉) and x forming a separate itemset (i.e., 〈{30}{x}〉). PrefixSpan performs 
the task by first forming the 〈{30}〉-projected database and then finding all 
the cases of the two types in the projected database. The projected database 
is produced as follows: If a sequence contains item 30, then the suffix fol-
lowing the first 30 is extracted as a sequence in the projected database. 
Furthermore, since infrequent items cannot appear in a sequential pattern, 
all infrequent items are removed from the projection. The first sequence in 
our example, 〈{30}{90}〉, is projected to 〈{90}〉. The second sequence, 〈{10, 
20}{30}{10, 40, 60, 70}〉, is projected to 〈{40, 70}〉, where the infrequent 
items 10 and 60 are removed. The third sequence 〈{30, 50, 70, 80}〉 is pro-
jected to 〈{_, 70, 80}〉, where the infrequent item 50 is removed. Note that 
the underline symbol “_” in this projection denotes that the items (only 30 
in this case) in the last itemset of the prefix are in the same itemset as items 
50, 70 and 80 in the sequence. The fourth sequence is projected to 〈{30, 40, 
70, 80}{90}〉. The projection of the last sequence is empty since it does not 
contain item 30. The final projected database for prefix 〈{30}〉 contains the 
following sequences: 

〈{90}〉, 〈{40, 70}〉, 〈{_, 70, 80}〉, and 〈{30, 40, 70, 80}{90}〉 

By scanning the projected database once, PrefixSpan finds all possible 
one item extensions to the prefix, i.e., all x’s for 〈{30, x}〉 and all x’s for 
〈{30}{x}〉. Let us discuss the details.   
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Find All Frequent Patterns of the Form 〈{30, x}〉: Two templates {_, x} 
and {30, x} are used to match each projected sequence to accumulate the 
support count for each possible x (here x matches any item). If in the same 
sequence multiple matches are found with the same x, they are only 
counted once. Note that in general, the second template should use the last 
itemset in the prefix rather than only its last item. In our example, they are 
the same because there is only one item in the last itemset of the prefix. 

Find All Frequent Patterns of the Form 〈{30}{x}〉: In this case, x’s are 
frequent items in the projected database that are not in the same itemset as 
the last item of the prefix.  

Let us continue with our example. It is easy to check that both items 70 
and 80 are in the same itemset as 30. That is, we have two frequent se-
quences 〈{30, 70}〉 and 〈{30, 80}〉. The support count of 〈{30, 70}〉 is 2 based 
on the projected database; one from the projected sequence 〈{_, 70, 80}〉 (a 
{_, x} match) and one from the projected sequence 〈{30, 40, 70, 80}{90}〉 (a 
{30, x} match). In both cases, the x’s are the same, i.e., 70. Similarly, the 
support count of 〈{30, 80}〉 is 2 as well and thus frequent.  

It is also easy to check that items 40, 70, and 90 are also frequent but 
not in the same itemset as 30. Thus, 〈{30}{40}〉, 〈{30}{70}〉, and 〈{30}{90}〉 
are three sequential patterns. The set of sequential patterns having prefix 
〈{30}〉 can be further divided into five mutually exclusive subsets: the ones 
with prefixes 〈{30, 70}〉, 〈{30, 80}〉, 〈{30}{40}〉, 〈{30}{70}〉, and 〈{30}{90}〉. 

We can recursively find the five subsets by forming their corresponding 
projected databases. For example, to find sequential patterns having prefix 
〈{30}{40}〉, we can form the 〈{30}{40}〉-projected database containing pro-
jections 〈{_, 70}〉 and 〈{_, 70, 80}{90}〉. Template 〈{_, x}〉 has two matches 
and in both cases x is 70. Thus, 〈{30}{40, 70}〉 is output as a sequential pat-
tern. Since there is no other frequent item in this projected database, the 
prefix cannot grow longer. The depth-first search returns from this branch. 

After completing the mining of the 〈{30}〉-projected database, we find all 
sequential patterns with prefix 〈{30}〉, i.e., 〈{30}〉, 〈{30}{40}〉, 〈{30}{40, 70}〉, 
〈{30}{70}〉, 〈{30}{90}〉, 〈{30, 70}〉, 〈{30, 80}〉 and 〈{30, 70, 80}〉  

By forming and mining the 〈{40}〉-, 〈{70}〉-, 〈{80}〉- and 〈{90}〉-projected 
databases, the remaining sequential patterns can be found.  ▀ 

The pseudo code of PrefixSpan can be found in [439]. Comparing to the 
breadth-first search of GSP, the key advantage of PrefixSpan is that it does 
not generate any candidates. It only counts the frequency of local items. 
With a low minimum support, a huge number of candidates can be gener-
ated by GSP, which can cause memory and computational problems.  
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2.8.2  Mining with Multiple Minimum Supports 

The PrefixSpan algorithm can be adapted to mine with multiple minimum 
supports. Again, let MIS(i) be the user-specified minimum item support 
of item i. Let ϕ be the user-specified support difference threshold in the 
support difference constraint (Sect. 2.4.1), i.e., |sup(i) – sup(j)| ≤ ϕ, 
where i and j are items in the same sequential pattern, and sup(x) is the ac-
tual support of item x in the sequence database S. PrefixSpan can be modi-
fied as follows. We call the modified algorithm MS-PS.  
1. Find every item i whose actual support in the sequence database S is at 

least MIS(i). i is called a frequent item.  
2. Sort all the discovered frequent items in ascending order according to 

their MIS values. Let i1, …, iu be the frequent items in the sorted order.  
3. For each item ik in the above sorted order,  

(i) identify all the data sequences in S that contain ik and at the same 
time remove every item j in each sequence that does not satisfy 
|sup(j) – sup(ik)| ≤ ϕ. The resulting set of sequences is denoted by Sk. 
Note that we are not using ik as the prefix to project the database S. 

(ii) call the function r-PrefixSpan(ik, Sk, count(MIS(ik))) (restricted Pre-
fixSpan), which finds all sequential patterns that contain ik, i.e., no 
pattern that does not contain ik should be generated. r-PrefixSpan() 
uses count(MIS(ik)) (the minimum support count in terms of the 
number of sequences) as the only minimum support for mining in Sk. 
The sequence count is easier to use than the MIS value in percent-
age, but they are equivalent. Once the complete set of such patterns 
is found from Sk, All occurrences of ik are removed from S.  

r-PrefixSpan() is almost the same as PrefixSpan with one important differ-
ence. During each recursive call, either the prefix or every sequence in the 
projected database must contain ik because, as we stated above, this func-
tion finds only those frequent sequences that contain ik. Another minor dif-
ference is that the support difference constraint needs to be checked during 
each projection as sup(ik) may not be the lowest in the pattern.  

Example 27: Consider mining sequential patterns from Table 2.5. Let 
MIS(20) = 30% (3 sequences in minimum support count), MIS(30) = 20% 
(2 sequences), MIS(40) = 30% (3 sequences), and the MIS values for the 
rest of the items be 15% (2 sequences). We ignore the support difference 
constraint as it is simple. In step 1, we find three frequent items, 20, 30 
and 40. After sorting in step 2, we have (30, 20, 40). We then go to step 3.  

In the first iteration of step 3, we work on i1 = 30. Step 3(i) gives us the 
second, fourth and sixth sequences in Table 2.5, i.e.,  
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S1 = {〈{40}{30}{40, 60}〉, 〈{30}{20, 40}{40, 100}〉, 〈{40}{30}{110}〉}.  

We then run r-PrefixSpan(30, S1, 2) in step 3(ii). The frequent items in 
S1 are 30, and 40. They both have the support of 3 sequences. The length 
one frequent sequence is only 〈{30}〉. 〈{40}〉 is not included because we re-
quire that every frequent sequence must contain 30. We next find frequent 
sequences having prefix 〈{30}〉. The database S1 is projected to give 〈{40}〉 
and 〈{40}{40}〉. 20, 60 and 100 have been removed because their supports in 
S1 are less than the required support for item 30 (i.e., 2 sequences). For the 
same reason, the projection of 〈{40}{30}{110}〉 is empty. Thus, we find a 
length two frequent sequence 〈{30}{40}〉. In this case, there is no item in the 
same itemset as 30 to form a frequent sequence of the form 〈{30, x}〉. 

Next, we find frequent sequences with prefix 〈{40}〉. We again project 
S1, which gives us only 〈{30}{40}〉 and 〈{30}〉. 〈{40, 100}〉 is not included be-
cause it does not contain 30. This projection gives us another length two 
frequent sequence 〈{40}{30}〉. The first iteration of step 3 ends. 

In the second iteration of step 3, we work on i2 = 20. Step 3(i) gives us 
the first, fourth, fifth and seventh sequences in Table 2.5 with item 30 re-
moved, S2 = {〈{20, 50}〉, 〈{20, 40}{40, 100}〉, 〈{20, 40}{10}〉, 〈{20}{80}{70}〉}. 
It is easy to see that only item 20 is frequent, and thus only a length one 
frequent sequence is generated, 〈{20}〉.  

In the third iteration of step 3, we work on i3 = 40. We can verify that 
again only one frequent sequence, i.e., 〈{40}〉, is found.  

The final set of sequential patterns generated from the sequence data-
base in Table 2.5 is {〈{30}〉, 〈{20}〉, 〈{40}〉, 〈{40}{30}〉, 〈{30}{40}〉}.  ▀ 

2.9  Generating Rules from Sequential Patterns 

In classic sequential pattern mining, no rules are generated. It is, however, 
possible to define and generate many types of rules. This section intro-

Table 2.5. An example of a sequence database 

Sequence ID Data Sequence 
1 〈{20, 50}〉 
2 〈{40}{30}{40, 60}〉 
3 〈{40, 90, 120}〉 
4 〈{30}{20, 40}{40, 100}〉 
5 〈{20, 40}{10}〉 
6 〈{40}{30}{110}〉 
7 〈{20}{80}{70}〉 
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duces only three types, sequential rules, label sequential rules and class 
sequential rules, which have been used in Web usage mining and Web 
content mining (see Chaps. 11 and 12). 

2.9.1  Sequential Rules 

A sequential rule (SR) is an implication of the form, X → Y, where Y is a 
sequence and X is a proper subsequence of Y, i.e., X is a subsequence of Y 
and the length Y is greater than the length of X. The support of a sequen-
tial rule, X → Y, in a sequence database S is the fraction of sequences in S 
that contain Y. The confidence of a sequential rule, X → Y, in S is the pro-
portion of sequences in S that contain X also contain Y.  

Given a minimum support and a minimum confidence, according to the 
downward closure property, all the rules can be generated from frequent 
sequences without going to the original sequence data. Let us see an ex-
ample of a sequential rule found from the data sequences in Table 2.6.  

Table 2.6. An example of a sequence database for mining sequential rules 

 Data Sequence 
1 〈{1}{3}{5}{7, 8, 9}〉 
2 〈{1}{3}{6}{7, 8}〉 
3 〈{1, 6}{7}〉 
4 〈{1}{3}{5, 6}〉 
5 〈{1}{3}{4}〉 

Example 28: Given the sequence database in Table 2.6, the minimum sup-
port of 30% and the minimum confidence of 60%, one of the sequential 
rules found is the following,  

〈{1}{7}〉 → 〈{1}{3}{7, 8}〉  [sup = 2/5, conf = 2/3] 

Data sequences 1, 2 and 3 contain 〈{1}{7}〉, and data sequences 1 and 2 con-
tain 〈{1}{3}{7, 8}〉.  ▀ 

If multiple minimum supports are used, we can employ the results of 
multiple minimum support pattern mining to generate all the rules.  

2.9.2 Label Sequential Rules  

Sequential rules may not be restrictive enough in some applications. We 
introduce a special kind of sequential rules called label sequential rules. 
A label sequential rule (LSR) is of the form, X → Y, where Y is a sequence 
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and X is a sequence produced from Y by replacing some of its items with 
wildcards. A wildcard is denoted by an “*” which matches any item. These 
replaced items are usually very important and are called labels. The labels 
are a small subset of all the items in the data.  

Example 29: Given the sequence database in Table 2.6, the minimum sup-
port of 30% and the minimum confidence of 60%, one of the label sequen-
tial rules found is the following,  

〈{1}{*}{7, *}〉 → 〈{1}{3}{7, 8}〉  [sup = 2/5, conf = 2/2]. 

Notice the confidence change compared to the rule in Example 28. The 
supports of the two rules are the same. In this case, data sequences 1 and 2 
contain 〈{1}{*}{7, *}〉, and they also contain 〈{1}{3}{7, 8}〉. Items 3 and 8 are 
labels.   ▀ 

LSRs are useful because in some applications we need to predict the la-
bels in an input sequence, e.g., items 3 and 8 above. The confidence of the 
rule simply gives us the estimated probability that the two “*”s are 3 and 8 
given that an input sequence contains 〈{1}{*}{7, *}〉. We will see an applica-
tion of LSRs in Chap. 11, where we want to predict whether a word in a 
comparative sentence is an entity (e.g., a product name), which is a label.  

Note that due to the use of wildcards, frequent sequences alone are not 
sufficient for computing rule confidences. Scanning the data is needed. 
Notice also that the same pattern may appear in a data sequence multiple 
times. Rule confidences thus can be defined in different ways according to 
application needs. The wildcards may also be restricted to match only cer-
tain types of items to make the label prediction meaningful and unambigu-
ous (see some examples in Chap. 11).  

2.9.3 Class Sequential Rules 

Class sequential rules (CSR) are analogous to class association rules 
(CAR). Let S be a set of data sequences. Each sequence is also labeled 
with a class y. Let I be the set of all items in S, and Y be the set of all class 
labels, I ∩ Y = ∅. Thus, the input data D for mining is represented with 
{(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence in S and yi ∈ Y is its 
class. A class sequential rule (CSR) is of the form  

 X → y, where X is a sequence, and y ∈ Y.  

A data instance (si, yi) is said to cover a CSR, X → y, if X is a subsequence 
of si. A data instance (si, yi) is said to satisfy a CSR if X is a subsequence 
of si and yi = y.  
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Example 30: Table 2.7 gives an example of a sequence database with five 
data sequences and two classes, c1 and c2. Using the minimum support of 
30% and the minimum confidence of 60%, one of the discovered CSRs is:  

〈{1}{3}{7, 8}〉 → c1  [sup = 2/5, conf = 2/3]. 

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 
cover the rule.  ▀ 

Table 2.7. An example of a sequence database for mining CSRs 

 Data Sequence Class 
1 〈{1}{3}{5}{7, 8, 9}〉 c1 
2 〈{1}{3}{6}{7, 8}〉 c1 
3 〈{1, 6}{9}〉 c2 
4 〈{3}{5, 6}〉 c2 
5 〈{1}{3}{4}{7, 8}〉 c2 

As in class association rule mining, we can modify the GSP and Prefix-
Span algorithms to produce algorithms for mining all CSRs. Similarly, we 
can also use multiple minimum class supports and/or multiple minimum 
item supports as in class association rule mining.   

Bibliographic Notes 

Association rule mining was introduced in 1993 by Agrawal et al. [9]. 
Since then, numerous research papers have been published on the topic. 
This short chapter only introduces some basics, and it, by no means, does 
justice to the huge body of work in the area. The bibliographic notes here 
should help you explore further.  

Since given a data set, a minimum support and a minimum confidence, 
the solution (the set of frequent itemsets or the set of rules) is unique, most 
papers improve the mining efficiency. The most well-known algorithm is 
the Apriori algorithm proposed by Agrawal and Srikant [11], which has 
been studied in this chapter. Another important algorithm is the FP-
growth algorithm proposed by Han et al. [220]. The algorithm compresses 
the data and stores it in memory using a frequent pattern tree. It then mines 
all frequent itemsets without candidate generation. Other notable algo-
rithms include those by Agarwal et al. [2], Mannila et al. [361], Park et al. 
[435], Zaki et al. [589], etc. An efficiency comparison of various algo-
rithms was reported by Zheng et al. [616].  

Apart from performance improvements, several variations of the origi-
nal model were also proposed. Srikant and Agrawal [499], and Han and Fu 
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[217] proposed two algorithms for mining generalized association rules 
or multi-level association rules. Liu et al. [344] extended the original 
model to take multiple minimum supports, which was also studied by 
Wang et al. [534], Seno and Karypis [482], Xiong et al. [562], etc. Srikant 
et al. [502] proposed to mine association rules with item constraints. The 
model restricts the rules that should be generated. Ng et al. [408] general-
ized the idea, which was followed by many subsequent papers on the topic 
of constrained rule mining.  

It is well known that association rule mining often generates a huge 
number of frequent itemsets and rules. Bayardo [42], and Lin and Kedem 
[334] introduced the problem of mining maximal frequent itemsets, 
which are itemsets with no frequent supersets. Improved algorithms are re-
ported in many papers [e.g., 2, 73]. Since maximal pattern mining only 
finds longest patterns, the support information of their subsets, which are 
obviously also frequent, is not found. As a result, association rules cannot 
be generated. The next significant development was the mining of closed 
frequent itemsets studied by Pasquier et al. [436], Zaki and Hsiao [588], 
and Wang et al. [529]. Closed itemsets are better than maximal frequent 
itemsets because closed frequent itemsets provide a lossless concise repre-
sentation of all frequent itemsets.  

Other developments on association rules include cyclic association 
rules proposed by Ozden et al. [420], periodic patterns by Yang et al. 
[571], negative association rules by Savasere [476] and Wu et al. [560], 
weighted association rules by Wang et al. [539], association rules with 
numerical variables by Webb [541], class association rules by Liu et al. 
[343], high-performance rule mining by Buehrer et al. [72] and many 
others. Recently, Cong et al. [112, 113] introduced association rule mining 
from bioinformatics data, which typically have a very large number of at-
tributes (more than ten thousands) but only a very small number of records 
or transactions (less than 100).  

Another major research area on association rules is the interestingness 
of discovered rules. Since an association rule miner often generates a huge 
number of rules, it is very difficult, if not impossible, for human users to 
inspect them in order to find those truly interesting rules. Researchers have 
proposed many techniques to help users identify such rules easily [e.g., 43, 
283, 342, 345, 346, 352, 421, 492, 511, 522, 535, 565]. A deployed data 
mining system that uses some of the techniques is reported in [352].  

Regarding sequential pattern mining, the first algorithm was proposed 
by Agrawal and Srikant [12], which was a direct application of the Apriori 
algorithm. Improvements were made subsequently by several researchers, 
e.g., Ayres et al. [29], Pei et al. [439], Srikant and Agrawal [500], Zaki 
[586], etc. The MS-GSP and MS-PS algorithms for mining sequential pat-
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terns with multiple minimum supports and the support difference con-
straint are introduced in this book. Label and class sequential rules have 
been used in [255, 256] for mining comparative sentences from text docu-
ments. 

There are several publicly available implementations of algorithms for 
mining frequent itemsets, maximal frequent itemsets, closed frequent item-
sets, and sequential patterns from various research groups, most notably 
from those of Jiawei Han, Johnanne Gehrke, and Mohammed Zaki. There 
were also two workshops dedicated to frequent itemset mining organized 
by Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, which re-
ported many efficient implementations. The workshop Web sites are 
http://fimi.cs.helsinki.fi/fimi03/ and http://fimi.cs.helsinki.fi/fimi04/.  



 

 

3 Supervised Learning 

Supervised learning has been a great success in real-world applications. It 
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from 
past experiences to gain new knowledge in order to improve our ability to 
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past 
and represent past experiences in some real-world applications.  

There are several types of supervised learning tasks. In this chapter, we 
focus on one particular type, namely, learning a target function that can be 
used to predict the values of a discrete class attribute. This type of learning 
has been the focus of the machine learning research and is perhaps also the 
most widely used learning paradigm in practice. This chapter introduces a 
number of such supervised learning techniques. They are used in almost 
every Web mining application. We will see their uses from Chaps. 6–12.  

3.1 Basic Concepts 

A data set used in the learning task consists of a set of data records, which 
are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes 
the number of attributes or the size of the set A. The data set also has a 
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in A due to its 
special status, i.e., we assume that C is not in A. The class attribute C has a 
set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of 
classes and |C| ≥ 2. A class value is also called a class label. A data set for 
learning is simply a relational table. Each data record describes a piece of 
“past experience”. In the machine learning and data mining literature, a 
data record is also called an example, an instance, a case or a vector. A 
data set basically consists of a set of examples or instances.  

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in A and classes in 
C. The function can be used to predict the class values/labels of the future 
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data. The function is also called a classification model, a predictive 
model or simply a classifier. We will use these terms interchangeably in 
this book. It should be noted that the function/model can be in any form, 
e.g., a decision tree, a set of rules, a Bayesian model or a hyperplane.  

Example 1: Table 3.1 shows a small loan application data set. It has four 
attributes. The first attribute is Age, which has three possible values, 
young, middle and old. The second attribute is Has_Job, which indicates 
whether an applicant has a job. Its possible values are true (has a job) and 
false (does not have a job). The third attribute is Own_house, which shows 
whether an applicant owns a house. The fourth attribute is Credit_rating, 
which has three possible values, fair, good and excellent. The last column 
is the Class attribute, which shows whether each loan application was ap-
proved (denoted by Yes) or not (denoted by No) in the past.  

Table 3.1. A loan application data set  

ID Age Has_job Own_house Credit_rating Class 
1 young false false fair No 
2 young false false good No 
3 young true false good Yes 
4 young true true fair Yes 
5 young false false fair No 
6 middle false false fair No 
7 middle false false good No 
8 middle true true good Yes 
9 middle false true excellent Yes 

10 middle false true excellent Yes 
11 old false true excellent Yes 
12 old false true good Yes 
13 old true false good Yes 
14 old true false excellent Yes 
15 old false false fair No 

We want to learn a classification model from this data set that can be 
used to classify future loan applications. That is, when a new customer 
comes into the bank to apply for a loan, after inputting his/her age, whether 
he/she has a job, whether he/she owns a house, and his/her credit rating, 
the classification model should predict whether his/her loan application 
should be approved.  ▀ 

Our learning task is called supervised learning because the class labels 
(e.g., Yes and No values of the class attribute in Table 3.1) are provided in 
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the data. It is as if some teacher tells us the classes. This is in contrast to 
the unsupervised learning, where the classes are not known and the learn-
ing algorithm needs to automatically generate classes. Unsupervised learn-
ing is the topic of the next chapter.  

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a 
learning algorithm, it is evaluated using a set of test data (or unseen 
data) to assess the model accuracy.  

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels. 
That is why the test data can be used to assess the accuracy of the learned 
model because we can check whether the class predicted for each test case 
by the model is the same as the actual class of the test case. In order to 
learn and also to test, the available data (which has classes) for learning is 
usually split into two disjoint subsets, the training set (for learning) and the 
test set (for testing). We will discuss this further in Sect. 3.3.  

The accuracy of a classification model on a test set is defined as:  

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy  (1) 

where a correct classification means that the learned model predicts the 
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Sect. 3.3.  

We pause here to raises two important questions:  
1. What do we mean by learning by a computer system? 
2. What is the relationship between the training and the test data?  
We answer the first question first. Given a data set D representing past 
“experiences”, a task T and a performance measure M, a computer system 
is said to learn from the data to perform the task T if after learning the sys-
tem’s performance on the task T improves as measured by M. In other 
words, the learned model or knowledge helps the system to perform the 
task better as compared to no learning. Learning is the process of building 
the model or extracting the knowledge.  

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance 
measure M is the accuracy in Equation (1). With the data set in Table 3.1, 
if there is no learning, all we can do is to guess randomly or to simply take 
the majority class (which is the Yes class). Suppose we use the majority 
class and announce that every future instance or case belongs to the class 
Yes. If the future data are drawn from the same distribution as the existing 
training data in Table 3.1, the estimated classification/prediction accuracy 
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on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the 
total of 15 examples in Table 3.1. The question is: can we do better with 
learning? If the learned model can indeed improve the accuracy, then the 
learning is said to be effective. 

The second question in fact touches the fundamental assumption of 
machine learning, especially the theoretical study of machine learning. 
The assumption is that the distribution of training examples is identical to 
the distribution of test examples (including future unseen examples). In 
practical applications, this assumption is often violated to a certain degree. 
Strong violations will clearly result in poor classification accuracy, which 
is quite intuitive because if the test data behave very differently from the 
training data then the learned model will not perform well on the test data. 
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.   

We now illustrate the steps of learning in Fig. 3.1 based on the preced-
ing discussions. In step 1, a learning algorithm uses the training data to 
generate a classification model. This step is also called the training step or 
training phase. In step 2, the learned model is tested using the test set to 
obtain the classification accuracy. This step is called the testing step or 
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new 
cases (which do not have classes). If the accuracy is not satisfactory, we 
need to go back and choose a different learning algorithm and/or do some 
further processing of the data (this step is called data pre-processing, not 
shown in the figure). A practical learning task typically involves many it-
erations of these steps before a satisfactory model is built. It is also possi-
ble that we are unable to build a satisfactory model due to a high degree of 
randomness in the data or limitations of current learning algorithms.  

 
Fig. 3.1. The basic learning process: training and testing 

From the next section onward, we study several supervised learning al-
gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.  

We note that throughout the chapter we assume that the training and test 
data are available for learning. However, in many text and Web page re-
lated learning tasks, this is not true. Usually, we need to collect raw data, 

Learning
algorithm model Accuracy Test 

data 
Training 

data 

        Step 1: Training    Step 2: Testing 
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design attributes and compute attribute values from the raw data. The rea-
son is that the raw data in text and Web applications are often not suitable 
for learning either because their formats are not right or because there are 
no obvious attributes in the raw text documents or Web pages.  

3.2 Decision Tree Induction 

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning 
methods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this 
section are based on the C4.5 system from Quinlan [453]. 

Example 2: Figure 3.2 shows a possible decision tree learnt from the data 
in Table 3.1. The tree has two types of nodes, decision nodes (which are 
internal nodes) and leaf nodes. A decision node specifies some test (i.e., 
asks a question) on a single attribute. A leaf node indicates a class.  

 
Fig. 3.2. A decision tree for the data in Table 3.1 

The root node of the decision tree in Fig. 3.2 is Age, which basically 
asks the question: what is the age of the applicant? It has three possible an-
swers or outcomes, which are the three possible values of Age. These three 
values form three tree branches/edges. The other internal nodes have the 
same meaning. Each leaf node gives a class value (Yes or No). (x/y) below 
each class means that x out of y training examples that reach this leaf node 
have the class of the leaf. For instance, the class of the left most leaf node 
is Yes. Two training examples (examples 3 and 4 in Table 3.1) reach here 
and both of them are of class Yes.  ▀ 

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a 
leaf node. The class of the leaf is the predicted class of the test instance. 
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  true    false 
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Yes          No 
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Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.  

Age  Has_job  Own_house  Credit-rating   Class  
young  false  false good  ? 

Going through the decision tree, we find that the predicted class is No as 
we reach the second leaf node from the left.   ▀ 

A decision tree is constructed by partitioning the training data so that the 
resulting subsets are as pure as possible. A pure subset is one that contains 
only training examples of a single class. If we apply all the training data in 
Table 3.1 on the tree in Fig. 3.2, we will see that the training examples 
reaching each leaf node form a subset of examples that have the same class 
as the class of the leaf. In fact, we can see that from the x and y values in 
(x/y). We will discuss the decision tree building algorithm in Sect. 3.2.1. 

An interesting question is: Is the tree in Fig. 3.2 unique for the data in 
Table 3.1? The answer is no. In fact, there are many possible trees that can 
be learned from the data. For example, Fig. 3.3 gives another decision tree, 
which is much smaller and is also able to partition the training data per-
fectly according to their classes.  

 
Fig. 3.3. A smaller tree for the data set in Table 3.1 

In practice, one wants to have a small and accurate tree for many rea-
sons. A smaller tree is more general and also tends to be more accurate (we 
will discuss this later). It is also easier to understand by human users. In 
many applications, the user understanding of the classifier is important. 
For example, in some medical applications, doctors want to understand the 
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding 
why the decision is made the doctor may not trust the system and/or does 
not gain useful knowledge.  

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-
ples that reach each leaf node all have the same class (see the values of 
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(x/y) at each leaf node). However, for most real-life data sets, this is usu-
ally not the case. That is, the examples that reach a particular leaf node are 
not of the same class, i.e., x ≤ y. The value of x/y is, in fact, the confidence 
(conf) value used in association rule mining, and x is the support count. 
This suggests that a decision tree can be converted to a set of if-then rules.  

Yes, indeed. The conversion is done as follows: Each path from the root 
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For 
each rule, a support and confidence can be attached. Note that in most 
classification systems, these two values are not provided. We add them 
here to see the connection of association rules and decision trees.  

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.  

Own_house = true → Class =Yes  [sup=6/15, conf=6/6] 
Own_house = false, Has_job = true → Class = Yes [sup=3/15, conf=3/3] 
Own_house = false, Has_job = false → Class = No [sup=6/15, conf=6/6]. 

We can see that these rules are of the same format as association rules. 
However, the rules above are only a small subset of the rules that can be 
found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3 
does not find the following rule:  

Age = young, Has_job = false → Class = No [sup=3/15, conf=3/3]. 

Thus, we say that a decision tree only finds a subset of rules that exist in 
data, which is sufficient for classification. The objective of association rule 
mining is to find all rules subject to some minimum support and minimum 
confidence constraints. Thus, the two methods have different objectives. 
We will discuss these issues again in Sect. 3.5 when we show that associa-
tion rules can be used for classification as well, which is obvious.  

An interesting and important property of a decision tree and its resulting 
set of rules is that the tree paths or the rules are mutually exclusive and 
exhaustive. This means that every data instance is covered by a single rule 
(a tree path) and a single rule only. By covering a data instance, we mean 
that the instance satisfies the conditions of the rule. 

We also say that a decision tree generalizes the data as a tree is a 
smaller (more compact) description of the data, i.e., it captures the key 
regularities in the data. Then, the problem becomes building the best tree 
that is small and accurate. It turns out that finding the best tree that models 
the data is a NP-complete problem [248]. All existing algorithms use heu-
ristic methods for tree building. Below, we study one of the most success-
ful techniques.  
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3.2.1 Learning Algorithm 

As indicated earlier, a decision tree T simply partitions the training data set 
D into disjoint subsets so that each subset is as pure as possible (of the 
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At 
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is 
given in Fig. 3.4. For now, we assume that every attribute in D takes dis-
crete values. This assumption is not necessary as we will see later.  

The stopping criteria of the recursion are in lines 1–4 in Fig. 3.4. The 
algorithm stops when all the training examples in the current data are of 
the same class, or when every attribute has been used along the current tree 

. Algorithm decisionTree(D, A, T) 
1  if D contains only training examples of the same class cj ∈ C then 
2 make T a leaf node labeled with class cj; 
3 elseif A = ∅ then  
4  make T a leaf node labeled with cj, which is the most frequent class in D 
5 else // D contains examples belonging to a mixture of classes. We select a single 
6 // attribute to partition D into subsets so that each subset is purer 
7 p0 = impurityEval-1(D);  
8 for each attribute Ai ∈ A (={A1, A2, …, Ak}) do  
9 pi = impurityEval-2(Ai, D)  
10  endfor 
11 Select Ag ∈ {A1, A2, …, Ak} that gives the biggest impurity reduction, 

computed using p0 – pi; 
12 if p0 – pg < threshold then  // Ag does not significantly reduce impurity p0 
13  make T a leaf node labeled with cj, the most frequent class in D. 
14 else  // Ag is able to reduce impurity p0 
15 Make T a decision node on Ag; 
16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m 

disjoint subsets D1, D2, …, Dm based on the m values of Ag.  
17 for each Dj in {D1, D2, …, Dm} do  
18 if Dj ≠ ∅ then 
19 create a branch (edge) node Tj for vj as a child node of T; 
20 decisionTree(Dj, A−{Ag}, Tj) // Ag is removed 
21 endif 
22  endfor 
23  endif 
24 endif 

Fig. 3.4. A decision tree learning algorithm 
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path. In tree learning, each successive recursion chooses the best attribute 
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to 
minimize the impurity after the partitioning (lines 7–11). In other words, it 
maximizes the purity. The key in decision tree learning is thus the choice 
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4. 
The recursive recall of the algorithm is in line 20, which takes the subset of 
training examples at the node for further partitioning to extend the tree.  

This is a greedy algorithm with no backtracking. Once a node is created, 
it will not be revised or revisited no matter what happens subsequently.  

3.2.2 Impurity Function 

Before presenting the impurity function, we use an example to show what 
the impurity function aims to do intuitively.  

Example 5: Figure 3.5 shows two possible root nodes for the data in Table 
3.1.  

 
Fig. 3.5. Two possible root nodes or two possible attributes for the root node 

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house 
as the root node. Their possible values (or outcomes) are the branches. At 
each branch, we listed the number of training examples of each class (No 
or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for 
the root. From a prediction or classification point of view, Fig. 3.5(B) 
makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house = 
true every example has the class Yes. When Own_house = false, if we take 
majority class (the most frequent class), which is No, we make three mis-
takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the 
majority class for each branch, we make five mistakes (marked in bold). 
Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the 
tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age 
to be the root node. Instead of counting the number of mistakes or errors, 
C4.5 uses a more principled approach to perform this evaluation on every 
attribute in order to choose the best attribute to build the tree. ▀ 
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The most popular impurity functions used for decision tree learning are 
information gain and information gain ratio, which are used in C4.5 as 
two options. Let us first discuss information gain, which can be extended 
slightly to produce information gain ratio.  

The information gain measure is based on the entropy function from in-
formation theory [484]:  
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where Pr(cj) is the probability of class cj in data set D, which is the number 
of examples of class cj in D divided by the total number of examples in D. 
In the entropy computation, we define 0log0 = 0. The unit of entropy is 
bit. Let us use an example to get a feeling of what this function does. 

Example 6: Assume we have a data set D with only two classes, positive 
and negative. Let us see the entropy values for three different compositions 
of positive and negative examples:  

1.  The data set D has 50% positive examples (Pr(positive) = 0.5) and 50% 
negative examples (Pr(negative) = 0.5). 

.15.0log5.05.0log5.0)( 22 =×−×−=Dentropy   

2.  The data set D has 20% positive examples (Pr(positive) = 0.2) and 80% 
negative examples (Pr(negative) = 0.8). 

.722.08.0log8.02.0log2.0)( 22 =×−×−=Dentropy   

3.  The data set D has 100% positive examples (Pr(positive) = 1) and no 
negative examples, (Pr(negative) = 0). 

.00log01log1)( 22 =×−×−=Dentropy   

We can see a trend: When the data becomes purer and purer, the entropy 
value becomes smaller and smaller. In fact, it can be shown that for this 
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5 
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. ▀ 

It is clear that the entropy measures the amount of impurity or disorder 
in the data. That is exactly what we need in decision tree learning. We now 
describe the information gain measure, which uses the entropy function.  
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Information Gain 

The idea is the following: 

1. Given a data set D, we first use the entropy function (Equation 2) to 
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 3.4 performs this task.  

2. Then, we want to know which attribute can reduce the impurity most if 
it is used to partition D. To find out, every attribute is evaluated (lines 
8–10 in Fig. 3.4). Let the number of possible values of the attribute Ai be 
v. If we are going to use Ai to partition the data D, we will divide D into 
v disjoint subsets D1, D2, …, Dv. The entropy after the partition is 
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 The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.  
3. The information gain of attribute Ai is computed with: 

).()(),( DentropyDentropyADgain
iAi −=  (4) 

Clearly, the gain criterion measures the reduction in impurity or disorder. 
The gain measure is used in line 11 of Fig. 3.4, which chooses attribute Ag 
resulting in the largest reduction in impurity. If the gain of Ag is too small, 
the algorithm stops for the branch (line 12). Normally a threshold is used 
here. If choosing Ag is able to reduce impurity significantly, Ag is em-
ployed to partition the data to extend the tree further, and so on (lines 15–
21 in Fig. 3.4). The process goes on recursively by building sub-trees using 
D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag 
any more, as all training examples in each branch has the same Ag value. 

Example 7: Let us compute the gain values for attributes Age, Own_house 
and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate 
for the root node of a decision tree.  

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have  

.971.0
15
9log
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15
6log

15
6)( 22 =×−×−=Dentropy   

We then try Age, which partitions the data into 3 subsets (as Age has 
three possible values) D1 (with Age=young), D2 (with Age=middle), and D3 
(with Age=old). Each subset has five training examples. In Fig. 3.5, we 
also see the number of No class examples and the number of Yes examples 
in each subset (or in each branch).  
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Likewise, we compute for Own_house, which partitions D into two sub-
sets, D1 (with Own_house=true) and D2 (with Own_house=false). 

.551.0 918.0
15
90

15
6                               

)(
15
9)(

15
6)( 21_

=×+×=

×−×−= DentropyDentropyDentropy houseOwn  
 

Similarly, we obtain entropyHas_job(D) = 0.647, and entropyCredit_rating(D) 
= 0.608. The gains for the attributes are:  

gain(D, Age) = 0.971 − 0.888 = 0.083 
gain(D, Own_house) = 0.971 − 0.551 = 0.420 
gain(D, Has_job) = 0.971 − 0.647 = 0.324 
gain(D, Credit_rating) = 0.971 − 0.608 = 0.363. 

Own_house is the best attribute for the root node. Figure 3.5(B) shows the 
root node using Own_house. Since the left branch has only one class (Yes) 
of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false, 
further extension is needed. The process is the same as above, but we only 
use the subset of the data with Own_house = false, i.e., D2.  ▀ 

Information Gain Ratio 

The gain criterion tends to favor attributes with many possible values. An 
extreme situation is that the data contain an ID attribute that is an identifi-
cation of each example. If we consider using this ID attribute to partition 
the data, each training example will form a subset and has only one class, 
which results in entropyID(D) = 0. So the gain by using this attribute is 
maximal. From a prediction point of review, such a partition is useless.  

Gain ratio (Equation 5) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our 
previous entropy computations are done with respect to the class attribute:  
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where s is the number of possible values of Ai, and Dj is the subset of data 
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that has the jth value of Ai. |Dj|/|D| corresponds to the probability of Equa-
tion (2). Using Equation (5), we simply choose the attribute with the high-
est gainRatio value to extend the tree.  

This method works because if Ai has too many values the denominator 
will be large. For instance, in our above example of the ID attribute, the 
denominator will be log2|D|. The denominator is called the split info in 
C4.5. One note is that the split info can be 0 or very small. Some heuristic 
solutions can be devised to deal with it (see [453]).  

3.2.3 Handling of Continuous Attributes 

It seems that the decision tree algorithm can only handle discrete attributes. 
In fact, continuous attributes can be dealt with easily as well. In a real life 
data set, there are often both discrete attributes and continuous attributes. 
Handling both types in an algorithm is an important advantage.  

To apply the decision tree building method, we can divide the value 
range of attribute Ai into intervals at a particular tree node. Each interval 
can then be considered a discrete value. Based on the intervals, gain or 
gainRatio is evaluated in the same way as in the discrete case. Clearly, we 
can divide Ai into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to 
find a threshold value for the division.  

Clearly, we should choose the threshold that maximizes the gain (or 
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute Ai the number of possible 
values that it can take is infinite, the number of actual values that appear in 
the data is always finite. Let the set of distinctive values of attribute Ai that 
occur in the data be {v1, v2, …, vr}, which are sorted in ascending order. 
Clearly, any threshold value lying between vi and vi+1 will have the same 
effect of dividing the training examples into those whose value of attribute 
Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}. 
There are thus only r−1 possible splits on Ai, which can all be evaluated.   

The threshold value can be the middle point between vi and vi+1, or just 
on the “right side” of value vi, which results in two intervals Ai ≤ vi and Ai 
> vi. This latter approach is used in C4.5. The advantage of this approach is 
that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can 
modify the algorithm in Fig. 3.4 (lines 8–11) easily to accommodate this 
computation so that both discrete and continuous attributes are considered.  

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a 
continuous attribute, we do not remove attribute Ag because an interval can 
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be further split recursively in subsequent tree extensions. Thus, the same 
continuous attribute may appear multiple times in a tree path (see Example 
9), which does not happen for a discrete attribute.  

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits 
from the root node to a leaf node represents a hyper-rectangle. Each side of 
the hyper-rectangle is an axis-parallel hyperplane. 

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions 
the space, are produced by the decision tree in Fig. 3.6(B). There are two 
classes in the data, represented by empty circles and filled rectangles.  ▀ 

 
Fig. 3.6. A partitioning of the data space and its corresponding decision tree  

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of 
a continuous attribute takes |D|log|D| time, which can dominate the tree 
learning process. Sorting is important as it ensures that gain or gainRatio 
can be computed in one pass of the data.  

3.2.4 Some Other Issues  

We now discuss several other issues in decision tree learning.  

Tree Pruning and Overfitting: A decision tree algorithm recursively par-
titions the data until there is no impurity or there is no attribute left. This 
process may result in trees that are very deep and many tree leaves may 
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not 
effective, i.e., the decision tree does not generalize the data well. This 
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phenomenon is called overfitting. More specifically, we say that a classi-
fier f1 overfits the data if there is another classifier f2 such that f1 achieves a 
higher accuracy on the training data than f2, but a lower accuracy on the 
unseen test data than f2 [385].  

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the 
complexity and randomness of the application domain. These problems 
cause the decision tree algorithm to refine the tree by extending it to very 
deep using many attributes.  

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to 
do this, stopping early in tree building (which is also called pre-pruning) 
and pruning the tree after it is built (which is called post-pruning). Post-
pruning has been shown more effective. Early-stopping can be dangerous 
because it is not clear what will happen if the tree is extended further 
(without stopping). Post-pruning is more effective because after we have 
extended the tree to the fullest, it becomes clearer which branches/sub-
trees may not be useful (overfit the data). The general idea of post-pruning 
is to estimate the error of each tree node. If the estimated error for a node 
is less than the estimated error of its extended sub-tree, then the sub-tree is 
pruned. Most existing tree learning algorithms take this approach. See 
[453] for a technique called the pessimistic error based pruning.  

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region 

 X ≤ 2, Y > 2.5, Y ≤ 2.6 

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and 
contains only a single data point, which may be an error (or noise) in the 
data collection. If it is pruned, we obtain Fig. 3.7(A) and (B).  ▀ 

 
Fig. 3.7. The data space partition and the decision tree after pruning  
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Another common approach to pruning is to use a separate set of data 
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we 
can find the errors at each node on the validation set. This enables us to 
know what to prune based on the errors at each node.  

Rule Pruning: We noted earlier that a decision tree can be converted to a 
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted 
to a set of rules in the way discussed in Example 4. Rule pruning is then 
performed by removing some conditions to make the rules shorter and 
fewer (after pruning some rules may become redundant). In most cases, 
pruning results in a more accurate rule set as shorter rules are less likely to 
overfit the training data. Pruning is also called generalization as it makes 
rules more general (with fewer conditions). A rule with more conditions is 
more specific than a rule with fewer conditions.  

Example 10: The sub-tree below X ≤ 2 in Fig. 3.6(B) produces these rules: 

Rule 1:  X ≤ 2, Y > 2.5, Y > 2.6 →  
Rule 2:  X ≤ 2, Y > 2.5, Y ≤ 2.6 → O 
Rule 3:  X ≤ 2, Y ≤ 2.5 →  

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule 
1 should be  

Rule 1:  X ≤ 2, Y > 2.6 →  

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to 
produce:  

X ≤ 2 →  

Then Rule 2 and Rule 3 become redundant and can be removed.  ▀ 

A useful point to note is that after pruning the resulting set of rules may 
no longer be mutually exclusive and exhaustive. There may be data 
points that satisfy the conditions of more than one rule, and if inaccurate 
rules are discarded, of no rules. An ordering of the rules is thus needed to 
ensure that when classifying a test case only one rule will be applied to de-
termine the class of the test case. To deal with the situation that a test case 
does not satisfy the conditions of any rule, a default class is used, which is 
usually the majority class.  

Handling Missing Attribute Values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There 
are many ways to deal with the problem. For example, we can fill each 
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missing value with the special value “unknown” or the most frequent value 
of the attribute if the attribute is discrete. If the attribute is continuous, use 
the mean of the attribute for each missing value.  

The decision tree algorithm in C4.5 takes another approach. At a tree 
node, distribute the training example with missing value for the attribute to 
each branch of the tree proportionally according to the distribution of the 
training examples that have values for the attribute.  

Handling Skewed Class Distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a 
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction 
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases 
according to how likely they may be intrusions. The human users can then 
investigate the top ranked cases.  

3.3 Classifier Evaluation 

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.  

There are many ways to evaluate a classifier, and there are also many 
measures. The main measure is the classification accuracy (Equation 1), 
which is the number of correctly classified instances in the test set divided 
by the total number of instances in the test set. Some researchers also use 
the error rate, which is 1 – accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance 
tests may be used to check whether one classifier’s accuracy is signifi-
cantly better than that of another given the same training and test data sets. 
Below, we first present several common methods for classifier evaluation, 
and then introduce some other evaluation measures.  

3.3.1 Evaluation Methods 

Holdout Set: The available data D is divided into two disjoint subsets, the 
training set Dtrain and the test set Dtest, D = Dtrain ∪ Dtest and Dtrain ∩ Dtest = 
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∅. The test set is also called the holdout set. This method is mainly used 
when the data set D is large. Note that the examples in the original data set 
D are all labeled with classes.  

As we discussed earlier, the training set is used for learning a classifier 
while the test set is used for evaluating the resulting classifier. The training 
set should not be used to evaluate the classifier as the classifier is biased 
toward the training set. That is, the classifier may overfit the training set, 
which results in very high accuracy on the training set but low accuracy on 
the test set. Using the unseen test set gives an unbiased estimate of the 
classification accuracy. As for what percentage of the data should be used 
for training and what percentage for testing, it depends on the data set size. 
50–50 and two thirds for training and one third for testing are commonly 
used.  

To partition D into training and test sets, we can use a few approaches: 

1. We randomly sample a set of training examples from D for learning and 
use the rest for testing.  

2. If the data is collected over time, then we can use the earlier part of the 
data for training/learning and the later part of the data for testing. In 
many applications, this is a more suitable approach because when the 
classifier is used in the real-world the data are from the future. This ap-
proach thus better reflects the dynamic aspects of applications. 

Multiple Random Sampling: When the available data set is small, using 
the above methods can be unreliable because the test set would be too 
small to be representative. One approach to deal with the problem is to per-
form the above random sampling n times. Each time a different training set 
and a different test set are produced. This produces n accuracies. The final 
estimated accuracy on the data is the average of the n accuracies.  

Cross-Validation: When the data set is small, the n-fold cross-validation 
method is very commonly used. In this method, the available data is parti-
tioned into n equal-size disjoint subsets. Each subset is then used as the test 
set and the remaining n−1 subsets are combined as the training set to learn 
a classifier. This procedure is then run n times, which gives n accuracies. 
The final estimated accuracy of learning from this data set is the average of 
the n accuracies. 10-fold and 5-fold cross-validations are often used.  

A special case of cross-validation is the leave-one-out cross-validation. 
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original 
data has m examples, then this is m-fold cross-validation. This method is 
normally used when the available data is very small. It is not efficient for a 
large data set as m classifiers need to be built. 



3.3 Classifier Evaluation      73 

 

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a 
decision tree or a set of rules. If a validation set is employed for that pur-
pose, it should not be used in testing. In that case, the available data is di-
vided into three subsets, a training set, a validation set and a test set. Apart 
from using a validation set to help tree or rule pruning, a validation set is 
also used frequently to estimate parameters in learning algorithms. In such 
cases, the values that give the best accuracy on the validation set are used 
as the final values of the parameters. Cross-validation can be used for pa-
rameter estimating as well. Then a separate validation set is not needed. In-
stead, the whole training set is used in cross-validation.  

3.3.2 Precision, Recall, F-score and Breakeven Point 

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in 
classification involving skewed or highly imbalanced data, e.g., network 
intrusion and financial fraud detection, we are typically interested in only 
the minority class. The class that the user is interested in is commonly 
called the positive class, and the rest negative classes (the negative classes 
may be combined into one negative class). Accuracy is not a suitable 
measure in such cases because we may achieve a very high accuracy, but 
may not identify a single intrusion. For instance, 99% of the cases are 
normal in an intrusion detection data set. Then a classifier can achieve 
99% accuracy without doing anything by simply classifying every test case 
as “not intrusion”. This is, however, useless.  

Precision and recall are more suitable in such applications because they 
measure how precise and how complete the classification is on the positive 
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 3.2). A confusion matrix contains information about actual and 
predicted results given by a classifier.  

Table 3.2. Confusion matrix of a classifier 

 Classified positive Classified negative 
Actual positive TP FN 
Actual negative FP TN 

where 
TP: the number of correct classifications of the positive examples (true positive)  
FN: the number of incorrect classifications of positive examples (false negative) 
FP: the number of incorrect classifications of negative examples (false positive)  
TN: the number of correct classifications of negative examples (true negative)  
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Based on the confusion matrix, the precision (p) and recall (r) of the posi-
tive class are defined as follows:  

.       .
FNTP

TP r
FPTP

TPp
+

=
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=  (6) 

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number of examples that are classified as posi-
tive. Recall r is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The 
intuitive meanings of these two measures are quite obvious.  

However, it is hard to compare classifiers based on two measures, which 
are not functionally related. For a test set, the precision may be very high 
but the recall can be very low, and vice versa.  

Example 11: A test data set has 100 positive examples and 1000 negative 
examples. After classification using a classifier, we have the following 
confusion matrix (Table 3.3), 

Table 3.3. Confusion matrix of a classifier 

 Classified positive Classified negative 
Actual positive 1 99 
Actual negative 0 1000 

This confusion matrix gives the precision p = 100% and the recall r = 1% 
because we only classified one positive example correctly and classified no 
negative examples wrongly. ▀ 

Although in theory precision and recall are not related, in practice high 
precision is achieved almost always at the expense of recall and high recall 
is achieved at the expense of precision. In an application, which measure is 
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, the F-score is often used:  

rp
prF
+

=
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The F-score (also called the F1-score) is the harmonic mean of precision 
and recall.  
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The harmonic mean of two numbers tends to be closer to the smaller of 
the two. Thus, for the F-score to be high, both p and r must be high.  

There is also another measure, called precision and recall breakeven 
point, which is used in the information retrieval community. The break-
even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we 
can use the confidence of each leaf node as the value to rank test cases.  

Example 12: We have the following ranking of 20 test documents. 1 
represents the highest rank and 20 represents the lowest rank. “+” (“−”) 
represents an actual positive (negative) documents.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
+ + + − + − + − + + − − + − − − + − − + 

Assume that the test set has 10 positive examples.  
At rank 1:   p = 1/1 = 100%  r = 1/10 = 10% 
At rank 2:  p = 2/2 = 100%  r = 2/10 = 20% 
… … … 
At rank 9:   p = 6/9 = 66.7%  r = 6/10 = 60% 
At rank 10:   p = 7/10 = 70%  r = 7/10 = 70% 

The breakeven point is p = r = 70%. Note that interpolation is needed if 
such a point cannot be found.  ▀ 

3.4 Rule Induction 

In Sect. 3.2, we showed that a decision tree can be converted to a set of 
rules. Clearly, the set of rules can be used for classification as the tree. A 
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule 
induction or rule learning. We study two approaches in the section. 

3.4.1 Sequential Covering 

Most rule induction systems use an algorithm called sequential covering. 
A classifier built with this algorithm consists of a list of rules, which is 
also called a decision list [463]. In the list, the ordering of the rules is sig-
nificant.  

The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned, 
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the training examples covered by the rule are removed. Only the remaining 
data are used to find subsequent rules. Recall that a rule covers an example 
if the example satisfies the conditions of the rule. We study two specific 
algorithms based on this general strategy. The first algorithm is based on 
the CN2 system [104], and the second algorithm is based on the ideas in 
FOIL [452], I-REP [189], REP [70], and RIPPER [106] systems. Many 
ideas are also taken from [385].  

Algorithm 1 (Ordered Rules) 

This algorithm learns each rule without pre-fixing a class. That is, in each 
iteration, a rule of any class may be found. Thus rules of different classes 
may intermix in the final rule list. The ordering of rules is important. 

This algorithm is given in Fig. 3.8. D is the training data. RuleList is the 
list of rules, which is initialized to empty set (line 1). Rule is the best rule 
found in each iteration. The function learn-one-rule-1() learns the Rule 
(lines 2 and 6). The stopping criteria for the while-loop can be of various 
kinds. Here we use D = ∅ or Rule is NULL (a rule is not learned). Once a 
rule is learned from the data, it is inserted into RuleList at the end (line 4). 
All the training examples that are covered by the rule are removed from 
the data (line 5). The remaining data is used to find the next rule and so on. 
After rule learning ends, a default class is inserted at the end of RuleList. 
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some 
test cases may not be covered by any rule and thus cannot be classified. 
The final list of rules is as follows:  

<r1, r2, …, rk, default-class> (9) 

where ri is a rule.  

Algorithm 2 (Ordered Classes) 

This algorithm learns all rules for each class together. After rule learning 
for one class is completed, it moves to the next class. Thus all rules for 
each class appear together in the rule list. The sequence of rules for each 
class is unimportant, but the rule subsets for different classes are ordered. 
Typically, the algorithm finds rules for the least frequent class first, then 
the second least frequent class and so on. This ensures that some rules are 
learned for rare classes. Otherwise, they may be dominated by frequent 
classes and end up with no rules if considered after frequent classes.  

The algorithm is given in Fig. 3.9. The data set D is split into two sub-
sets, Pos and Neg, where Pos contains all the examples of class c from D, 
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and Neg the rest of the examples in D (line 3). c is the class that the algo-
rithm is working on now. Two stopping conditions for rule learning of 
each class are in line 4 and line 6. The other parts of the algorithm are 
quite similar to those of the first algorithm in Fig. 3.8. Both learn-one-rule-
1() and learn-one-rule-2() functions are described in Sect. 3.4.2. 

Use of Rules for Classification 

To use a list of rules for classification is straightforward. For a test case, 
we simply try each rule in the list sequentially. The class of the first rule 
that covers this test case is assigned as the class of the test case. Clearly, if 
no rule applies to the test case, the default class is used.  

Algorithm sequential-covering-1(D) 
1 RuleList  ← ∅;   
2 Rule ← learn-one-rule-1(D); 
3 while Rule is not NULL AND D ≠ ∅ do  
4 RuleList ← insert Rule at the end of RuleList;  
5 Remove from D the examples covered by Rule; 
6  Rule ← learn-one-rule-1(D)  
7 endwhile 
8 insert a default class c at the end of RuleList, where c is the majority class 

in D; 
9 return RuleList 

Fig. 3.8. The first rule learning algorithm based on sequential covering 

Algorithm sequential-covering-2(D, C) 
1 RuleList  ← ∅; // empty rule set at the beginning 
2 for each class c ∈ C do 
3 prepare data (Pos, Neg), where Pos contains all the examples of class 

c from D, and Neg contains the rest of the examples in D; 
4 while Pos ≠ ∅ do  
5 Rule ← learn-one-rule-2(Pos, Neg, c);  
6 if Rule is NULL then  
7 exit-while-loop  
8 else RuleList ← insert Rule at the end of RuleList;  
9  Remove examples covered by Rule from (Pos, Neg) 
10 endif 
11 endwhile 
12 endfor 
13 return RuleList 

Fig. 3.9. The second rule learning algorithm based on sequential covering 
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3.4.2 Rule Learning: Learn-One-Rule Function 

We now present the function learn-one-rule(), which works as follows: It 
starts with an empty set of conditions. In the first iteration, one condition is 
added. In order to find the best condition to add, all possible conditions are 
tried, which form candidate rules. A condition is of the form Ai op v, 
where Ai is an attribute and v is a value of Ai. We also called it an attrib-
ute-value pair. For a discrete attribute, op is “=”. For a continuous attrib-
ute, op ∈ {>, ≤}. The algorithm evaluates all the candidates to find the best 
one (the rest are discarded). After the first best condition is added, it tries 
to add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it 
is implied, i.e., the majority class of the data covered by the conditions.  

This is a heuristic and greedy algorithm in that after a condition is 
added, it will not be changed or removed through backtracking. Ideally, we 
would want to try all possible combinations of attributes and values. How-
ever, this is not practical as the number of possibilities grows exponen-
tially. Hence, in practice, the above greedy algorithm is used. However, in-
stead of keeping only the best set of conditions, we can improve the 
function a little by keeping k best sets of conditions (k > 1) in each itera-
tion. This is called the beam search (k beams), which ensures that a larger 
space is explored. Below, we present two specific implementations of the 
algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-
rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-
2() is used in the sequential-covering-2 algorithm.  

Learn-One-Rule-1 
This function uses beam search (Fig. 3.10). The number of beams is k. 
BestCond stores the conditions of the rule to be returned. The class is omit-
ted as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier 
beams) and its size is less than or equal to k. Each condition set contains a 
set of conditions connected by “and” (conjunction). newCandidateCondSet 
stores all the new candidate condition sets after adding each attribute-value 
pair (a possible condition) to every candidate in candidateCondSet (lines 
5–11). Lines 13–17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better 
than the existing best condition set BestCond (line 14). If so, it replaces the 
current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k new best condition sets (new beams).  

Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition (∅) using a threshold (line 20). If 
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yes, a rule will be formed using BestCond and the most frequent (or the 
majority) class of the data covered by BestCond (line 21). If not, NULL is 
returned to indicate that no significant rule is found. 

The evaluation() function (Fig. 3.11) uses the entropy function as in the 
decision tree learning. Other evaluation functions are possible too. Note 
that when BestCond = ∅, it covers every example in D, i.e., D = D′. 

Function learn-one-rule-1(D)  
1 BestCond ← ∅; // rule with no condition.  
2 candidateCondSet ← {BestCond}; 
3 attributeValuePairs ← the set of all attribute-value pairs in D of the form 

(Ai op v), where Ai is an attribute and v is a value or an interval; 
4 while candidateCondSet ≠ ∅ do 
5 newCandidateCondSet ← ∅; 
6 for each candidate cond in candidateCondSet do 
7 for each attribute-value pair a in attributeValuePairs do 
8 newCond ← cond ∪ {a};  
9 newCandidateCondSet ← newCandidateCondSet ∪ {newCond} 
10 endfor 
11 endfor 
12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2}; 
13 for each candidate newCond in newCandidateCondSet do  
14 if  evaluation(newCond, D) > evaluation(BestCond, D)  then 
15 BestCond ← newCond 
16 endif 
17 endfor 
18 candidateCondSet ← the k best members of newCandidateCondSet 

according to the results of the evaluation function; 
19 endwhile 
20 if evaluation(BestCond, D) – evaluation(∅, D) > threshold then 
21  return the rule: “BestCond → c” where is c the majority class of the data 

covered by BestCond 
22 else  return NULL  
23 endif 

Fig. 3.10. The learn-one-rule-1 function 

Function evaluation(BestCond, D) 
1 D′ ← the subset of training examples in D covered by BestCond; 
2 ∑ =

−=
||

1 2 )Pr(log)Pr()'( C

j
jj ccDentropy ; 

3 return  – entropy(D’) // since entropy measures impurity.  

Fig. 3.11. The entropy based evaluation function 
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Learn-One-Rule-2 

In the learn-one-rule-2() function (Fig. 3.12), a rule is first generated and 
then it is pruned. This method starts by splitting the positive and negative 
training data Pos and Neg, into growing and pruning sets. The growing 
sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule. 
The pruning sets, PrunePos and PruneNeg are used to prune the rule be-
cause BestRule may overfit the data. Note that PrunePos and PruneNeg are 
actually validation sets discussed in Sects. 3.2.4 and 3.3.1.  

growRule() function: growRule() generates a rule (called BestRule) by 
repeatedly adding a condition to its condition set that maximizes an 
evaluation function until the rule covers only some positive examples in 
GrowPos but no negative examples in GrowNeg. This is basically the same 
as lines 4–17 in Fig. 3.10, but without beam search (i.e., only the best rule 
is kept in each iteration). Let the current partially developed rule be R: 

R:  av1, .., avk → class 

where each avj is a condition (an attribute-value pair). By adding a new 
condition avk+1, we obtain the rule R+: av1, .., avk, avk+1→ class. The evalua-
tion function for R+ is the following information gain criterion (which is 
different from the gain function used in decision tree learning): 
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where p0 (respectively, n0) is the number of positive (negative) examples 
covered by R in Pos (Neg), and p1 (n1) is the number of positive (negative) 
examples covered by R+ in Pos (Neg). The GrowRule() function simply re-
turns the rule R+ that maximizes the gain.  

PruneRule() function: To prune a rule, we consider deleting every subset 
of conditions from the BestRule, and choose the deletion that maximizes:  

Function learn-one-rule-2(Pos, Neg, class) 
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg) 
2 BestRule ← GrowRule(GrowPos, GrowNeg, class) // grow a new rule 
3 BestRule ← PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule 
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then  
5 return NULL 
6 endif 
7 return BestRule 

Fig. 3.12. The learn-one-rule-2() function 
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where p (respectively n) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).  

3.4.3 Discussion 

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning 
is said to use the divide-and-conquer strategy. At each step, all attributes 
are evaluated and one is selected to partition/divide the data into m disjoint 
subsets, where m is the number of values of the attribute. Rule induction 
discussed in this section is said to use the separate-and-conquer strategy, 
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus, 
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.  
Rule Understandability: If-then rules are easy to understand by human 
users. However, a word of caution about rules generated by sequential 
covering is in order. Such rules can be misleading because the covered 
data are removed after each rule is generated. Thus the rules in the rule list 
are not independent of each other. A rule r may be of high quality in the 
context of the data D′ from which r was generated. However, it may be a 
weak rule with a very low accuracy (confidence) in the context of the 
whole data set D (D′ ⊆ D) because many training examples that can be 
covered by r have already been removed by rules generated before r. If 
you want to understand the rules and possibly use them in some real-world 
tasks, you should be aware of this fact.  

3.5 Classification Based on Associations 

In Sect. 3.2, we showed that a decision tree can be converted to a set of 
rules, and in Sect. 3.4, we saw that a set of rules may also be found directly 
for classification. It is thus only natural to expect that association rules, in 
particular class association rules (CAR), may be used for classification 
too. Yes, indeed! In fact, normal association rules can be employed for 
classification as well as we will see in Sect. 3.5.3. CBA, which stands for 
Classification Based on Associations, is the first reported system that uses 
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association rules for classification [343]. In this section, we describe three 
approaches to employing association rules for classification:  

1. Using class association rules for classification directly.  
2. Using class association rules as features or attributes. 
3. Using normal (or classic) association rules for classification.  

The first two approaches can be applied to tabular data or transactional 
data. The last approach is usually employed for transactional data only. All 
these methods are useful in the Web environment as many types of Web 
data are in the form of transactions, e.g., search queries issued by users, 
and Web pages clicked by visitors. Transactional data sets are difficult to 
handle by traditional classification techniques, but are very natural for as-
sociation rules. Below, we describe the three approaches in turn. We 
should note that various sequential rules can be used for classification in 
similar ways as well if sequential data sets are involved.  

3.5.1 Classification Using Class Association Rules 

Recall that a class association rule (CAR) is an association rule with only a 
class label on the right-hand side of the rule as its consequent (Sect. 2.5). 
For instance, from the data in Table 3.1, the following rule can be found: 

Own_house = false, Has_job = true → Class = Yes [sup=3/15, conf=3/3], 

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no 
difference between rules from a decision tree (or a rule induction system) 
and CARs if we consider only categorical (or discrete) attributes (more on 
this later). The differences are in the mining processes and the final rule 
sets. CAR mining finds all rules in data that satisfy the user-specified 
minimum support (minsup) and minimum confidence (minconf) con-
straints. A decision tree or a rule induction system finds only a subset of 
the rules (expressed as a tree or a list of rules) for classification. 

Example 13: Recall that the decision tree in Fig. 3.3 gives the following 
three rules:  

Own_house = true → Class =Yes  [sup=6/15, conf=6/6] 
Own_house = false, Has_job = true → Class=Yes [sup=3/15, conf=3/3] 
Own_house = false, Has_job = false → Class=No [sup=6/15, conf=6/6]. 

However, there are many other rules that exist in data, e.g.,  

Age = young, Has_job = true → Class=Yes [sup=2/15, conf=2/2] 
Age = young, Has_job = false → Class=No [sup=3/15, conf=3/3] 
Credit_rating = fair → Class=No [sup=4/15, conf=4/5] 
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and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. ▀ 

In many cases, rules that are not in the decision tree (or a rule list) may 
be able to perform classification more accurately. Empirical comparisons 
reported by several researchers show that classification using CARs can 
perform more accurately on many data sets than decision trees and rule in-
duction systems (see Bibliographic Notes for references).  
 The complete set of rules from CAR mining is also beneficial from a 
rule usage point of view. In some applications, the user wants to act on 
some interesting rules. For example, in an application for finding causes of 
product problems, more rules are preferred to fewer rules because with 
more rules, the user is more likely to find rules that indicate causes of the 
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is reported 
in [352]. We should, however, also bear in mind of the following:  

1. Decision tree learning and rule induction do not use the minsup or min-
conf constraint. Thus, some rules that they find can have very low sup-
ports, which, of course, are likely to be pruned because the chance that 
they overfit the training data is high. Although we can set a low minsup 
for CAR mining, it may cause combinatorial explosion. In practice, in 
addition to minsup and minconf, a limit on the total number of rules to 
be generated may be used to further control the CAR generation 
process. When the number of generated rules reaches the limit, the algo-
rithm stops. However, with this limit, we may not be able to generate 
long rules (with many conditions). Recall that the Apriori algorithm 
works in a level-wise fashion, i.e., short rules are generated before long 
rules. In some applications, this might not be an issue as short rules are 
often preferred and are sufficient for classification or for action. Long 
rules normally have very low supports and tend to overfit the data. 
However, in some other applications, long rules can be useful.  

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can 
use continuous attributes as well. There is still no satisfactory method to 
deal with such attributes directly in association rule mining. Fortunately, 
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals 
[e.g., 151, 172], which are then considered as discrete values.  

Mining Class Association Rules for Classification 
There are many techniques that use CARs to build classifiers. Before de-
scribing them, let us first discuss some issues related to CAR mining for 
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classification. Since a CAR mining algorithm has been discussed in Sect. 
2.5, we will not repeat it here.  

Rule Pruning: CAR rules are highly redundant, and many of them are not 
statistically significant (which can cause overfitting). Rule pruning is thus 
needed. The idea of pruning CARs is basically the same as that in decision 
tree building or rule induction. Thus, we will not discuss it further (see 
[343, 328] for some of the pruning methods).  

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single 
minsup is inadequate for mining CARs because many practical classifica-
tion data sets have uneven class distributions, i.e., some classes cover a 
large proportion of the data, while others cover only a very small propor-
tion (which are called rare or infrequent classes).  

Example 14: Suppose we have a dataset with two classes, Y and N. 99% of 
the data belong to the Y class, and only 1% of the data belong to the N 
class. If we set minsup = 1.5%, we will not find any rule for class N. To 
solve the problem, we need to lower down the minsup. Suppose we set 
minsup = 0.2%. Then, we may find a huge number of overfitting rules for 
class Y because minsup = 0.2% is too low for class Y.  ▀ 

Multiple minimum class supports can be applied to deal with the prob-
lem. We can assign a different minimum class support minsupi for each 
class ci, i.e., all the rules of class ci must satisfy minsupi. Alternatively, we 
can provide one single total minsup, denoted by t_minsup, which is then 
distributed to each class according to the class distribution: 

minsupi = t_minsup × sup(ci) (12) 

where sup(ci) is the support of class ci in training data. The formula gives 
frequent classes higher minsups and infrequent classes lower minsups.  
Parameter Selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class. However, minimum con-
fidences do not affect the classification much because classifiers tend to 
use high confidence rules. One minimum confidence is sufficient as long 
as it is not set too high. To determine the best minsupi for each class ci, we 
can try a range of values to build classifiers and then use a validation set to 
select the final value. Cross-validation may be used as well.   
Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for 
mining transaction data sets. However, many classification data sets are in 
the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-
ily converted to a transaction data set.  
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Classifier Building  

After all CAR rules are found, a classifier is built using the rules. There are 
many existing methods, which can be grouped into three categories. 

Use the Strongest Rule: This is perhaps the simplest strategy. It simply 
uses CARs directly for classification. For each test instance, it finds the 
strongest rule that covers the instance. Recall that a rule covers an instance 
if the instance satisfies the conditions of the rule. The class of the strongest 
rule is then assigned as the class of the test instance. The strength of a rule 
can be measured in various ways, e.g., based on confidence, χ2 test, or a 
combination of both support and confidence values.  

Select a Subset of the Rules to Build a Classifier: The representative 
method of this category is the one used in the CBA system. The method is 
similar to the sequential covering method, but applied to class association 
rules with additional enhancements as discussed above. 

Let the set of all discovered CARs be S. Let the training data set be D. 
The basic idea is to select a subset L (⊆ S) of high confidence rules to 
cover the training data D. The set of selected rules, including a default 
class, is then used as the classifier. The selection of rules is based on a total 
order defined on the rules in S.  

Definition: Given two rules, ri and rj, ri f rj (also called ri precedes rj or ri 
has a higher precedence than rj) if  
1. the confidence of ri is greater than that of rj, or 
2. their confidences are the same, but the support of ri is greater than 

that of rj, or  
3. both the confidences and supports of ri and rj are the same, but ri is 

generated earlier than rj. 

A CBA classifier L is of the form:  
 L = <r1, r2, …, rk, default-class> 

where ri ∈ S, ra f rb if b > a. In classifying a test case, the first rule that 
satisfies the case classifies it. If no rule applies to the case, it takes the de-
fault class (default-class). A simplified version of the algorithm for build-
ing such a classifier is given in Fig. 3.13. The classifier is the RuleList. 

This algorithm can be easily implemented by making one pass through 
the training data for every rule. However, this is extremely inefficient for 
large data sets. An efficient algorithm that makes at most two passes over 
the data is given in [343].  

Combine Multiple Rules: Like the first approach, this approach does not 
take any additional step to build a classifier. At the classification time, for 
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each test instance, the system first finds the subset of rules that covers the 
instance. If all the rules in the subset have the same class, the class is as-
signed to the test instance. If the rules have different classes, the system 
divides the rules into groups according to their classes, i.e., all rules of the 
same class are in the same group. The system then compares the aggre-
gated effects of the rule groups and finds the strongest group. The class la-
bel of the strongest group is assigned to the test instance. To measure the 
strength of each rule group, there again can be many possible techniques. 
For example, the CMAR system uses a weighted χ2 measure [328].  

3.5.2 Class Association Rules as Features 

In the above two methods, rules are directly used for classification. In this 
method, rules are used as features to augment the original data or simply 
form a new data set, which is then fed to a traditional classification algo-
rithm, e.g., decision trees or the naïve Bayesian method.  

To use CARs as features, only the conditional part of each rule is 
needed, and it is often treated as a Boolean feature/attribute. If a data in-
stance in the original data contains the conditional part, the value of the 
feature/attribute is set to 1, and otherwise it is set to 0. Several applications 
of this method have been reported [23, 131, 255, 314]. The reason that this 
approach is helpful is that CARs capture multi-attribute or multi-item cor-
relations with class labels. Many classification algorithms do not find such 
correlations (e.g., naïve Bayesian), but they can be quite useful.  

3.5.3 Classification Using Normal Association Rules  

Not only can class association rules be used for classification, but also 
normal association rules. For example, association rules are commonly 

Algorithm CBA(S, D) 
1 S = sort(S);   // sorting is done according to the precedence f  
2 RuleList = ∅;  // the rule list classifier 
3 for each rule r ∈ S in sequence do  
4 if D ≠ ∅ AND r classifies at least one example in D correctly then  
5 delete from D all training examples covered by r; 
6 add r at the end of RuleList 
7 endif 
8 endfor 
9 add the majority class as the default class at the end of RuleList 

Fig. 3.13. A simple classifier building algorithm 
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used in e-commerce Web sites for product recommendations, which work 
as follows: When a customer purchases some products, the system will 
recommend him/her some other related products based on what he/she has 
already purchased (see Chap. 12).  

Recommendation is essentially a classification or prediction problem. It 
predicts what a customer is likely to buy. Association rules are naturally 
applicable to such applications. The classification process is the following: 

1. The system first uses previous purchase transactions (the same as mar-
ket basket transactions) to mine association rules. In this case, there are 
no fixed classes. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one 
item appears on the right-hand side of a rule. 

2. At the prediction (e.g., recommendation) time, given a transaction (e.g., 
a set of items already purchased by a customer), all the rules that cover 
the transaction are selected. The strongest rule is chosen and the item on 
the right-hand side of the rule (i.e., the consequent) is then the predicted 
item and recommended to the user. If multiple rules are very strong, 
multiple items can be recommended.  

This method is basically the same as the “use the strongest rule” method 
described in Sect. 3.5.1. Again, the rule strength can be measured in vari-
ous ways, e.g., confidence, χ2 test, or a combination of both support and 
confidence. For example, in [337], the product of support and confidence 
is used as the rule strength. Clearly, the other two methods discussed in 
Sect. 3.5.1 can be applied as well.  

The key advantage of using association rules for recommendation is that 
they can predict any item since any item can be the class item on the right-
hand side. Traditional classification algorithms only work with a single 
fixed class attribute, and are not easily applicable to recommendations.  

Finally, we note that multiple minimum supports (Sect. 2.4) can be of 
significant help. Otherwise, rare items will never be recommended, which 
causes the coverage problem (see Sect. 12.3.3). It is shown in [389] that 
using multiple minimum supports can dramatically increase the coverage.  

3.6 Naïve Bayesian Classification 

Supervised learning can be naturally studied from a probabilistic point of 
view. The task of classification can be regarded as estimating the class 
posterior probabilities given a test example d, i.e.,  

Pr(C= cj | d). (13) 
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We then see which class cj is more probable. The class with the highest 
probability is assigned to the example d.  

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values 
in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|. 
Given a test example d with observed attribute values a1 through a|A|, 
where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,  

 d = <A1=a1, ..., A|A|=a|A|>.  

The prediction is the class cj such that Pr(C=cj | A1=a1, ..., A|A|=a|A|) is 
maximal. cj is called a maximum a posteriori (MAP) hypothesis.  

By Bayes’ rule, the above quantity (13) can be expressed as 
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Pr(C=cj) is the class prior probability of cj, which can be estimated from 
the training data. It is simply the fraction of the data in D with class cj.  

If we are only interested in making a classification, Pr(A1=a1, ..., 
A|A|=a|A|) is irrelevant for decision making because it is the same for every 
class. Thus, only Pr(A1=a1, ..., A|A|=a|A| | C=cj) needs to be computed, 
which can be written as  

Pr(A1=a1, ..., A|A|=a|A| | C=cj) 
= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj)×Pr(A2=a2, ..., A|A|=a|A| | C=cj). 

(15) 

Recursively, the second term above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj)) 
can be written in the same way (i.e., Pr(A2=a2|A3=a3 ..., A|A|=a|A|, C=cj)× 
Pr(A3=a3, ..., A|A|=a|A||C=cj)), and so on. However, to further our derivation, 
we need to make an important assumption.  
Conditional independence assumption: We assume that all attributes are 
conditionally independent given the class C = cj. Formally, we assume, 

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (16) 

and similarly for A2 through A|A|. We then obtain  

∏
=

======
||

1
||||11 )|Pr()|,...,Pr(   

A

i
jiijAA cCaAcCaAaA  (17) 



3.6 Naïve Bayesian Classification      89 

 

.
)|Pr()Pr(

)|Pr()Pr(

),...,|Pr(   

||

1

||

1

||

1

||||11

∑ ∏

∏

= =

=

===

===
=

===

C

k

A

i
kiik

A

i
jiij

AAj

cCaAcC

cCaAcC

aAaAcC

 
(18) 

Next, we need to estimate the prior probabilities Pr(C=cj) and the condi-
tional probabilities Pr(Ai=ai | C=cj) from the training data, which are 
straightforward.  

set data in the examples ofnumber  total
 class of examples ofnumber 
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If we only need a decision on the most probable class for each test in-
stance, we only need the numerator of Equation (18) since the denominator 
is the same for every class. Thus, given a test case, we compute the follow-
ing to decide the most probable class for the test case:  
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Example 15: Suppose that we have the training data set in Fig. 3.14, which 
has two attributes A and B, and the class C. We can compute all the prob-
ability values required to learn a naïve Bayesian classifier.  

A B C 
m b t 
m s t 
g q t 
h s t 
g q t 
g q f 
g s f 
h b f 
h q f 
m b f 

Fig. 3.14. An example of a training data set 
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Pr(C = t) = 1/2,         Pr(C= f) = 1/2 

Pr(A=m | C=t) = 2/5  Pr(A=g | C=t) = 2/5  Pr(A=h | C=t) = 1/5 
Pr(A=m | C=f) = 1/5  Pr(A=g | C=f) = 2/5  Pr(A=h | C=f) =2/5 
Pr(B=b | C=t) = 1/5  Pr(B=s | C=t) = 2/5  Pr(B=q | C=t) = 2/5 
Pr(B=b | C=f) = 2/5  Pr(B=s | C=f) = 1/5  Pr(B=q | C=f) = 2/5 

Now we have a test example:  
 A = m B = q C = ? 

We want to know its class. Equation (21) is applied. For C = t, we have 
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For class C = f, we have 
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Since C = t is more probable, t is the predicted class of the test case.   ▀ 

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj)) 
required to build a naïve Bayesian classifier can be found in one scan of 
the data. Thus, the algorithm is linear in the number of training examples, 
which is one of the great strengths of the naïve Bayes, i.e., it is extremely 
efficient. In terms of classification accuracy, although the algorithm makes 
the strong assumption of conditional independence, several researchers 
have shown that its classification accuracies are surprisingly strong. See 
experimental comparisons of various techniques in [148, 285, 349].  

To learn practical naïve Bayesian classifiers, we still need to address 
some additional issues: how to handle numeric attributes, zero counts, and 
missing values. Below, we deal with each of them in turn.  

Numeric Attributes: The above formulation of the naïve Bayesian learn-
ing assumes that all attributes are categorical. However, most real-life data 
sets have numeric attributes. Therefore, in order to use the naïve Bayeisan 
algorithm, each numeric attribute needs to be discretized into intervals. 
This is the same as for class association rule mining. Existing discretiza-
tion algorithms in [e.g., 151, 172] can be used.   

Zero Counts: It is possible that a particular attribute value in the test set 
never occurs together with a class in the training set. This is problematic 
because it will result in a 0 probability, which wipes out all the other prob-
abilities Pr(Ai=ai | C=cj) when they are multiplied according to Equation 
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(21) or Equation (18). A principled solution to this problem is to incorpo-
rate a small-sample correction into all probabilities.  

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj 
be the total number of examples with C=cj in the training data set. The un-
corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is  

ij

ij
jii mn

n
cCaA

λ
λ

+
+

=== )|Pr(  (22) 

where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-
tribute), and λ is a multiplicative factor, which is commonly set to λ = 1/n, 
where n is the total number of examples in the training set D [148, 285]. 
When λ = 1, we get the well known Laplace’s law of succession [204]. 
The general form of correction (also called smoothing) in Equation (22) is 
called the Lidstone’s law of succession [330]. Applying the correction λ = 
1/n, the probabilities of Example 15 are revised. For example,  

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396 
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208. 

Missing Values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.  

3.7 Naïve Bayesian Text Classification 

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes. 
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics, 
and Science. We want to learn a classifier that is able to classify future 
news articles into these classes.   

Due to the rapid growth of online documents in organizations and on the 
Web, automated document classification is an important problem. Al-
though the techniques discussed in the previous sections can be applied to 
text classification, it has been shown that they are not as effective as the 
methods presented in this section and in the next two sections. In this sec-
tion, we study a naïve Bayesian learning method that is specifically formu-
lated for texts, which makes use of text specific characteristics. However, 
the ideas are similar to those in Sect. 3.6. Below, we first present a prob-
abilistic framework for texts, and then study the naïve Bayesian equations 
for their classification. There are several slight variations of this model. 
This section is mainly based on the formulation given in [365].  
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3.7.1  Probabilistic Framework 

The naïve Bayesian learning method for text classification is derived based 
on a probabilistic generative model. It assumes that each document is 
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data is used to estimate these parameters. The parame-
ters are then applied to classify each test document using Bayes’ rule by 
calculating the posterior probability that the distribution associated with 
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of 
selecting the most probable class.  

The generative model is based on two assumptions:  

1. The data (or the text documents) are generated by a mixture model.  
2. There is one-to-one correspondence between mixture components and 

document classes.   

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding 
cluster. Each distribution in a mixture model is also called a mixture 
component (the distribution can be of any kind). Figure 3.15 plots two 
probability density functions of a mixture of two Gaussian distributions 
that generate a 1-dimensional data set of two classes, one distribution per 
class, whose parameters (denoted by θi) are the mean (µi) and the standard 
deviation (σi), i.e., θi = (µi, σi).  

 

 

 

 

 

 
Fig. 3.15. Probability density functions of the two distributions in the mixture 
model  

Let the number of mixture components (or distributions) in a mixture 
model be K, and the jth distribution have the parameters θj. Let Θ be the 
set of parameters of all components, Θ = {ϕ1, ϕ2, …, ϕK, θ1, θ2, …, θK}, 
where ϕj is the mixture weight (or mixture probability) of the mixture 
component j and θj is the set of parameters of component j. The mixture 

class 1  class 2 
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weights are subject to the constraint .11 =∑ =
K
j jϕ  The meaning of mixture 

weights (or probabilities) will be clear below.  
Let us see how the mixture model generates a collection of documents. 

Recall the classes C in our classification problem are c1, c2, …, c|C|. Since 
we assume that there is one-to-one correspondence between mixture com-
ponents and classes, each class corresponds to a mixture component. Thus 
|C| = K, and the jth mixture component can be represented by its corre-
sponding class cj and is parameterized by θj. The mixture weights are class 
prior probabilities, i.e., ϕj = Pr(cj|Θ). The mixture model generates each 
document di by:  

1. first selecting a mixture component (or class) according to class prior 
probabilities (i.e., mixture weights), ϕj = Pr(cj|Θ);  

2. then having this selected mixture component (cj) generate a document di 
according to its parameters, with distribution Pr(di|cj; Θ) or more pre-
cisely Pr(di|cj; θj).  

The probability that a document di is generated by the mixture model can 
be written as the sum of total probability over all mixture components. 
Note that to simplify the notation, we use cj instead of C = cj as in the pre-
vious section:  

). ;|Pr()Θ|Pr()|Pr(
||
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C

j
jiji cdcd  (23) 

Since each document is attached with its class label, we can now derive the 
naïve Bayesian model for text classification. Note that in the above prob-
ability expressions, we include Θ to represent their dependency on Θ as we 
employ a generative model. In an actual implementation, we need not be 
concerned with Θ, i.e., it can be ignored.  

3.7.2  Naïve Bayesian Model 

A text document consists of a sequence of sentences, and each sentence 
consists of a sequence of words. However, due to the complexity of model-
ing word sequence and their relationships, several assumptions are made in 
the derivation of the Bayesian classifier. That is also why we call the final 
classification model, naïve Bayesian classification.  

Specifically, the naïve Bayesian classification treats each document as a 
“bag” of words. The generative model makes the following assumptions: 
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1. Words of a document are generated independently of the context, that is, 
independently of the other words in the same document given the class 
label. This is the familiar naïve Bayesian assumption used before.   

2. The probability of a word is independent of its position in the document. 
For example, the probability of seeing the word “student” in the first po-
sition of the document is the same as seeing it in any other position. The 
document length is chosen independent of its class.  

With these assumptions, each document can be regarded as generated by a 
multinomial distribution. In other words, each document is drawn from a 
multinomial distribution of words with as many independent trials as the 
length of the document. The words are from a given vocabulary V = {w1, 
w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why 
this is a multinomial distribution, we give a short introduction to the multi-
nomial distribution.  

A multinomial trial is a process that can result in any of k outcomes, 
where k ≥ 2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk. 
For example, the rolling of a die is a multinomial trial, with six possible 
outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk = 1/6. 

Now assume n independent trials are conducted, each with the k possi-
ble outcomes and the k probabilities, p1, p2, …, pk. Let us number the out-
comes 1, 2, 3, …, k. For each outcome, let Xt denote the number of trials 
that result in that outcome. Then, X1, X2, …, Xk are discrete random vari-
ables. The collection of X1, X2, …, Xk is said to have the multinomial dis-
tribution with parameters, n, p1, p2, …, pk.  

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …, 
pk correspond to the probabilities of occurrence of the words in V in a 
document, which are Pr(wt|cj; Θ). Xt is a random variable representing the 
number of times that word wt appears in a document. We can thus directly 
apply the probability function of the multinomial distribution to find the 
probability of a document given its class (including the probability of 
document length, Pr(|di|), which is assumed to be independent of class):  

∏
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where Nti is the number of times that word wt occurs in document di and  
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The parameters θj of the generative component for each class cj are the 
probabilities of all words wt in V, written as Pr(wt|cj; Θ), and the probabili-
ties of document lengths, which are the same for all classes (or mixture 
components) due to our assumption.  

Parameter Estimation: The parameters can be estimated from the train-
ing data D = {D1, D2, …, D|C|}, where Dj is the subset of data for class cj 
(recall |C| is the number of classes). The vocabulary V is the set of all 
distinctive words in D. Note that we do not need to estimate the probability 
of each document length as it is not used in our final classifier. The esti-
mate of Θ is written as Θ̂ . The parameters are estimated based on empiri-
cal counts.  

The estimated probability of word wt given class cj is simply the number 
of times that wt occurs in the training data Dj (of class cj) divided by the to-
tal number of word occurrences in the training data for that class:  
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In Equation (26), we do not use Dj explicitly. Instead, we include Pr(cj|di) 
to achieve the same effect because Pr(cj|di) = 1 for each document in Dj 
and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of 
times that word wt occurs in document di.  

In order to handle 0 counts for infrequently occurring words that do not 
appear in the training set, but may appear in the test set, we need to smooth 
the probability to avoid probabilities of 0 or 1. This is the same problem as 
in Sect. 3.6. The standard way of doing this is to augment the count of each 
distinctive word with a small quantity λ (0 ≤ λ ≤ 1) or a fraction of a word 
in both the numerator and denominator. Thus, any word will have at least a 
very small probability of occurrence.  
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This is called the Lidstone smoothing (Lidstone’s law of succession). 
When λ = 1, the smoothing is known as the Laplace smoothing. Many 
experiments have shown that λ < 1 works better for text classification [7]. 
The best λ value for a data set can be found through experiments using a 
validation set or through cross-validation.  

Finally, class prior probabilities, which are mixture weights ϕj, can be 
easily estimated using the training data as well.  
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Classification: Given the estimated parameters, at the classification time, 
we need to compute the probability of each class cj for the test document 
di. That is, we compute the probability that a particular mixture component 
cj generated the given document di. Using Bayes rule and Equations (23), 
(24), (27), and (28), we have 
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(29) 

where wdi,k is the word in position k of document di (which is the same as 
using wt and Nti). If the final classifier is to classify each document into a 
single class, the class with the highest posterior probability is selected: 

).ˆ;|Pr(maxarg Θ∈ ijCc dc
j

 (30) 

3.7.3 Discussion 

Most assumptions made by naïve Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each 
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a 
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naïve Bayesian learning produces very 
accurate models.  

Naïve Bayesian learning is also very efficient. It scans the training data 
only once to estimate all the probabilities required for classification. It can 
be used as an incremental algorithm as well. The model can be updated 
easily as new data comes in because the probabilities can be conveniently 
revised. Naïve Bayesian learning is thus widely used for text classification.  

The naïve Bayesian formulation presented here is based on a mixture of 
multinomial distributions. There is also a formulation based on multi-
variate Bernoulli distributions in which each word in the vocabulary is a 
binary feature, i.e., it either appears or does not appear in the document. 
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Thus, it does not consider the number of times that a word occurs in a 
document. Experimental comparisons show that multinomial formulation 
consistently produces more accurate classifiers [365].  

3.8 Support Vector Machines 

Support vector machines (SVM) is another type of learning system 
[525], which has many desirable qualities that make it one of most popular 
algorithms. It not only has a solid theoretical foundation, but also performs 
classification more accurately than most other algorithms in many applica-
tions, especially those applications involving very high dimensional data. 
For instance, it has been shown by several researchers that SVM is perhaps 
the most accurate algorithm for text classification. It is also widely used in 
Web page classification and bioinformatics applications.  

In general, SVM is a linear learning system that builds two-class clas-
sifiers. Let the set of training examples D be  

{(x1, y1), (x2, y2), …, (xn, yn)},  

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued 
space X ⊆ ℜ 

r, yi is its class label (output value) and yi ∈ {1, -1}. 1 de-
notes the positive class and -1 denotes the negative class. Note that we use 
slightly different notations in this section. For instance, we use y instead of 
c to represent a class because y is commonly used to represent classes in 
the SVM literature. Similarly, each data instance is called an input vector 
and denoted by a bold face letter. In the following, we use bold face letters 
for all vectors.  

To build a classifier, SVM finds a linear function of the form  

f(x) = 〈w ⋅ x〉 + b (31) 

so that an input vector xi is assigned to the positive class if f(xi) ≥ 0, and to 
the negative class otherwise, i.e.,  
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Hence, f(x) is a real-valued function f: X ⊆ ℜ r→ ℜ. w = (w1, w2, …, wr) ∈ 
ℜ r is called the weight vector. b ∈ ℜ is called the bias. 〈w ⋅ x〉 is the dot 
product of w and x (or Euclidean inner product). Without using vector 
notation, Equation (31) can be written as: 

f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b, 
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where xi is the variable representing the ith coordinate of the vector x. For 
convenience, we will use the vector notation from now on.  

In essence, SVM finds a hyperplane  

〈w ⋅ x〉 + b = 0 (33) 

that separates positive and negative training examples. This hyperplane is 
called the decision boundary or decision surface.  

Geometrically, the hyperplane 〈w ⋅ x〉 + b = 0 divides the input space 
into two half spaces: one half for positive examples and the other half for 
negative examples. Recall that a hyperplane is commonly called a line in a 
2-dimensional space and a plane in a 3-dimensional space.  

Fig. 3.16(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the decision 
boundary hyperplane (a line in this case), which separates positive (above 
the line) and negative (below the line) data points. Equation (31), which is 
also called the decision rule of the SVM classifier, is used to make classi-
fication decisions on test instances.  

 
 (A) (B) 

Fig. 3.16. (A) A linearly separable data set and (B) possible decision boundaries 

Fig. 3.16(A) raises two interesting questions: 

1. There are an infinite number of lines that can separate the positive and 
negative data points as illustrated by Fig. 3.16(B). Which line should we 
choose?  

2. A hyperplane classifier is only applicable if the positive and negative 
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?  

The SVM framework provides good answers to both questions. Briefly, for 
question 1, SVM chooses the hyperplane that maximizes the margin (the 

〈w ⋅ x〉 + b = 0 

y = 1 

y = -1 



3.8 Support Vector Machines      99 

 

gap) between positive and negative data points, which will be defined for-
mally shortly. For question 2, SVM uses kernel functions. Before we dive 
into the details, we should note that SVM requires numeric data and only 
builds two-class classifiers. At the end of the section, we will discuss how 
these limitations may be addressed.   

3.8.1  Linear SVM: Separable Case 

This sub-section studies the simplest case of linear SVM. It is assumed that 
the positive and negative data points are linearly separable.  

From linear algebra, we know that in 〈w ⋅ x〉 + b = 0, w defines a direc-
tion perpendicular to the hyperplane (see Fig. 3.17). w is also called the 
normal vector (or simply normal) of the hyperplane. Without changing 
the normal vector w, varying b moves the hyperplane parallel to itself. 
Note also that 〈w ⋅ x〉 + b = 0 has an inherent degree of freedom. We can 
rescale the hyperplane to 〈λw ⋅ x〉 + λb = 0 for λ ∈ ℜ + (positive real num-
bers) without changing the function/hyperplane.   

 
Fig. 3.17. Separating hyperplanes and margin of SVM: Support vectors are circled 

Since SVM maximizes the margin between positive and negative data 
points, let us find the margin. Let d+ (respectively d−) be the shortest dis-
tance from the separating hyperplane (〈w ⋅ x〉 + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is 
d++d−. SVM looks for the separating hyperplane with the largest margin, 
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision 
boundary is because theoretical results from structural risk minimization in 

〈w ⋅ x〉 + b = 0 
y = 1 

y = -1

w

||||
||

w
b  

H+: 〈w ⋅ x〉 + b = 1 

H-: 〈w ⋅ x〉 + b = -1 

x- 

x+ 
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margin 
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computational learning theory show that maximizing the margin minimizes 
the upper bound of classification errors.  

Let us consider a positive data point (x+, 1) and a negative (x-, -1) that 
are closest to the hyperplane <w ⋅ x> + b = 0. We define two parallel hyper-
planes, H+ and H-, that pass through x+ and x- respectively. H+ and H- are 
also parallel to <w ⋅ x> + b = 0. We can rescale w and b to obtain  

H+: 〈w ⋅ x+〉 + b = 1 (34) 
H-: 〈w ⋅ x-〉 + b = -1 (35) 

such that  〈w ⋅ xi〉 + b ≥ 1  if yi = 1 
 〈w ⋅ xi〉 + b ≤ -1 if yi = -1, 

which indicate that no training data fall between hyperplanes H+ and H-.  
Now let us compute the distance between the two margin hyperplanes 

H+ and H-. Their distance is the margin (d+ + d−). Recall from vector space 
in linear algebra that the (perpendicular) Euclidean distance from a point xi 
to a hyperplane 〈w ⋅ x〉 + b = 0 is:  
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w
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where ||w|| is the Euclidean norm of w,  
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To compute d+, instead of computing the distance from x+ to the separat-
ing hyperplane 〈w ⋅ x〉 + b = 0, we pick up any point xs on 〈w ⋅ x〉 + b = 0 
and compute the distance from xs to 〈w ⋅ x+〉 + b = 1 by applying Equation 
36 and noticing that 〈w ⋅ xs〉 + b = 0, 
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Likewise, we can compute the distance of xs to 〈w ⋅ x+〉 + b = -1 to obtain 
d− = 1/||w||. Thus, the decision boundary 〈w ⋅ x〉 + b = 0 lies half way be-
tween H+ and H-. The margin is thus 

||||
2
w

=+= −+ ddmargin  (39) 

In fact, we can compute the margin in many ways. For example, it can 
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (x2

-− x1
+) to the normal vector w. 
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Since SVM looks for the separating hyperplane that maximizes the mar-
gin, this gives us an optimization problem. Since maximizing the margin is 
the same as minimizing ||w||2/2 = 〈w ⋅ w〉/2. We have the following linear 
separable SVM formulation. 

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-
rable training examples,  

D = {(x1, y1), (x2, y2), …, (xn, yn)}, 

learning is to solve the following constrained minimization problem, 

niby ii  ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize

=≥+〉⋅〈

〉⋅〈

xw

ww
 (40) 

Note that the constraint niby ii  ..., 2, 1,   ,1)( =≥+〉⋅〈 xw  summarizes:  

 〈w ⋅ xi〉 + b ≥ 1  for yi = 1 
 〈w ⋅ xi〉 + b ≤ -1 for yi = -1. 

Solving the problem (40) will produce the solutions for w and b, which in 
turn give us the maximal margin hyperplane 〈w ⋅ x〉 + b = 0 with the mar-
gin 2/||w||.  

A full description of the solution method requires a significant amount 
of optimization theory, which is beyond the scope of this book. We will 
only use those relevant results from optimization without giving formal 
definitions, theorems or proofs.  

Since the objective function is quadratic and convex and the constraints 
are linear in the parameters w and b, we can use the standard Lagrange 
multiplier method to solve it.  

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to consider 
constraints is obvious because they restrict the feasible solutions. Since our 
inequality constraints are expressed using “≥”, the Lagrangian is formed 
by the constraints multiplied by positive Lagrange multipliers and sub-
tracted from the objective function, i.e.,     

]1)([
2
1

1
−+〉⋅〈−〉⋅〈= ∑

=

byL i

n

i
iiP xwww α  (41) 

where αi ≥ 0 are the Lagrange multipliers.  
The optimization theory says that an optimal solution to (41) must sat-

isfy certain conditions, called Kuhn–Tucker conditions, which play a 
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central role in constrained optimization. Here, we give a brief introduction 
to these conditions. Let the general optimization problem be 

nibg
f

ii  ..., 2, 1,   ,)(  :Subject to
)(   :Minimize

=≤x
x  (42) 

where f is the objective function and gi is a constraint function (which is 
different from yi in (40) as yi is not a function but a class label of 1 or -1). 
The Lagrangian of (42) is,  

)])([)(
1

i

n

i
iiP bgfL −+= ∑

=

xx α  (43) 

An optimal solution to the problem in (42) must satisfy the following 
necessary (but not sufficient) conditions: 

rj
x
L

j

P  ..., ,2 ,1  ,0 ==
∂
∂  (44) 

nibg ii  ..., 2, 1,   ,0)( =≤−x  (45) 
nii  ..., 2, 1,   ,0 =≥α  (46) 

nigb iiii  ..., 2, 1,   ,0))(( ==− xα  (47) 

These conditions are called the Kuhn–Tucker conditions. Note that 
(45) is simply the original set of constraints in (42). The condition (47) is 
called the complementarity condition, which implies that at the solution 
point,  

If  αi > 0  then  gi(x) = bi. 
If  gi(x) > bi  then  αi = 0. 

These mean that for active constraints, αi > 0, whereas for inactive con-
straints αi = 0. As we will see later, they give some very desirable proper-
ties to SVM.  

Let us come back to our problem. For the minimization problem (40), 
the Kuhn–Tucker conditions are (48)–(52): 

rjxyw
w
L n

i
ijiij

j

P  ..., ,2 ,1  ,0
1

==−=
∂
∂ ∑

=

α  (48) 

0
1

=−=
∂
∂ ∑

=

n

i
ii

P y
b

L α  (49) 

niby ii  ..., 2, 1,   ,01)( =≥−+〉⋅〈 xw  (50) 
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nii  ..., 2, 1,   ,0 =≥α  (51) 
niby iii  ..., 2, 1,   ,0)1)(( ==−+〉⋅〈 xwα  (52) 

Inequality (50) is the original set of constraints. We also note that although 
there is a Lagrange multiplier αi for each training data point, the comple-
mentarity condition (52) shows that only those data points on the margin 
hyperplanes (i.e., H+ and H-) can have αi > 0 since for them yi(〈w ⋅ xi〉 + b) 
– 1 = 0. These data points are called support vectors, which give the name 
to the algorithm, support vector machines. All the other data points have  
αi = 0.  

In general, Kuhn–Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a 
convex objective function and a set of linear constraints, the Kuhn–Tucker 
conditions are both necessary and sufficient for an optimal solution. 

Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem, 
which is easier to solve than the original problem, which is called the pri-
mal problem (LP is called the primal Lagrangian).  

The concept of duality is widely used in the optimization literature. The 
aim is to provide an alternative formulation of the problem which is more 
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve 
computationally, but also crucial for using kernel functions to deal with 
nonlinear decision boundaries as we do not need to compute w explicitly 
(which will be clear later).  

Transforming from the primal to its corresponding dual can be done by 
setting to zero the partial derivatives of the Lagrangian (41) with respect to 
the primal variables (i.e., w and b), and substituting the resulting relations 
back into the Lagrangian. This is to simply substitute (48), which is 

rjxyw
n

i
ijiij  ..., ,2 ,1  ,

1
==∑

=

α  (53) 

and (49), which is 

,0
1

=∑
=

n

i
iiyα  (54) 

into the original Lagrangian (41) to eliminate the primal variables, which 
gives us the dual objective function (denoted by LD),  
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iD yyL xxααα  (55) 

LD contains only dual variables and must be maximized under the simpler 
constraints, (48) and (49), and αi ≥ 0. Note that (48) is not needed as it has 
already been substituted into the objective function LD. Hence, the dual of 
the primal Equation (40) is 

Maximize: .
2
1

1,1
〉⋅〈−= ∑∑
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(56) 

This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that 
the αi’s at the maximum of LD gives w and b occurring at the minimum of 
LP (the primal).  

Solving (56) requires numerical techniques and clever strategies beyond 
the scope of this book. After solving (56), we obtain the values for αi, 
which are used to compute the weight vector w and the bias b using Equa-
tions (48) and (52) respectively. Instead of depending on one support vec-
tor (αi > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because 
the values of αi are computed numerically and can have numerical errors. 
Our final decision boundary (maximal margin hyperplane) is 

0=+〉⋅〈=+〉⋅〈 ∑
∈

byb
svi

iii xxxw α  (57) 

where sv is the set of indices of the support vectors in the training data.  

Testing: We apply (57) for classification. Given a test instance z, we clas-
sify it using the following:  

.)( ⎟
⎠

⎞
⎜
⎝

⎛
+〉⋅〈=+〉⋅〈 ∑

∈svi
iii bysignbsign zxzw α  (58) 

If (58) returns 1, then the test instance z is classified as positive; otherwise, 
it is classified as negative.  
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3.8.2 Linear SVM: Non-separable Case 

The linear separable case is the ideal situation. In practice, however, the 
training data is almost always noisy, i.e., containing errors due to various 
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even 
for two identical input vectors, their labels may be different.  

For SVM to be useful, it must allow noise in the training data. However, 
with noisy data the linear separable SVM will not find a solution because 
the constraints cannot be satisfied. For example, in Fig. 3.18, there is a 
negative point (circled) in the positive region, and a positive point in the 
negative region. Clearly, no solution can be found for this problem.  

Recall that the primal for the linear separable case was: 

. ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize

niby ii =≥+〉⋅〈

〉⋅〈

xw

ww
 (59) 

To allow errors in data, we can relax the margin constraints by introduc-
ing slack variables, ξi (≥ 0) as follows:  

 〈w ⋅ xi〉 + b ≥ 1 − ξi for yi = 1 
 〈w ⋅ xi〉 + b ≤ −1 + ξi for yi = -1. 

Thus we have the new constraints: 

Subject to:  yi(〈w ⋅ xi〉 + b) ≥ 1 − ξi, i =1, 2, …, n, 
  ξi ≥ 0,  i =1, 2, …, n. 

The geometric interpretation is shown in Fig. 3.18, which has two error 
data points xa and xb (circled) in wrong regions.  

 

Fig. 3.18. The non-separable case: xa and xb are error data points 

〈w ⋅ x〉 + b = 0 
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We also need to penalize the errors in the objective function. A natural 
way is to assign an extra cost for errors to change the objective function to  

kn
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  :Minimize ξww  (60) 

where C ≥ 0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. k = 1 is commonly used, 
which has the advantage that neither ξi nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the k = 1 case below.  

The new optimization problem becomes:  
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(61) 

This formulation is called the soft-margin SVM. The primal Lagrangian 
(denoted by LP) of this formulation is as follows     
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where αi, µi ≥ 0 are the Lagrange multipliers. The Kuhn–Tucker condi-
tions for optimality are the following:  

rjxyw
w
L n

i
ijiij

j

P  ..., ,2 ,1  ,0
1

==−=
∂
∂ ∑

=

α  (63) 

0
1

=−=
∂
∂ ∑

=

n

i
ii

P y
b

L α  (64) 

niCL
ii

i

P  ..., ,2 ,1   ,0 ==−−=
∂
∂ µα
ξ

 (65) 

niby iii  ..., 2, 1,   ,01)( =≥+−+〉⋅〈 ξxw  (66) 
nii  ..., 2, 1,   ,0 =≥ξ  (67) 
nii  ..., 2, 1,   ,0 =≥α  (68) 
nii  ..., 2, 1,   ,0 =≥µ  (69) 

niby iiii  ..., 2, 1,   ,0)1)(( ==+−+〉⋅〈 ξα xw  (70) 
niii  ..., 2, 1,   ,0 ==ξµ  (71) 
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As the linear separable case, we then transform the primal to its dual by 
setting to zero the partial derivatives of the Lagrangian (62) with respect to 
the primal variables (i.e., w, b and ξi), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (63), (64) 
and (65) into the primal Lagrangian (62). From Equation (65), C − αi − µi 
= 0, we can deduce that αi ≤ C because µi ≥ 0. Thus, the dual of (61) is 
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(72) 

Interestingly, ξi and its Lagrange multipliers µi are not in the dual and the 
objective function is identical to that for the separable case. The only dif-
ference is the constraint αi ≤ C (inferred from C−αi−µi = 0 and µi ≥ 0). 

The dual problem (72) can also be solved numerically, and the resulting 
αi values are then used to compute w and b. w is computed using Equation 
(63) and b is computed using the Kuhn–Tucker complementarity condi-
tions (70) and (71). Since we do not have values for ξi, we need to get 
around it. From Equations (65), (70) and (71), we observe that if 0 < αi < 
C then both ξi = 0 and .0)1)( =+−+〉⋅〈 iii by ξxw  Thus, we can use any 
training data point for which 0 < αi < C and Equation (70) (with ξi = 0) to 
compute b:  
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Again, due to numerical errors, we can compute all possible b’s and 
then take their average as the final b value. 

Note that Equations (65), (70) and (71) in fact tell us more:  

αi = 0 ⇒  yi(〈w ⋅ xi〉 + b) ≥ 1  and ξi = 0 
0 < αi < C ⇒  yi(〈w ⋅ xi〉 + b) = 1  and ξi = 0 
αi = C ⇒  yi(〈w ⋅ xi〉 + b) ≤ 1  and ξi ≥ 0 

(74) 

Similar to support vectors for the separable case, (74) shows one of the 
most important properties of SVM: the solution is sparse in αi. Most train-
ing data points are outside the margin area and their αi’s in the solution are 
0. Only those data points that are on the margin (i.e., yi(〈w ⋅ xi〉 + b) = 1, 
which are support vectors in the separable case), inside the margin (i.e., αi 
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= C and yi(〈w ⋅ xi〉 + b) < 1), or errors are non-zero. Without this sparsity 
property, SVM would not be practical for large data sets.  

The final decision boundary is (we note that many αi’s are 0) 

.0
1
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=

byb
n

i
iii xxxw α  (75) 

The decision rule for classification (testing) is the same as the separable 
case, i.e., sign(〈w ⋅ x〉 + b). We notice that for both Equations (75) and 
(73), w does not need to be explicitly computed. This is crucial for using 
kernel functions to handle nonlinear decision boundaries.  

Finally, we still have the problem of determining the parameter C. The 
value of C is usually chosen by trying a range of values on the training set 
to build multiple classifiers and then to test them on a validation set before 
selecting the one that gives the best classification result on the validation 
set. Cross-validation is commonly used as well. 

3.8.3 Nonlinear SVM: Kernel Functions 

The SVM formulations discussed so far require that positive and negative 
examples can be linearly separated, i.e., the decision boundary must be a 
hyperplane. However, for many real-life data sets, the decision boundaries 
are nonlinear. To deal with nonlinearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only 
transform the input data from its original space into another space (usually 
of a much higher dimensional space) so that a linear decision boundary can 
separate positive and negative examples in the transformed space, which is 
called the feature space. The original data space is called the input space.  

Thus, the basic idea is to map the data in the input space X to a feature 
space F via a nonlinear mapping φ, 

).(
:

xx φ
φ
a

FX →
 (76) 

After the mapping, the original training data set {(x1, y1), (x2, y2), …, 
(xn, yn)} becomes:  

{(φ(x1), y1), (φ(x2), y2), …, (φ(xn), yn)}. (77) 

The same linear SVM solution method is then applied to F. Figure 3.19 il-
lustrates the process. In the input space (figure on the left), the training ex-
amples cannot be linearly separated. In the transformed feature space (fig-
ure on the right), they can be separated linearly.   
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Fig. 3.19. Transformation from the input space to the feature space 

With the transformation, the optimization problem in (61) becomes 
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Its corresponding dual is  
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(79) 

The final decision rule for classification (testing) is  

by
n
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)()( xx φφα  (80) 

Example 16: Suppose our input space is 2-dimensional, and we choose the 
following transformation (mapping):  

)2 , ,() ,( 21
2

2
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121 xxxxxx a  (81) 

The training example ((2, 3), -1) in the input space is transformed to the 
following training example in the feature space:  

 ((4, 9, 8.5), -1).  ▀ 

The potential problem with this approach of transforming the input data 
explicitly to a feature space and then applying the linear SVM is that it 
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may suffer from the curse of dimensionality. The number of dimensions in 
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This 
makes it computationally infeasible to handle.  

Fortunately, explicit transformations can be avoided if we notice that in 
the dual representation both the construction of the optimal hyperplane 
(79) in F and the evaluation of the corresponding decision/classification 
function (80) only require the evaluation of dot products 〈φ(x) ⋅ φ(z)〉 and 
never the mapped vector φ(x) in its explicit form. This is a crucial point.  

Thus, if we have a way to compute the dot product 〈φ(x) ⋅ φ(z)〉 in the 
feature space F using the input vectors x and z directly, then we would not 
need to know the feature vector φ(x) or even the mapping function φ itself. 
In SVM, this is done through the use of kernel functions, denoted by K,  

K(x, z) = 〈φ(x) ⋅ φ(z)〉, (82) 

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example of a kernel 
function is the polynomial kernel, 

K(x, z) = 〈x ⋅ z〉d. (83) 

Example 17: Let us compute this kernel with degree d = 2 in a 2-
dimensional space. Let x = (x1, x2) and z = (z1, z2).  
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(84) 

where ),2()( 22 1
22

1 xx,x,x  x =φ which shows that the kernel 〈x ⋅ z〉2 is a dot 
product in the transformed feature space. The number of dimensions in the 
feature space is 3. Note that φ(x) is actually the mapping function used in 
Example 16. Incidentally, in general the number of dimensions in the fea-
ture space for the polynomial kernel function K(x, z) = 〈x ⋅ z〉d is ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+
d
dr 1 , 

which is a huge number even with a reasonable number (r) of attributes in 
the input space. Fortunately, by using the kernel function in (83), the huge 
number of dimensions in the feature space does not matter. ▀ 

The derivation in (84) is only for illustration purposes. We do not need 
to find the mapping function. We can simply apply the kernel function di-
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rectly. That is, we replace all the dot products 〈φ(x) ⋅ φ(z)〉 in (79) and (80) 
with the kernel function K(x, z) (e.g., the polynomial kernel in (83)). This 
strategy of directly using a kernel function to replace dot products in the 
feature space is called the kernel trick. We would never need to explicitly 
know what φ is.   

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (84)? That is, how do 
we know that a kernel function is indeed a dot product in some feature 
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [118] for details.  

It is clear that the idea of kernel generalizes the dot product in the input 
space. The dot product is also a kernel with the feature map being the iden-
tity  

K(x, z) = 〈x ⋅ z〉. (85) 

Commonly used kernels include 

Polynomial:      dK )(),( θ+〉⋅〈= zxzx  (86) 

Gaussian RBF: σ2|||| 2
),( zxzx −−= eK  (87) 

where θ ∈ ℜ, d ∈ N, and σ > 0.  

Summary 

SVM is a linear learning system that finds the maximal margin decision 
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Nonlinear decision boundaries 
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done. 
Instead, kernel functions are used to compute dot products required in 
learning without the need to even know the transformation function.  

Due to the separation of the learning algorithm and kernel functions, 
kernels can be studied independently from the learning algorithm. One can 
design and experiment with different kernel functions without touching the 
underlying learning algorithm.  

SVM also has some limitations:  

1. It works only in real-valued space. For a categorical attribute, we need 
to convert its categorical values to numeric values. One way to do this is 
to create an extra binary attribute for each categorical value, and set the 
attribute value to 1 if the categorical value appears, and 0 otherwise.  
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2. It allows only two classes, i.e., binary classification. For multiple class 
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [138]. 

3. The hyperplane produced by SVM is hard to understand by users. It is 
difficult to picture where the hyperplane is in a high-dimensional space. 
The matter is made worse by kernels. Thus, SVM is commonly used in 
applications that do not required human understanding.  

3.9 K-Nearest Neighbor Learning 

All the previous learning methods learn some kinds of models from the 
data, e.g., decision trees, sets of rules, posterior probabilities, and hyper-
planes. These learning methods are often called eager learning methods as 
they learn models of the data before testing. In contrast, k-nearest neighbor 
(kNN) is a lazy learning method in the sense that no model is learned from 
the training data. Learning only occurs when a test example needs to be 
classified. The idea of kNN is extremely simple and yet quite effective in 
many applications, e.g., text classification.  

It works as follows: Again let D be the training data set. Nothing will be 
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The k most similar (closest) examples in 
D are then selected. This set of examples is called the k nearest neighbors 
of d. d then takes the most frequent class among the k nearest neighbors. 
Note that k = 1 is usually not sufficient for determining the class of d due 
to noise and outliers in the data. A set of nearest neighbors is needed to ac-
curately decide the class. The general kNN algorithm is given in Fig. 3.20. 

Algorithm kNN(D, d, k) 
1 Compute the distance between d and every example in D; 
2 Choose the k examples in D that are nearest to d, denote the set by P (⊆ D); 
3 Assign d the class that is the most frequent class in P (or the majority class).  

Fig. 3.20. The k-nearest neighbor algorithm 

The key component of a kNN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For 
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next chapter.  

The number of nearest neighbors k is usually determined by using a 
validation set, or through cross validation on the training data. That is, a 
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range of k values are tried, and the k value that gives the best accuracy on 
the validation set (or cross validation) is selected. Figure 3.21 illustrates 
the importance of choosing the right k.  

Example 18: In Fig. 3.21, we have two classes of data, positive (filled 
squares) and negative (empty circles). If 1-nearest neighbor is used, the 
test data point ⊕ will be classified as negative, and if 2-nearest neighbors 
are used, the class cannot be decided. If 3-nearest neighbors are used, the 
class is positive as two positive examples are in the 3-nearest neighbors.  

 
Fig. 3.21. An illustration of k-nearest neighbor classification 

Despite its simplicity, researchers have showed that the classification 
accuracy of kNN can be quite strong and in many cases as accurate as 
those elaborated methods. For instance, it is showed in [574] that kNN per-
forms equally well as SVM for some text classification tasks. kNN is also 
very flexible. It can work with any arbitrarily shaped decision boundaries.  

kNN is, however, slow at the classification time. Due to the fact that 
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming 
especially when the training set D and the test set are large. Another disad-
vantage is that kNN does not produce an understandable model. It is thus 
not applicable if an understandable model is required in the application.  

3.10 Ensemble of Classifiers  

So far, we have studied many individual classifier building techniques. A 
natural question to ask is: can we build many classifiers and then combine 
them to produce a better classifier? Yes, in many cases. This section de-
scribes two well known ensemble techniques, bagging and boosting. In 
both these methods, many classifiers are built and the final classification 
decision for each test instance is made based on some forms of voting of 
the committee of classifiers.  

1-nearst neighbor 
2-nearst neighbor 
3-nearst neighbor 



114     3 Supervised Learning 

 

3.10.1 Bagging 

Given a training set D with n examples and a base learning algorithm, bag-
ging (for Bootstrap Aggregating) works as follows [63]:  

Training:  
1. Create k bootstrap samples S1, S2, and Sk. Each sample is produced by 

drawing n examples at random from D with replacement. Such a sample 
is called a bootstrap replicate of the original training set D. On aver-
age, each sample Si contains 63.2% of the original examples in D, with 
some examples appearing multiple times.  

2. Build a classifier based on each sample Si. This gives us k classifiers. 
All the classifiers are built using the same base learning algorithm. 

Testing: Classify each test (or new) instance by voting of the k classifiers 
(equal weights). The majority class is assigned as the class of the instance.  

Bagging can improve the accuracy significantly for unstable learning al-
gorithms, i.e., a slight change in the training data resulting in a major 
change in the output classifier. Decision tree and rule induction methods 
are examples of unstable learning methods. k-nearest neighbor and naïve 
Bayesian methods are examples of stable techniques. For stable classifiers, 
Bagging may sometime degrade the accuracy. 

3.10.2 Boosting 

Boosting is a family of ensemble techniques, which, like bagging, also 
manipulates the training examples and produces multiple classifiers to im-
prove the classification accuracy [477]. Here we only describe the popular 
AdaBoost algorithm given in [186]. Unlike bagging, AdaBoost assigns a 
weight to each training example.  

Training: AdaBoost produces a sequence of classifiers (also using the 
same base learner). Each classifier is dependent on the previous one, and 
focuses on the previous one’s errors. Training examples that are incor-
rectly classified by the previous classifiers are given higher weights.  

Let the original training set D be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi 
is an input vector, yi is its class label and yi ∈ Y (the set of class labels). 
With a weight attached to each example, we have, {(x1, y1, w1), (x2, y2, w2), 
…, (xn, yn, wn)}, and ∑i wi = 1. The AdaBoost algorithm is given in Fig. 
3.22. 

The algorithm builds a sequence of k classifiers (k is specified by the 
user) using a base learner, called BaseLeaner in line 3. Initially, the weight 
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for each training example is 1/n (line 1). In each iteration, the training data 
set becomes Dt, which is the same as D, but with different weights. Each 
iteration builds a new classifier ft (line 3). The error of ft is calculated in 
line 4. If it is too large, delete the iteration and exit (lines 5–7). Lines 9–11 
update and normalize the weights for building the next classifier.  

Testing: For each test case, the results of the series of classifiers are com-
bined to determine the final class of the test case, which is shown in line 14 
of Fig. 3.22 (a weighted voting).  

Boosting works better than bagging in most cases as shown in [454]. It 
also tends to improve performance more when the base learner is unstable.  

Bibliographic Notes 

Supervised learning has been studied extensively by the machine learning 
community. The book by Mitchell [385] covers most learning techniques 
and is easy to read. Duda et al.’s pattern classification book is also a great 

AdaBoost(D, Y, BaseLeaner, k) 
1.  Initialize D1(wi) ← 1/n for all i; // initialize the weights 
2.  for t = 1 to k do  
3.  ft ← BaseLearner(Dt); // build a new classifier ft 
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Fig. 3.22. The AdaBoost algorithm 
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reference [155]. Most data mining books have one or two chapters on su-
pervised learning, e.g., those by Han and Kamber [218], Hand et al. [221], 
Tan et al. [512], and Witten and Frank [549]. 

For decision tree induction, Quinlan’s book [453] has all the details and 
the code of his popular decision tree system C4.5. Other well-known 
systems include CART by Breiman et al. [62] and CHAD by Kass [270]. 
Scaling up of decision tree algorithms was also studied in several papers. 
These algorithms can have the data on disk, and are thus able to run with 
huge data sets. See [195] for an algorithm and also additional references.  

Rule induction algorithms generate rules directly from the data. Well-
known systems include AQ by Michalski et al. [381], CN2 by Clark and 
Niblett [104], FOIL by Quinlan [452], FOCL by Pazzani et al. [438], I-
REP by Furnkranz and Widmer [189], and RIPPER by Cohen [106]. 

Using association rules to build classifiers was proposed by Liu et al. in 
[343], which also reported the CBA system. CBA selects a small subset of 
class association rules as the classifier. Other classifier building techniques 
include combining multiple rules by Li et al. [328], using rules as features 
by Meretakis and Wüthrich [379], Antonie and Zaiane [23], Deshpande 
and Karpis [131], Jindal and Liu [255], and Lesh et al. [314], generating a 
subset of rules by Cong et al. [112, 113], Wang et al. [536], Yin and Han 
[578], and Zaki and Aggarwal [587]. Other systems include those by Dong 
et al. [149], Li et al. [319, 320], Yang et al. [570], etc.   

The naïve Bayesian classification model described in Sect. 3.6 is based 
on the papers by Domingos and Pazzani [148], Kohavi et al. [285] and 
Langley et al [301]. The naïve Bayesian classification for text discussed in 
Sect. 3.7 is based on the multinomial formulation given by McCallum and 
Nigam [365]. This model was also used earlier by Lewis and Gale [317], 
Li and Yamanishi [318], and Nigam et al. [413]. Another formulation of 
naïve Bayes is based on the multivariate Bernoulli model, which was used 
in Lewis [316], and Robertson and Sparck-Jones [464]. 

Support vector machines (SVM) was first introduced by Vapnik and his 
colleagues in 1992 [59]. Further details were given in his 1995 book [525]. 
Two other books on SVM and kernel methods are those by Cristianini and 
Shawe-Taylor [118] and Scholkopf and Smola [479]. The discussion of 
SVM in this chapter is heavily influenced by Cristianini and Shawe-
Taylor’s book and the tutorial paper by Burges [74]. Two popular SVM 
systems are SVMLight (available at http://svmlight.joachims.org/) and 
LIBSVM (available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).  

Existing classifier ensemble methods include bagging by Breiman [63], 
boosting by Schapire [477] and Freund and Schapire [186], random forest 
also by Breiman [65], stacking by Wolpert [552], random trees by Fan 
[169], and many others.  



 

4 Unsupervised Learning 

Supervised learning discovers patterns in the data that relate data attributes 
to a class attribute. These patterns are then utilized to predict the values of 
the class attribute of future data instances. These classes indicate some 
real-world predictive or classification tasks such as determining whether a 
news article belongs to the category of sports or politics, or whether a pa-
tient has a particular disease. However, in some other applications, the data 
have no class attributes. The user wants to explore the data to find some in-
trinsic structures in them. Clustering is one technology for finding such 
structures. It organizes data instances into similarity groups, called clus-
ters such that the data instances in the same cluster are similar to each 
other and data instances in different clusters are very different from each 
other. Clustering is often called unsupervised learning, because unlike 
supervised learning, class values denoting an a priori partition or grouping 
of the data are not given. Note that according to this definition, we can also 
say that association rule mining is an unsupervised learning task. However, 
due to historical reasons, clustering is closely associated and even syn-
onymous with unsupervised learning while association rule mining is not. 
We follow this convention, and describe some main clustering techniques 
in this chapter.  

Clustering has been shown to be one of the most commonly used data 
analysis techniques. It also has a long history, and has been used in almost 
every field, e.g., medicine, psychology, botany, sociology, biology, arche-
ology, marketing, insurance, library science, etc. In recent years, due to the 
rapid increase of online documents and the expansion of the Web, text 
document clustering too has become a very important task. In Chap. 12, 
we will also see that clustering is very useful in Web usage mining.  

4.1 Basic Concepts  

Clustering is the process of organizing data instances into groups whose 
members are similar in some way. A cluster is therefore a collection of 
data instances which are “similar” to each other and are “dissimilar” to 
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data instances in other clusters. In the clustering literature, a data instance 
is also called an object as the instance may represent an object in the real-
world. It is also called a data point as it can be seen as a point in an r-
dimension space, where r is the number of attributes in the data.  

Fig. 4.1 shows a 2-dimensional data set. We can clearly see three groups 
of data points. Each group is a cluster. The task of clustering is to find the 
three clusters hidden in the data. Although it is easy for a human to visu-
ally detect clusters in a 2-dimensional or even 3-demensional space, it be-
comes very hard, if not impossible, to detect clusters visually as the num-
ber of dimensions increases. Additionally, in many applications, clusters 
are not as clear-cut or well separated as the three clusters in Fig. 4.1. Auto-
matic techniques are thus needed for clustering. 

 
Fig. 4.1. Three natural groups or clusters of data points 

After seeing the example in Fig. 4.1, you may ask the question: What is 
clustering for? To answer it, let us see some application examples from 
different domains.   

Example 1: A company wants to conduct a marketing campaign to pro-
mote its products. The most effective strategy is to design a set of person-
alized marketing materials for each individual customer according to 
his/her profile and financial situation. However, this is too expensive for a 
large number of customers. At the other extreme, the company designs 
only one set of marketing materials to be used for all customers. This one-
size-fits-all approach, however, may not be effective. The most cost-
effective approach is to segment the customers into a small number of 
groups according to their similarities and design some targeted marketing 
materials for each group. This segmentation task is commonly done using 
clustering algorithms, which partition customers into similarity groups. In 
marketing research, clustering is often called segmentation.  ▀ 

Example 2: A company wants to produce and sell T-shirts. Similar to the 
case above, on one extreme, for each customer it can measure his/her size 
and have a T-shirt tailor-made for him/her. Obviously, this T-shirt is going 
to be expensive. On the other extreme, only one size of T-shirts is made. 
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Since this size may not fit most people, the company might not be able to 
sell as many T-shirts. Again, the most cost effective way is to group people 
based on their sizes and make a different generalized size of T-shirts for 
each group. This is why we see small, medium and large size T-shirts in 
shopping malls, and seldom see T-shirts with only a single size. The 
method used to group people according to their sizes is clustering. The 
process is usually as follows: The T-shirt manufacturer first samples a 
large number of people and measure their sizes to produce a measurement 
database. It then clusters the data, which partitions the data into some 
similarity subsets, i.e., clusters. For each cluster, it computes the average 
of the sizes and then uses the average to mass-produce T-shirts for all peo-
ple of similar size.  ▀ 

Example 3: Everyday, news agencies around the world generate a large 
number of news articles. If a Web site wants to collect these news articles 
to provide an integrated news service, it has to organize the collected arti-
cles according to some topic hierarchy. The question is: What should the 
topics be, and how should they be organized? One possibility is to employ 
a group of human editors to do the job. However, the manual organization 
is costly and very time consuming, which makes it unsuitable for news and 
other time sensitive information. Throwing all the news articles to the 
readers with no organization is clearly not an option. Although classifica-
tion is able to classify news articles according to predefined topics, it is not 
applicable here because classification needs training data, which have to be 
manually labeled with topic classes. Since news topics change constantly 
and rapidly, the training data would need to change constantly as well, 
which is infeasible via manual labeling. Clustering is clearly a solution for 
this problem because it automatically groups a stream of news articles 
based on their content similarities. Hierarchical clustering algorithms 
can also organize documents hierarchically, i.e., each topic may contain 
sub-topics and so on. Topic hierarchies are particularly useful for texts. ▀ 

The above three examples indicate two types of clustering, partitional 
and hierarchical. Indeed, these are the two most important types of clus-
tering approaches. We will study some specific algorithms of these two 
types of clustering.  

Our discussion and examples above also indicate that clustering needs a 
similarity function to measure how similar two data points (or objects) are, 
or alternatively a distance function to measure the distance between two 
data points. We will use distance functions in this chapter. The goal of 
clustering is thus to discover the intrinsic grouping of the input data 
through the use of a clustering algorithm and a distance function.  
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4.2 K-means Clustering  

The k-means algorithm is the best known partitional clustering algo-
rithm. It is perhaps also the most widely used among all clustering algo-
rithms due to its simplicity and efficiency. Given a set of data points and 
the required number of k clusters (k is specified by the user), this algorithm 
iteratively partitions the data into k clusters based on a distance function.  

4.2.1 K-means Algorithm 

Let the set of data points (or instances) D be  

{x1, x2, …, xn},  

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X ⊆ ℜ 
r, and r 

is the number of attributes in the data (or the number of dimensions of the 
data space). The k-means algorithm partitions the given data into k clus-
ters. Each cluster has a cluster center, which is also called the cluster cen-
troid. The centroid, usually used to represent the cluster, is simply the 
mean of all the data points in the cluster, which gives the name to the algo-
rithm, i.e., since there are k clusters, thus k means. Figure 4.2 gives the k-
means clustering algorithm.  

At the beginning, the algorithm randomly selects k data points as the 
seed centroids. It then computes the distance between each seed centroid 
and every data point. Each data point is assigned to the centroid that is 
closest to it. A centroid and its data points therefore represent a cluster. 
Once all the data points in the data are assigned, the centroid for each clus-
ter is re-computed using the data points in the current cluster. This process 
repeats until a stopping criterion is met. The stopping (or convergence) cri-
terion can be any one of the following: 

Algorithm k-means(k, D) 
1 choose k data points as the initial centroids (cluster centers)   
2 repeat 
3 for each data point x ∈ D do 
4 compute the distance from x to each centroid; 
5 assign x to the closest centroid // a centroid represents a cluster 
6 endfor 
7 re-compute the centroid using the current cluster memberships 
8 until the stopping criterion is met 

Fig. 4.2. The k-means algorithm 
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1. no (or minimum) re-assignments of data points to different clusters.  
2. no (or minimum) change of centroids. 
3. minimum decrease in the sum of squared error (SSE),  
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where k is the number of required clusters, Cj is the jth cluster, mj is the 
centroid of cluster Cj (the mean vector of all the data points in Cj), and 
dist(x, mj) is the distance between data point x and centroid mj. 

The k-means algorithm can be used for any application data set where the 
mean can be defined and computed. In Euclidean space, the mean of a 
cluster is computed with:  
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where |Cj| is the number of data points in cluster Cj. The distance from a 
data point xi to a cluster mean (centroid) mj is computed with 
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Example 4: Figure 4.3(A) shows a set of data points in a 2-dimensional 
space. We want to find 2 clusters from the data, i.e., k = 2. First, two data 
points (each marked with a cross) are randomly selected to be the initial 
centroids (or seeds) shown in Fig. 4.3(A). The algorithm then goes to the 
first iteration (the repeat-loop). 

Iteration 1: Each data point is assigned to its closest centroid to form 2 
clusters. The resulting clusters are given in Fig. 4.3(B). Then the cen-
troids are re-computed based on the data points in the current clusters 
(Fig. 4.3(C)). This leads to iteration 2.  

Iteration 2: Again, each data point is assigned to its closest new centroid to 
form two new clusters shown in Fig. 4.3(D). The centroids are then re-
computed. The new centroids are shown in Fig. 4.3(E).  

Iteration 3: The same operations are performed as in the first two itera-
tions. Since there is no re-assignment of data points to different clusters 
in this iteration, the algorithm ends.  

The final clusters are those given in Fig. 4.3(G). The set of data points in 
each cluster and its centroid are output to the user.  
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Fig. 4.3. The working of the k-means algorithm through an example ▀ 

One problem with the k-means algorithm is that some clusters may be-
come empty during the clustering process since no data point is assigned to 
them. Such clusters are called empty clusters. To deal with an empty clus-
ter, we can choose a data point as the replacement centroid, e.g., a data 
point that is furthest from the centroid of a large cluster. If the sum of the 
squared error (SSE) is used as the stopping criterion, the cluster with the 
largest squared error may be used to find another centroid. 

+
+

+ +

+ +

(A). Random selection of k seeds (or centroids) 

+
+

+ +

+ +

Iteration 2:  (D). Cluster assignment (E). Re-compute centroids 

+ +

Iteration 3:  (F). Cluster assignment (G). Re-compute centroids 

Iteration 1:  (B). Cluster assignment (C). Re-compute centroids 
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4.2.2 Disk Version of the K-means Algorithm 

The k-means algorithm may be implemented in such a way that it does not 
need to load the entire data set into the main memory, which is useful for 
large data sets. Notice that the centroids for the k clusters can be computed 
incrementally in each iteration because the summation in Equation (2) can 
be calculated separately first. During the clustering process, the number of 
data points in each cluster can be counted incrementally as well. This gives 
us a disk based implementation of the algorithm (Fig. 4.4), which produces 
exactly the same clusters as that in Fig. 4.2, but with the data on disk. In 
each for-loop, the algorithm simply scans the data once.  

The whole clustering process thus scans the data t times, where t is the 
number of iterations before convergence, which is usually not very large 
(< 50). In applications, it is quite common to set a limit on the number of 
iterations because later iterations typically result in only minor changes to 
the clusters. Thus, this algorithm may be used to cluster large data sets 
which cannot be loaded into the main memory. Although there are several 
special algorithms that scale-up clustering algorithms to large data sets, 
they all require sophisticated techniques.  

Algorithm disk-k-means(k, D) 
1 Choose k data points as the initial centriods mj, j = 1, …, k;  
2 repeat 
3 initialize sj ← 0, j = 1, …, k; // 0 is a vector with all 0’s 
4 initialize nj ← 0, j = 1, …, k; // nj is the number of points in cluster j 
5 for each data point x ∈ D do 
6 );,(minarg
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∈
←  

7 assign x to the cluster j; 
8 sj ← sj + x; 
9 nj ← nj + 1; 
10 endfor 
11 mj ← sj/nj, j = 1, …, k; 
12 until the stopping criterion is met 

Fig. 4.4. A simple disk version of the k-means algorithm 

Let us give some explanations of this algorithm. Line 1 does exactly the 
same thing as the algorithm in Fig. 4.2. Line 3 initializes vector sj which is 
used to incrementally compute the sum in Equation (2) (line 8). Line 4 ini-
tializes nj which records the number of data points assigned to cluster j 
(line 9). Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in 
the original algorithm in Fig. 4.2. Line 11 re-computes the centroids, 
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which are used in the next iteration. Any of the three stopping criteria may 
be used here. If the sum of squared error is applied, we can modify the al-
gorithm slightly to compute the sum of square error incrementally.  

4.2.3 Strengths and Weaknesses  

The main strengths of the k-means algorithm are its simplicity and effi-
ciency. It is easy to understand and easy to implement. Its time complexity 
is O(tkn), where n is the number of data points, k is the number of clusters, 
and t is the number of iterations. Since both k and t are normally much 
smaller than n, the k-means algorithm is considered a linear algorithm in 
the number of data points.  

The weaknesses and ways to address them are as follows:  

1. The algorithm is only applicable to data sets where the notion of the 
mean is defined. Thus, it is difficult to apply to categorical data sets. 
There is, however, a variation of the k-means algorithm called k-modes, 
which clusters categorical data. The algorithm uses the mode instead of 
the mean as the centroid. Assuming that the data instances are described 
by r categorical attributes, the mode of a cluster Cj is a tuple mj = (mj1, 
mj2, …, mjr) where mji is the most frequent value of the ith attribute of 
the data instances in cluster Cj. The similarity (or distance) between a 
data instance and a mode is the number of values that they match (or do 
not match).  

2. The user needs to specify the number of clusters k in advance. In prac-
tice, several k values are tried and the one that gives the most desirable 
result is selected. We will discuss the evaluation of clusters later.  

3. The algorithm is sensitive to outliers. Outliers are data points that are 
very far away from other data points. Outliers could be errors in the data 
recording or some special data points with very different values. For ex-
ample, in an employee data set, the salary of the Chief-Executive-
Officer (CEO) of the company may be considered as an outlier because 
its value could be many times larger than everyone else. Since the k-
means algorithm uses the mean as the centroid of each cluster, outliers 
may result in undesirable clusters as the following example shows. 

Example 5: In Fig. 4.5(A), due to an outlier data point, the two result-
ing clusters do not reflect the natural groupings in the data. The ideal 
clusters are shown in Fig. 4.5(B). The outlier should be identified and 
reported to the user.   ▀ 

There are several methods for dealing with outliers. One simple 
method is to remove some data points in the clustering process that are 
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much further away from the centroids than other data points. To be safe, 
we may want to monitor these possible outliers over a few iterations and 
then decide whether to remove them. It is possible that a very small 
cluster of data points may be outliers. Usually, a threshold value is used 
to make the decision.  

 
Fig. 4.5. Clustering with and without the effect of outliers ▀ 

Another method is to perform random sampling. Since in sampling 
we only choose a small subset of the data points, the chance of selecting 
an outlier is very small. We can use the sample to do a pre-clustering 
and then assign the rest of the data points to these clusters, which may 
be done in any of the three ways below: 
• Assign each remaining data point to the centroid closest to it. This is 

the simplest method.   
• Use the clusters produced from the sample to perform supervised 

learning (classification). Each cluster is regarded as a class. The clus-
tered sample is thus treated as the training data for learning. The re-
sulting classifier is then applied to classify the remaining data points 
into appropriate classes or clusters.  

• Use the clusters produced from the sample as seeds to perform semi-
supervised learning. Semi-supervised learning is a new learning 
model that learns from a small set of labeled examples (with classes) 
and a large set of unlabeled examples (without classes). In our case, 
the clustered sample data are used as the labeled set and the remain-
ing data points are used as the unlabeled set. The results of the learn-

++
outlier 

++

outlier 

(A): Undesirable clusters 

(B): Ideal clusters 
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ing naturally cluster all the remaining data points.  We will study this 
technique in the next chapter.  

4. The algorithm is sensitive to initial seeds, which are the initially se-
lected centroids. Different initial seeds may result in different clusters. 
Thus, if the sum of squared error is used as the stopping criterion, the 
algorithm only achieves local optimal. The global optimal is computa-
tionally infeasible for large data sets.  

Example 6: Figure 4.6 shows the clustering process of a 2-dimensional 
data set. The goal is to find two clusters. The randomly selected initial 
seeds are marked with crosses in Fig. 4.6(A). Figure 4.6(B) gives the 
clustering result of the first iteration. Figure 4.6(C) gives the result of 
the second iteration. Since there is no re-assignment of data points, the 
algorithm stops.  

 
Fig. 4.6. Poor initial seeds (centroids) 

If the initial seeds are different, we may obtain entirely different clus-
ters as Fig. 4.7 shows. Figure 4.7 uses the same data as Fig. 4.6, but dif-
ferent initial seeds (Fig. 4.7(A)). After two iterations, the algorithm 
ends, and the final clusters are given in Fig. 4.7(C). These two clusters 
are more reasonable than the two clusters in Fig. 4.6(C), which indicates 
that the choice of the initial seeds in Fig. 4.6(A) is poor.  

To select good initial seeds, researchers have proposed several meth-
ods. One simple method is to first compute the mean m (the centroid) of 
the entire data set (any random data point rather than the mean can be 

+
+

(A). Random selection of seeds (centroids)

 (B). Iteration 1 (C). Iteration 2 

+

+

+

+
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used as well). Then the first seed data point x1 is selected to be the fur-
thest from the mean m. The second data point x2 is selected to be the 
furthest from x1. Each subsequent data point xi is selected such that the 
sum of distances from xi to those already selected data points is the larg-
est. However, if the data has outliers, the method will not work well. To 
deal with outliers, again, we can randomly select a small sample of the 
data and perform the same operation on the sample. As we discussed 
above, since the number of outliers is small, the chance that they show 
up in the sample is very small.  

 
Fig. 4.7. Good initial seeds (centroids)  ▀ 

Another method is to sample the data and use the sample to perform 
hierarchical clustering, which we will discuss in Sect. 4.4. The centroids 
of the resulting k clusters are used as the initial seeds.  

Yet another approach is to manually select seeds. This may not be a 
difficult task for text clustering applications because it is easy for human 
users to read some documents and pick some good seeds. These seeds 
may help improve the clustering result significantly and also enable the 
system to produce clusters that meet the user’s needs.   

5. The k-means algorithm is not suitable for discovering clusters that are 
not hyper-ellipsoids (or hyper-spheres).  

Example 7: Figure 4.8(A) shows a 2-dimensional data set. There are 
two irregular shaped clusters. However, the two clusters are not hyper-

(A). Random selection of k seeds (centroids) 

 (B). Iteration 1 (C). Iteration 2 

+
+

+
+

++
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ellipsoids, which means that the k-means algorithm will not be able to 
find them. Instead, it may find the two clusters shown in Fig. 4.8(B).  

The question is: are the two clusters in Fig. 4.8(B) necessarily bad? 
The answer is no. It depends on the application. It is not true that a clus-
tering algorithm that is able to find arbitrarily shaped clusters is always 
better. We will discuss this issue in Sect. 4.3.2. 

 
Fig. 4.8. Natural (but irregular) clusters and k-means clusters ▀ 

Despite these weaknesses, k-means is still the most popular algorithm in 
practice due to its simplicity, efficiency and the fact that other clustering 
algorithms have their own lists of weaknesses. There is no clear evidence 
showing that any other clustering algorithm performs better than the k-
means algorithm in general, although it may be more suitable for some 
specific types of data or applications than k-means. Note also that compar-
ing different clustering algorithms is a very difficult task because unlike 
supervised learning, nobody knows what the correct clusters are, especially 
in high dimensional spaces. Although there are several cluster evaluation 
methods, they all have drawbacks. We will discuss the evaluation issue in 
Sect. 4.9.  

4.3 Representation of Clusters  

Once a set of clusters is found, the next task is to find a way to represent 
the clusters. In some applications, outputting the set of data points that 
makes up the cluster to the user is sufficient. However, in other applica-
tions that involve decision making, the resulting clusters need to be repre-
sented in a compact and understandable way, which also facilitates the 
evaluation of the resulting clusters.   

   (A): Two natural clusters (B): k-means clusters 

+ 

+ 
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4.3.1 Common Ways of Representing Clusters 

There are three main ways to represent clusters: 

1. Use the centroid of each cluster to represent the cluster. This is the most 
popular way. The centroid tells where the center of the cluster is. One 
may also compute the radius and standard deviation of the cluster to de-
termine the spread in each dimension. The centroid representation alone 
works well if the clusters are of the hyper-spherical shape. If clusters are 
elongated or are of other shapes, centroids may not be suitable.  

2. Use classification models to represent clusters. In this method, we treat 
each cluster as a class. That is, all the data points in a cluster are re-
garded as having the same class label, e.g., the cluster ID. We then run a 
supervised learning algorithm on the data to find a classification model. 
For example, we may use the decision tree learning to distinguish the 
clusters. The resulting tree or set of rules provide an understandable rep-
resentation of the clusters.  

Figure 4.9 shows a partitioning produced by a decision tree algo-
rithm. The original clustering gave three clusters. Data points in cluster 
1 are represented by 1’s, data points in cluster 2 are represented by 2’s, 
and data points in cluster 3 are represented by 3’s. We can see that the 
three clusters are separated and each can be represented with a rule. 

x ≤ 2 → cluster 1 
x > 2, y > 1.5 → cluster 2 
x > 2, y ≤ 1.5 → cluster 3 

 
Fig. 4.9. Description of clusters using rules 

We make two remarks about this representation method: 

• The partitioning in Fig. 4.9 is an ideal case as each cluster is repre-
sented by a single rectangle (or rule). However, in most applications, 
the situation may not be so ideal. A cluster may be split into a few 

1 

1 1 

1 
1 

2 1 1 

1 
1 

1 1 
1 2 

1 
2 

2 
2 
2 

2 

2 2 2 

2 

3 

3 3 
3 3 3 

3 

3 

3 

2 x

  y 

 

 
1.5 

2 

2 



130 4 Unsupervised Learning 

hyper-rectangles or rules. However, there is usually a dominant or 
large rule which covers most of the data points in the cluster.  

• One can use the set of rules to evaluate the clusters to see whether 
they conform to some existing domain knowledge or intuition.  

3. Use frequent values in each cluster to represent it. This method is 
mainly for clustering of categorical data (e.g., in the k-modes cluster-
ing). It is also the key method used in text clustering, where a small set 
of frequent words in each cluster is selected to represent the cluster.  

4.3.2 Clusters of Arbitrary Shapes 

Hyper-elliptical and hyper-spherical clusters are usually easy to represent, 
using their centroids together with spreads (e.g., standard deviations), 
rules, or a combination of both. However, other arbitrary shaped clusters, 
like the natural clusters shown in Fig. 4.8(A), are hard to represent espe-
cially in high dimensional spaces.  

A common criticism about an algorithm like k-means is that it is not 
able to find arbitrarily shaped clusters. However, this criticism may not be 
as bad as it sounds because whether one type of clustering is desirable or 
not depends on the application. Let us use the natural clusters in Fig. 
4.8(A) to discuss this issue together with an artificial application.  

Example 8: Assume that the data shown in Fig. 4.8(A) is the measurement 
data of people’s physical sizes. We want to group people based on their 
sizes into only two groups in order to mass-produce T-shirts of only 2 sizes 
(say large and small). Even if the measurement data indicate two natural 
clusters as in Fig. 4.8(A), it is difficult to use the clusters because we need 
centroids of the clusters to design T-shirts. The clusters in Fig. 4.8(B) are 
in fact better because they provide us the centroids that are representative 
of the surrounding data points. If we use the centroids of the two natural 
clusters as shown in Fig. 4.10 to make T-shirts, it is clearly inappropriate 
because they are too near to each other in this case. In general, it does not 
make sense to define the concept of center or centroid for an irregularly 
shaped cluster. ▀ 

Note that clusters of arbitrary shapes can be found by neighborhood 
search algorithms such as some hierarchical clustering methods (see the 
next section), and density-based clustering methods [164]. Due to the dif-
ficulty of representing an arbitrarily shaped cluster, an algorithm that finds 
such clusters may only output a list of data points in each cluster, which 
are not as easy to use. These kinds of clusters are more useful in spatial 
and image processing applications, but less useful in others.  
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Fig. 4.10. Two natural clusters and their centroids 

4.4 Hierarchical Clustering  

Hierarchical clustering is another major clustering approach. It has a num-
ber of desirable properties which make it popular. It clusters by producing 
a nested sequence of clusters like a tree (also called a dendrogram). Sin-
gleton clusters (individual data points) are at the bottom of the tree and one 
root cluster is at the top, which covers all data points. Each internal cluster 
node contains child cluster nodes. Sibling clusters partition the data points 
covered by their common parent. Figure 4.11 shows an example. 

 
Fig. 4.11. An illustration of hierarchical clustering 

At the bottom of the tree, there are 5 clusters (5 data points). At the next 
level, cluster 6 contains data points 1 and 2, and cluster 7 contains data 
points 4 and 5. As we move up the tree, we have fewer and fewer clusters. 
Since the whole clustering tree is stored, the user can choose to view clus-
ters at any level of the tree.  
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There are two main types of hierarchical clustering methods: 

Agglomerative (bottom up) clustering: It builds the dendrogram (tree) 
from the bottom level, and merges the most similar (or nearest) pair of 
clusters at each level to go one level up. The process continues until all 
the data points are merged into a single cluster (i.e., the root cluster).  

Divisive (top down) clustering: It starts with all data points in one cluster, 
the root. It then splits the root into a set of child clusters. Each child 
cluster is recursively divided further until only singleton clusters of in-
dividual data points remain, i.e., each cluster with only a single point.    

Agglomerative methods are much more popular than divisive methods. We 
will focus on agglomerative hierarchical clustering. The general agglom-
erative algorithm is given in Fig. 4.12.  

Algorithm Agglomerative(D) 
1 Make each data point in the data set D a cluster,  
2 Compute all pair-wise distances of x1, x2, …, xn ∈ D; 
2 repeat 
3 find two clusters that are nearest to each other; 
4 merge the two clusters form a new cluster c;  
5 compute the distance from c to all other clusters;  
12 until there is only one cluster left 

Fig. 4.12. The agglomerative hierarchical clustering algorithm 

Example 9: Figure 4.13 illustrates the working of the algorithm. The data 
points are in a 2-dimensional space. Figure 4.13(A) shows the sequence of 
nested clusters, and Fig. 4.13(B) gives the dendrogram.  ▀ 

 
Fig. 4.13. The working of an agglomerative hierarchical clustering algorithm  
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Unlike the k-means algorithm, which uses only the centroids in distance 
computation, hierarchical clustering may use anyone of several methods to 
determine the distance between two clusters. We introduce them next.  

4.4.1 Single-Link Method 

In single-link (or single linkage) hierarchical clustering, the distance be-
tween two clusters is the distance between two closest data points in the 
two clusters (one data point from each cluster). In other words, the single-
link clustering merges the two clusters in each step whose two nearest data 
points (or members) have the smallest distance, i.e., the two clusters with 
the smallest minimum pair-wise distance. The single-link method is suit-
able for finding non-elliptical shape clusters. However, it can be sensitive 
to noise in the data, which may cause the chain effect and produce strag-
gly clusters. Figure 4.14 illustrates this situation. The noisy data points 
(represented with filled circles) in the middle connect two natural clusters 
and split one of them.  

 
Fig. 4.14. The chain effect of the single-link method 

With suitable data structures, single-link hierarchical clustering can be 
done in O(n2) time, where n is the number of data points. This is much 
slower than the k-means method, which performs clustering in linear time.  

4.4.2  Complete-Link Method 

In complete-link (or complete linkage) clustering, the distance between 
two clusters is the maximum of all pair-wise distances between the data 
points in the two clusters. In other words, the complete-link clustering 
merges the two clusters in each step whose two furthest data points have 
the smallest distance, i.e., the two clusters with the smallest maximum 
pair-wise distance. Figure 4.15 shows the clusters produced by complete-
link clustering using the same data as in Fig. 4.14.   
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Fig. 4.15. Clustering using the complete-link method 

Although the complete-link method does not have the problem of chain 
effects, it can be sensitive to outliers. Despite this limitation, it has been 
observed that the complete-link method usually produces better clusters 
than the single-link method. The worse case time complexity of the com-
plete-link clustering is O(n2log n), where n is the number of data points.  

4.4.3  Average-Link Method 

This is a compromise between the sensitivity of complete-link clustering to 
outliers and the tendency of single-link clustering to form long chains that 
do not correspond to the intuitive notion of clusters as compact, spherical 
objects. In this method, the distance between two clusters is the average 
distance of all pair-wise distances between the data points in two clusters. 
The time complexity of this method is also O(n2log n).  

Apart from the above three popular methods, there are several others. 
The following two methods are also commonly used: 

Centroid method: In this method, the distance between two clusters is the 
distance between their centroids.  

Ward's method: In this method, the distance between two clusters is de-
fined as the increase in the sum of squared error (distances) from that of 
two clusters to that of one merged cluster. Thus, the clusters to be merged 
in the next step are the ones that will increase the sum the least. Recall that 
the sum of squared error (SSE) is one of the measures used in the k-means 
clustering (Equation (1)).  

4.4.4. Strengths and Weaknesses  

Hierarchical clustering has several advantages compared to the k-means 
and other partitioning clustering methods. It is able to take any form of dis-
tance or similarity function. Moreover, unlike the k-means algorithm 
which only gives k clusters at the end, the hierarchy of clusters from hier-
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archical clustering enables the user to explore clusters at any level of detail 
(or granularity). In many applications, this resulting hierarchy can be very 
useful in its own right. For example, in text document clustering, the clus-
ter hierarchy may represent a topic hierarchy in the documents.  

Some studies have shown that agglomerative hierarchical clustering of-
ten produces better clusters than the k-means method. It can also find clus-
ters of arbitrary shapes, e.g., using the single-link method.  

Hierarchical clustering also has several weaknesses. As we discussed 
with the individual methods, the single-link method may suffer from the 
chain effect, and the complete-link method is sensitive to outliers. The 
main shortcomings of all hierarchical clustering methods are their compu-
tation complexities and space requirements, which are at least quadratic. 
Compared to the k-means algorithm, this is very inefficient and not practi-
cal for large data sets. One can use sampling to deal with the problems. A 
small sample is taken to do clustering and then the rest of the data points 
are assigned to each cluster either by distance comparison or by supervised 
learning (see Sect. 4.3.1). Some scale-up methods may also be applied to 
large data sets. The main idea of the scale-up methods is to find many 
small clusters first using an efficient algorithm, and then to use the cen-
troids of these small clusters to represent the clusters to perform the final 
hierarchical clustering (see the BIRCH method in [610]).  

4.5 Distance Functions 

Distance or similarity functions play a central role in all clustering algo-
rithms. Numerous distance functions have been reported in the literature 
and used in applications. Different distance functions are also used for dif-
ferent types of attributes (also called variables).  

4.5.1  Numeric Attributes 

The most commonly used distance functions for numeric attributes are the 
Euclidean distance and Manhattan (city block) distance. Both distance 
measures are special cases of a more general distance function called the 
Minkowski distance. We use dist(xi, xj) to denote the distance between 
two data points of r dimensions. The Minkowski distance is: 
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where h is a positive integer.  
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If h = 2, it is the Euclidean distance,  
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If h = 1, it is the Manhattan distance,  

.||...||||),( 2211 jrirjijiji xxxxxxdist −++−+−=xx  (6) 

Other common distance functions include: 

Weighted Euclidean distance: A weight is associated with each attribute 
to express its importance in relation to other attributes. 
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Squared Euclidean distance: the standard Euclidean distance is squared 
in order to place progressively greater weights on data points that are fur-
ther apart. The distance is  
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Chebychev distance: This distance measure is appropriate in cases where 
one wants to define two data points as “different” if they are different on 
any one of the attributes. The Chebychev distance is  

|).| ..., |,| |,max(|),( 2211 jrirjijiji xxxxxxdist −−−=xx  (9) 

4.5.2 Binary and Nominal Attributes 

The above distance measures are only appropriate for numeric attributes. 
For binary and nominal attributes (also called unordered categorical at-
tributes), we need different functions. Let us discuss binary attributes first.  

A binary attribute has two states or values, usually represented by 1 
and 0. The two states have no numerical ordering. For example, Gender 
has two values, male and female, which have no ordering relations but are 
just different. Existing distance functions for binary attributes are based on 
the proportion of value matches in two data points. A match means that, 
for a particular attribute, both data points have the same value. It is easy to 
use a confusion matrix to introduce these measures. Given the ith and jth 
data points, xi and xj, we can construct the confusion matrix in Fig. 4.16. 

To give the distance functions, we further divide binary attributes into 
symmetric and asymmetric attributes. For different types of attributes, 
different distance functions need to be used [271]: 
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a:  the number of attributes with the value of 1 for both data points. 
b:  the number of attributes for which xif = 1 and xjf = 0, where xif (xjf) is 

the value of the fth attribute of the data point xi (xj). 
c:  the number of attributes for which xif = 0 and xjf = 1. 
d:  the number of attributes with the value of 0 for both data points. 

Fig. 4.16. Confusion matrix of two data points with only binary attributes 

Symmetric attributes: A binary attribute is symmetric if both of its states 
(0 and 1) have equal importance, and carry the same weight, e.g., male and 
female of the attribute Gender. The most commonly used distance function 
for symmetric attributes is the simple matching distance, which is the 
proportion of mismatches (Equation (10)) of their values. We assume that 
every attribute in the data set is a symmetric attribute. 
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We can also weight some components in Equation (10) according to ap-
plication needs. For example, we may want mismatches to carry twice the 
weight of matches, or vice versa: 
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Example 10: Given the following two data points, where each attribute is 
a symmetric binary attribute,  

x1 1 1 1 0 1 0 0 
x2 0 1 1 0 0 1 0 

the distance computed based on the simple matching distance is 

     Data point xj 
 1 0  

1 a b a+b 
0 c d c+d 
 a+c b+d a+b+c+d 

Data point xi 
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▀ 
Asymmetric attributes: A binary attribute is asymmetric if one of the 
states is more important or valuable than the other. By convention, we use 
state 1 to represent the more important state, which is typically the rare or 
infrequent state. The most commonly used distance measure for asymmet-
ric attributes is the Jaccard distance:  
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Similarly, we can vary the Jaccard distance by giving more weight to 
(b+c) or more weight to a to express different emphases.  
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Note that there is also a Jaccard coefficient, which measures similarity 
(rather than distance) and is defined as a / (a+b+c).  

For general nominal attributes with more than two states or values, the 
commonly used distance measure is also based on the simple matching dis-
tance. Given two data points xi and xj, let the number of attributes be r, and 
the number of values that match in xi and xj be q:  
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As that for binary attributes, we can give higher weights to different com-
ponents in Equation (17) according to different application characteristics.  

4.5.3 Text Documents 

Although a text document consists of a sequence of sentences and each 
sentence consists of a sequence of words, a document is usually considered 
as a “bag” of words in document clustering. The sequence and the position 
information of words are ignored. Thus a document can be represented as a 
vector just like a normal data point. However, we use similarity to com-
pare two documents rather than distance. The most commonly used simi-
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larity function is the cosine similarity. We will study this similarity meas-
ure in Sect. 6.2.2 when we discuss information retrieval and Web search.  

4.6 Data Standardization 

One of the most important steps in data pre-processing for clustering is to 
standardize the data. For example, using the Euclidean distance, standardi-
zation of attributes is highly recommended so that all attributes can have 
equal impact on the distance computation. This is to avoid obtaining clus-
ters that are dominated by attributes with the largest amounts of variation.  

Example 11: In a 2-dimensional data set, the value range of one attribute 
is from 0 to 1, while the value range of the other attribute is from 0 to 
1000. Consider the following pair of data points xi: (0.1, 20) and xj: (0.9, 
720). The Euclidean distance between the two points is 

,700.000457)20720()1.09.0(),( 22 =−+−=jidist xx  (18) 

which is almost completely dominated by (720−20) = 700. To deal with 
the problem, we standardize the attributes, e.g., to force the attributes to 
have a common value range. If both attributes are forced to have a scale 
within the range 0−1, the values 20 and 720 become 0.02 and 0.72. The 
distance on the first dimension becomes 0.8 and the distance on the second 
dimension 0.7, which are more equitable. Then, dist(xi, xj) = 1.063.  ▀ 

This example shows that standardizing attributes is important. In fact, 
different types of attributes require different treatments. We list these 
treatments below.  

Interval-scaled attributes: These are numeric/continuous attributes. Their 
values are real numbers following a linear scale. Examples of such attrib-
utes are age, height, weight, cost, etc. The idea is that intervals keep the 
same importance through out the scale. For example, the difference in age 
between 10 and 20 is the same as that between 40 and 50.  

There are two main approaches to standardize interval scaled attributes, 
range and z-score. The range method divides each value by the range of 
valid values of the attribute so that the transformed value ranges between 0 
and 1. Given the value xif of the fth attribute of the ith data point, the new 
value rg(xif) is, 
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where min(f) and max(f) are the minimum value and maximum value of at-
tribute f respectively. max(f) − min(f) is the value range of the valid values 
of attribute f.  

The z-score method transforms an attribute value based on the mean and 
the standard deviation of the attribute. That is, the z-score of the value in-
dicates how far and in what direction the value deviates from the mean of 
the attribute, expressed in units of the standard deviation of the attribute. 
The standard deviation of attribute f, denoted by σf, is computed with:  
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where n is the number of data points in the data set, xif is the same as 
above, and µf is the mean of attribute f, which is computed with: 
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Given the value xif, its z-score (the new value after transformation) is z(xif),  
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Ratio-Scaled Attributes: These are also numeric attributes taking real 
values. However, unlike interval-scaled attributes, their scales are not lin-
ear. For example, the total amount of microorganisms that evolve in a time 
t is approximately given by  

 AeBt, 

where A and B are some positive constants. This formula is referred to as 
exponential growth. If we have such attributes in a data set for clustering, 
we have one of the following two options: 

1. Treat it as an interval-scaled attribute. This is often not recommended 
due to scale distortion.  

2. Perform logarithmic transformation to each value, xif, i.e., 

).log( ifx  (23) 

After the transformation, the attribute can be treated as an interval-
scaled attribute. 

Nominal (Unordered Categorical) Attributes: As we discussed in Sect. 
4.5.2, the value of such an attribute can take anyone of a set of states (also 



4.7 Handling of Mixed Attributes      141 

called categories). The states have no logical or numerical ordering. For 
example, the attribute fruit may have the possible values, Apple, Orange, 
and Pear, which have no ordering. A binary attribute is a special case of 
a nominal attribute with only two states or values.  

Although nominal attributes are not standardized as numeric attributes, 
it is sometime useful to convert a nominal attribute to a set of binary at-
tributes. Let the number of values of a nominal attribute be v. We can then 
create v binary attributes to represent them, i.e., one binary attribute for 
each value. If a data instance for the nominal attribute takes a particular 
value, the value of its corresponding binary attribute is set to 1, otherwise 
it is set to 0. The resulting binary attributes can be used as numeric attrib-
utes. We will discuss this again in Sect. 4.7.  
Example 12: For the nominal attribute fruit, we create three binary attrib-
utes called, Apple, Orange, and Pear in the new data. If a particular data 
instance in the original data has Apple as the value for fruit, then in the 
transformed data, we set the value of the attribute Apple to 1, and the val-
ues of attributes Orange and Pear to 0.  ▀ 

Ordinal (Ordered Categorical) Attributes: An ordinal attribute is like a 
nominal attribute, but its values have a numerical ordering. For example, 
the age attribute may have the values, Young, Middle-Age and Old. The 
common approach to distance computation is to treat ordinal attributes as 
interval-scaled attributes and use the same methods as for interval-scaled 
attributes to standardize the values of ordinal attributes. 

4.7 Handling of Mixed Attributes 

So far, we have assumed that a data set contains only one type of attrib-
utes. However, in practice, a data set may contain mixed attributes. That is, 
it may contain any subset of the six types of attributes, interval-scaled, 
symmetric binary, asymmetric binary, ratio-scaled, ordinal and nomi-
nal attributes. Clustering a data set involving mixed attributes is a chal-
lenging problem.  

One way to deal with such a data set is to choose a dominant attribute 
type and then convert the attributes of other types to this type. For exam-
ple, if most attributes in a data set are interval-scaled, we can convert ordi-
nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-
cussed above. It is also appropriate to treat symmetric binary attributes as 
interval-scaled attributes. However, it does not make much sense to con-
vert a nominal attribute with more than two values or an asymmetric bi-
nary attribute to an interval-scaled attribute, but it is still frequently done in 
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practice by assigning some numbers to them according to some hidden or-
dering. For instance, in the example of Apple, Orange, and Pear, one may 
order them according to their prices, and thus make the attribute fruit an 
ordinal attribute or even an interval-scaled attribute. In the previous sec-
tion, we also saw that a nominal attribute can be converted to a set of 
(symmetric) binary attributes, which in turn can be regarded as interval-
scaled attributes.  

Another method of handling mixed attributes is to compute the distance 
of each attribute of the two data points separately and then combine all the 
individual distances to produce an overall distance. We describe one such 
method, which is due to Gower [205] and is also described in [218, 271]. 
We describe the combination formula first (Equation (24)) and then pre-
sent the methods to compute individual distances.  
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This distance value is between 0 and 1. r is the number of attributes in the 
data set. The indicator f

ijδ  is 1 if both values xif and xjf for attribute f are 
non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f is 
asymmetric and the match is 0–0. Equation (24) cannot be computed if all 

f
ijδ ’s are 0. In such a case, some default value may be used or one of the 

data points is removed. f
ijd is the distance contributed by attribute f, and it 

is in the range 0–1. If f is a binary or nominal attribute,  
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If all the attributes are nominal, Equation (24) reduces to Equation (17). 
The same is true for symmetric binary attributes, in which we recover the 
simple matching distance (Equation (10)). When the attributes are all 
asymmetric, we obtain the Jaccard distance (Equation (14)).  

If attribute f is interval-scaled, we use  
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where Rf is the value range of attribute f, which is  
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Ordinal attributes and ratio-scaled attributes are handled in the same way 
after conversion.  

If all the attributes are interval-scaled, Equation (24) becomes the Man-
hattan distance assuming that all attribute values are standardized by divid-
ing their values with the ranges of their corresponding attributes.  

4.8 Which Clustering Algorithm to Use? 

Clustering research and application has a long history. Over the years, a 
vast collection of clustering algorithms has been designed. This chapter 
only introduced several of the main algorithms.  

Given an application data set, choosing the “best” clustering algorithm 
to cluster the data is a challenge. Every clustering algorithm has limitations 
and works well with only certain data distributions. However, it is very 
hard, if not impossible, to know what distribution the application data fol-
lows. Worse still, the application data set may not fully follow any “ideal” 
structure or distribution required by the algorithms. Apart from choosing a 
suitable clustering algorithm from a large collection of available algo-
rithms, deciding how to standardize the data, to choose a suitable distance 
function and to select other parameter values (e.g., k in the k-means algo-
rithm) are complex as well. Due to these complexities, the common prac-
tice is to run several algorithms using different distance functions and pa-
rameter settings, and then to carefully analyze and compare the results.  

The interpretation of the results should be based on insight into the 
meaning of the original data together with knowledge of the algorithms 
used. That is, it is crucial that the user of a clustering algorithm fully un-
derstands the algorithm and its limitations. He/she should also have the 
domain expertise to examine the clustering results. In many cases, generat-
ing cluster descriptions using a supervised learning method (e.g., decision 
tree induction) can be particularly helpful to the analysis and comparison. 

4.9 Cluster Evaluation 

After a set of clusters is found, we need to assess the goodness of the clus-
ters. Unlike classification, where it is easy to measure accuracy using la-
beled test data, for clustering nobody knows what the correct clusters are 
given a data set. Thus, the quality of a clustering is much harder to evalu-
ate. We introduce a few commonly used evaluation methods below.  
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User Inspection: A panel of experts is asked to inspect the resulting clus-
ters and to score them. Since this process is subjective, we take the average 
of the scores from all the experts as the final score of the clustering. This 
manual inspection is obviously a labor intensive and time consuming task. 
It is subjective as well. However, in most applications, some level of man-
ual inspection is necessary because no other existing evaluation methods 
are able to guarantee the quality of the final clusters. It should be noted 
that direct user inspection may be easy for certain types of data, but not for 
others. For example, user inspection is not hard for text documents because 
one can read them easily. However, for a relational table with only num-
bers, staring at the data instances in each cluster makes no sense. The user 
can only meaningfully study the centroids of the clusters, or rules that 
characterize the clusters generated by a decision tree algorithm or some 
other supervised learning methods (see Sect. 4.3.1).  

Ground Truth: In this method, classification data sets are used to evalu-
ate clustering algorithms. Recall that a classification data set has several 
classes, and each data instance/point is labeled with one class. Using such 
a data set for cluster evaluation, we make the assumption that each class 
corresponds to a cluster. For example, if a data set has three classes, we as-
sume that it has three clusters, and we request the clustering algorithm to 
also produce three clusters. After clustering, we compare the cluster mem-
berships with the class memberships to determine how good the clustering 
is. A variety of measures can be used to assess the clustering quality, e.g., 
entropy, purity, precision, recall, and F-score.  

To facilitate evaluation, a confusion matrix can be constructed from the 
resulting clusters. From the matrix, various measurements can be com-
puted. Let the set of classes in the data set D be C = (c1, c2, …, ck). The 
clustering method also produces k clusters, which partition D into k dis-
joint subsets, D1, D2, …, Dk.  

Entropy: For each cluster, we can measure its entropy as follows:  
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Purity: This measures the extent that a cluster contains only one class of 
data. The purity of each cluster is computed with 
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The total purity of the whole clustering (considering all clusters) is  
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Precision, recall, and F-score can be computed as well for each cluster 
based on the class that is the most frequent in the cluster. Note that these 
measures are based on a single class (see Sect. 3.3.2).  

Example 13: Assume we have a text collection D of 900 documents from 
three topics (or three classes), Science, Sports, and Politics. Each class has 
300 documents, and each document is labeled with one of the topics 
(classes). We use this collection to perform clustering to find three clus-
ters. Class/topic labels are not used in clustering. After clustering, we want 
to measure the effectiveness of the clustering algorithm.  

First, a confusion matrix (Fig. 4.17) is constructed based on the cluster-
ing results. From Fig. 4.17, we see that cluster 1 has 250 Science docu-
ments, 20 Sports documents, and 10 Politics documents. The entries of the 
other rows have similar meanings. The last two columns list the entropy 
and purity values of each cluster and also the total entropy and purity of 
the whole clustering (last row). We observe that cluster 1, which contains 
mainly Science documents, is a much better (or purer) cluster than the 
other two. This fact is also reflected by both their entropy and purity val-
ues.  

Cluster Science Sports Politics  Entropy Purity 
1 250 20 10  0.589 0.893 
2 20 180 80  1.198 0.643 
3 30 100 210  1.257 0.617 

Total 300 300 300  1.031 0.711 

Fig. 4.17. Confusion matrix with entropy and purity values 

Obviously, we can use the total entropy or the total purity to compare 
different clustering results from the same algorithm with different parame-
ter settings or from different algorithms.  

Precision and recall may be computed similarly for each cluster. For ex-
ample, the precision of Science documents in cluster 1 is 0.89. The recall 
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of Science documents in cluster 1 is 0.83. The F-score for Science docu-
ments is thus 0.86.  ▀ 

A final remark about this evaluation method is that although an algo-
rithm may perform well on some labeled data sets, there is no guarantee 
that it will perform well on the actual application data at hand, which has 
no class labels. However, the fact that it performs well on some labeled 
data sets does give us some confidence on the quality of the algorithm. 
This evaluation method is said to be based on external data or informa-
tion.  

There are also methods that evaluate clusters based on the internal in-
formation in the clusters (without using external data with class labels). 
These methods measure intra-cluster cohesion (compactness) and inter-
cluster separation (isolation). Cohesion measures how near the data 
points in a cluster are to the cluster centroid. Sum of squared error (SSE) is 
a commonly used measure. Separation measures how far apart different 
cluster centroids are from one another. Any distance functions can be used 
for the purpose. We should note, however, that good values for these 
measurements do not always mean good clusters. In most applications, ex-
pert judgments are still the key. Clustering evaluation remains to be a very 
difficult problem. 

Indirect Evaluation: In some applications, clustering is not the primary 
task. Instead, it is used to help perform another more important task. Then, 
we can use the performance on the primary task to determine which clus-
tering method is the best for the task. For instance, in a Web usage mining 
application, the primary task is to recommend books to online shoppers. If 
the shoppers can be clustered according to their profiles and their past pur-
chasing history, we may be able to provide better recommendations. A few 
clustering methods can be tried, and their results are then evaluated based 
on how well they help with the recommendation task. Of course, here we 
assume that the recommendation results can be reliably evaluated. 

4.10 Discovering Holes and Data Regions 

In this section, we wander a little to discuss something related but quite 
different from the preceding algorithms. We show that unsupervised learn-
ing tasks may be performed by using supervised learning techniques [350].  

In clustering, data points are grouped into clusters according to their dis-
tances (or similarities). However, clusters only represent one aspect of the 
hidden knowledge in data. Another aspect that we have not studied is the 
holes. If we treat data instances as points in an r-dimensional space, a hole 
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is simply a region in the space that contains no or few data points. The ex-
istence of holes is due to the following two reasons:  

1. insufficient data in certain areas, and/or  
2. certain attribute-value combinations are not possible or seldom occur. 

Although clusters are important, holes in the space can be quite useful 
too. For example, in a disease database we may find that certain symptoms 
and/or test values do not occur together, or when a certain medicine is 
used, some test values never go beyond certain ranges. Discovery of such 
information can be of great importance in medical domains because it 
could mean the discovery of a cure to a disease or some biological laws. 

The technique discussed in this section aims to divide the data space 
into two types of regions, data regions (also called dense regions) and 
empty regions (also called sparse regions). A data region is an area in the 
space that contains a concentration of data points and can be regarded as a 
cluster. An empty region is a hole. A supervised learning technique similar 
to decision tree induction is used to separate the two types of regions. The 
algorithm (called CLTree for CLuser Tree [350]) works for numeric at-
tributes, but can be extended to discrete or categorical attributes.  

Decision tree learning is a popular technique for classifying data of 
various classes. For a decision tree algorithm to work, we need at least two 
classes of data. A clustering data set, however, has no class label for each 
data point. Thus, the technique is not directly applicable. However, the 
problem can be dealt with by a simple idea.   

We can regard each data instance/point in the data set as having a class 
label Y. We assume that the data space is uniformly distributed with an-
other type of points, called non-existing points, which we will label N. 
With the N points added to the original data space, our problem of parti-
tioning the data space into data regions and empty regions becomes a su-
pervised classification problem. The decision tree algorithm can be 
adapted to solve the problem. Let us use an example to illustrate the idea.  

Example 14: Figure 4.18(A) gives a 2-dimensional space with 24 data (Y) 
points. Two data regions (clusters) exist in the space. We then add some 
uniformly distributed N points (represented by “o”) to the data space (Fig. 
4.18(B)). With the augmented data set, we can run a decision tree algo-
rithm to obtain the partitioning of the space in Fig. 4.18(B). Data regions 
and empty regions are separated. Each region is a rectangle, which can be 
expressed as a rule.   ▀ 

The reason that this technique works is that if there are clusters (or 
dense data regions) in the data space, the data points cannot be uniformly 
distributed in the entire space. By adding some uniformly distributed N 



148 4 Unsupervised Learning 

points, we can isolate data regions because within each data region there 
are significantly more Y points than N points. The decision tree technique 
is well known for this partitioning task.  

 
Fig. 4.18. Separating data and empty regions using a decision tree  

An interesting question is: can the task be performed without physically 
adding the N points to the original data? The answer is yes. Physically add-
ing N points increases the size of the data and thus the running time. A 
more important issue is that it is unlikely that we can have points truly uni-
formly distributed in a high-dimensional space as we would need an expo-
nential number of them. Fortunately, we do not need to physically add any 
N points. We can compute them when needed. The CLTree method is able 
to produce the partitioning in Fig. 4.18(C) with no N points added. The de-
tails are quite involved. Interested readers can refer to [350]. This method 
has some interesting characteristics:  

• It provides descriptions or representations of the resulting data regions 
and empty regions in terms of hyper-rectangles, which can be expressed 
as rules as we have seen in Sect. 3.2 of Chap. 3 and in Sect. 4.3.1. Many 
applications require such descriptions, which can be easily interpreted 
by users.  

• It automatically detects outliers, which are data points in empty regions.  
• It may not use all attributes in the data just as in decision tree building 

(A): The original data space 

 (B). Partitioning with added  (C). Partitioning without adding  
N points N points. 
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for supervised learning. That is, it can automatically determine what at-
tributes are important and what are not. This means that it can perform 
subspace clustering, i.e., finding clusters that exist in some subspaces 
(represented by some subsets of the attributes) of the original space.  

This method also has limitations. The main limitation is that data re-
gions of irregular shapes are hard to handle since decision tree learning 
only generates hyper-rectangles (formed by axis-parallel hyper-planes), 
which are rules. Hence, an irregularly shaped data or empty region may be 
split into several hyper-rectangles. Post-processing is needed to join them 
if desired (see [350] for additional details).  

Bibliographic Notes 

Clustering or unsupervised learning has a long history and a very large 
body of work. This chapter described only some widely used core algo-
rithms. Most other algorithms are variations or extensions of these meth-
ods. For a comprehensive coverage of clustering, please refer to several 
books dedicated to clustering, e.g., those by Everitt [167], Hartigan [222], 
Jain and Dubes [252], Kaufman and Rousseeuw [271], and Mirkin [383]. 
Most data mining texts also have excellent coverage of clustering tech-
niques, e.g., Han and Kamber [218] and Tan et al. [512], which have influ-
enced the writing of this chapter. Below, we review some more recent de-
velopments on clustering and give some further readings.  

A density-based clustering algorithm based on local data densities was 
proposed by Ester et al. [164] and Xu et al. [564] for finding clusters of ar-
bitrary shapes. Hinneburg and Keim [239], Sheikholeslami et al. [485] and 
Wang et al. [538] proposed several grid-based clustering methods which 
first partition the space into small grids. A popular neural network cluster-
ing algorithm is the Self-Organizing Map (SOM) by Kohonen [287]. 
Fuzzy clustering (e.g., fuzzy c-means) was studied by Bezdek [50] and 
Dunn [157]. Cheeseman et al. [94] and Moore [396] studied clustering us-
ing mixture models. The method assumes that clusters are a mixture of 
Gaussians and uses the EM algorithm [127] to learn a mixture density. We 
will see in Chap. 5 that EM based partially supervised learning algorithms 
are basically clustering methods with some given initial seeds.  

Most clustering algorithms work on numeric data. Categorical data 
and/or transaction data clustering were investigated by Barbará et al. [36], 
Ganti et al. [193], Gibson et al. [197], Guha et al. [212], Wang et al. [537], 
etc. A related area in artificial intelligence is the conceptual clustering, 
which was studied by Fisher [178], Misha et al. [384] and many others.  
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Many clustering algorithms, e.g., hierarchical clustering algorithms, 
have high time complexities and are thus not suitable for large data sets. 
Scaling up such algorithms becomes an important issue for large applica-
tions. Several researchers have designed techniques to scale up clustering 
algorithms, e.g., Bradley et al. [61], Guha et al. [211], Ng and Han [406], 
and Zhang et al. [610].  

In recent years, there were quite a few new developments in clustering. 
The first one is subspace clustering. Traditional clustering algorithms use 
the whole space to find clusters, but natural clusters may exist in only 
some sub-spaces. That is, some clusters may only use certain subsets of the 
attributes. This problem was investigated by Agrawal et al. [8], Aggarwal 
et al. [4], Aggarwal and Yu [5], Cheng et al. [99], Liu et al. [350], Zaki et 
al. [590], and many others.  

The second new research is semi-supervised clustering, which means 
that the user can provide some initial information to guide the clustering 
process. For example, the user can select some initial seeds [39] and/or 
specify some constraints, e.g., must-link (two points must be in the same 
cluster) and cannot-link (two points cannot be in the same cluster) [528]. 

The third is the spectral clustering, which emerged from several fields, 
e.g., VLSI [17] and computer vision [481, 489, 542]. It clusters data points 
by computing eigenvectors of the similarity matrix. Recently, it was also 
studied in machine learning and data mining [141, 404, 594].  

Yet another new research is co-clustering, which simultaneously clus-
ters both rows and columns. This approach was studied by Cheng and 
Church [100], Dhillon [134], Dhillon et al. [135], and Hartigan [223].  

Regarding document and Web page clustering, most implementations 
are still based on k-means and hierarchical clustering methods, or their 
variations but using text specific similarity or distance functions. Steinbach 
et al. [506], and Zhao and Karypis [614, 615] experimented with k-means 
and agglomerative hierarchical clustering methods and also proposed some 
improvements. Many researchers also worked on clustering of search en-
gine results (or snippets) to organize search results into different topics, 
e.g., Hearst and Pedersen [233], Kummamuru et al. [294], Leouski and 
Croft [311], Zamir and Etzioni [591, 592], and Zeng et al. [593].  



 

5 Partially Supervised Learning 

In supervised learning, the learning algorithm uses labeled training exam-
ples from every class to generate a classification function. One of the 
drawbacks of this classic paradigm is that a large number of labeled exam-
ples are needed in order to learn accurately. Since labeling is often done 
manually, it can be very labor intensive and time consuming. In this chap-
ter, we study two partially supervised learning tasks. As their names sug-
gest, these two learning tasks do not need full supervision, and thus are 
able to reduce the labeling effort. The first is the task of learning from la-
beled and unlabeled examples, which is commonly known as semi-
supervised learning. In this chapter, we also call it LU learning (L and U 
stand for “labeled” and “unlabeled” respectively). In this learning setting, 
there is a small set of labeled examples of every class, and a large set of 
unlabeled examples. The objective is to make use of the unlabeled exam-
ples to improve learning.  

The second is the task of learning from positive and unlabeled exam-
ples. This problem assumes two-class classification. However, the training 
data only has a set of labeled positive examples and a set of unlabeled ex-
amples, but no labeled negative examples. In this chapter, we also call this 
problem PU learning (P and U stand for “positive” and “unlabeled” re-
spectively). The objective is to build an accurate classifier without labeling 
any negative examples. We study these two problems in the context of text 
classification and Web page classification in this chapter. However, the 
general ideas and the algorithms are also applicable to other kinds of clas-
sification tasks.  

5.1 Learning from Labeled and Unlabeled Examples 

As we described in Chap. 3, the common approach to learning a classifica-
tion function is to label a set of examples with some pre-defined categories 
or classes, and then use a learning algorithm to produce a classifier. This 
classifier is applied to assign classes to future instances (or test data). In 
the context of text classification and Web page classification, the examples 
are text documents and Web pages. This approach to building a classifier 
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is called supervised learning because the training documents/pages have 
been labeled with pre-defined classes.  

The main bottleneck of building such a classifier is that a large, often 
prohibitive, number of labeled training documents are needed to build ac-
curate classifiers. In text classification, the labeling is typically done 
manually by reading the documents, which is a time consuming task. 
However, we cannot eliminate labeling completely because without it a 
machine learning algorithm will not know what the user is interested in. 
Although unsupervised learning or clustering may help to some extent, 
clustering does not guarantee to produce the categorization results required 
by the user. This raises an important question: Can the manual labeling ef-
fort be reduced, and can other sources of information be used so that the 
number of labeled examples required for learning would not be too large?  

This section addresses the problem of learning from a small set of la-
beled examples and a large set of unlabeled examples, i.e., LU learning. 
Thus, in this setting only a small set of examples needs to be labeled for 
each class. However, since a small set of labeled examples is not sufficient 
for building an accurate classifier, a large number of unlabeled examples 
are utilized to help. One key point to note is that although the number may 
be small, every class must have some labeled examples.  

In many applications, unlabeled examples are easy to come by. This is 
especially true for online documents. For example, if we want to build a 
classifier to classify news articles into different categories or classes, it is 
fairly easy to collect a huge number of unlabeled news articles from the 
Web. In fact, in many cases, the new data that need to be classified (which 
have no class labels) can be used as the unlabeled examples.  

The question is: why do the unlabeled data help? In the context of text 
classification, one reason is that the unlabeled data provide information on 
the joint probability distribution over words. For example, using only the 
labeled data we find that documents containing the word “homework” tend 
to belong to a particular class. If we use this fact to classify the unlabeled 
documents, we may find that “lecture” co-occurs with “homework” fre-
quently in the unlabeled set. Then, “lecture” may also be an indicative 
word for the class. Such correlations provide a helpful source of informa-
tion to increase classification accuracy, especially when the labeled data 
are scarce.  

Several researchers have shown that unlabeled data help learning. That 
is, under certain conditions using both labeled and unlabeled data in learn-
ing is better than using a small set of labeled data alone. Their techniques 
can thus alleviate the labor-intensive labeling effort. We now study some 
of these learning techniques, and also discuss their limitations.  
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5.1.1 EM Algorithm with Naïve Bayesian Classification 

One of the LU learning techniques uses the Expectation–Maximization 
(EM) algorithm [127]. EM is a popular iterative algorithm for maximum 
likelihood estimation in problems with missing data. The EM algorithm 
consists of two steps, the Expectation step (or E-step), and the Maximi-
zation step (or M-step). The E-step basically fills in the missing data 
based on the current estimation of the parameters. The M-step, which 
maximizes the likelihood, re-estimates the parameters. This leads to the 
next iteration of the algorithm, and so on. EM converges to a local mini-
mum when the model parameters stabilize.  

The ability of EM to work with missing data is exactly what is needed 
for learning from labeled and unlabeled examples. The documents in the 
labeled set (denoted by L) all have class labels (or values). The documents 
in the unlabeled set (denoted by U) can be regarded as having missing 
class labels. We can use EM to estimate them based on the current model, 
i.e., to assign probabilistic class labels to each document di in U, i.e., 
Pr(cj|di). After a number of iterations, all probabilities will converge.  

Note that the EM algorithm is not really a specific “algorithm”, but is a 
framework or strategy. It simply runs a base algorithm iteratively. We will 
use the naïve Bayesian (NB) algorithm discussed in Sect. 3.7 as the base 
algorithm, and run it iteratively. The parameters that EM estimates in this 
case are the probability of each word given a class and the class prior 
probabilities (see Equation (27) and (28) in Sect. 3.7 of Chap. 3).  

Although it is quite involved to derive the EM algorithm with the NB 
classifier, it is fairly straightforward to implement and to apply the algo-
rithm. That is, we use a NB classifier in each iteration of EM, Equation 
(29) in Chap. 3 for the E-step, and Equations (27) and (28) in Chap. 3 for 
the M-step. Specifically, we first build a NB classifier f using the labeled 
examples in L. We then use f to classify the unlabeled examples in U, more 
accurately to assign a probability to each class for every unlabeled exam-
ple, i.e., Pr(cj|di), which takes the value in [0, 1] instead of {0, 1}. Some 
explanations are in order here.  

Let the set of classes be C = {c1, c2, …, c|C|}. Each iteration of EM will 
assign every example di in U a probability distribution on the classes that it 
may belong to. That is, it assigns di the class probabilities of Pr(c1|di), 
Pr(c2|di), …, Pr(c|C||di). This is different from the example in the labeled set 
L, where each document belongs to only a single class ck, i.e., Pr(ck|di) = 1 
and Pr(cj|di) = 0 for j ≠ k.  

Based on the assignments of Pr(cj|di) to each document in U, a new NB 
classifier can be constructed. This new classifier can use both the labeled 
set L and the unlabeled set U as the examples in U now have probabilistic 
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labels, Pr(cj|di). This leads to the next iteration. The process continues until 
the classifier parameters (Pr(wt|cj) and Pr(cj)) no longer change (or have 
minimum changes).  

The EM algorithm with NB classification was proposed for LU learning 
by Nigam et al. [413]. The algorithm is shown in Fig. 5.1. EM here can 
also be seen as a clustering method with some initial seeds (labeled data) 
in each cluster. The class labels of the seeds indicate the class labels of the 
resulting clusters.  

The derivation of the EM algorithm in Fig. 5.1 is quite involved and is 
given as an appendix at the end of this chapter. Two assumptions are made 
in the derivation. They are in fact the two mixture model assumptions in 
Sect. 3.7 of Chap. 3 for deriving the naïve Bayesian classifier for text clas-
sification, i.e.,  

1. the data is generated by a mixture model, and  
2. there is a one-to-one correspondence between mixture components and 

classes. 

It has been shown that the EM algorithm in Fig. 5.1 works well if the 
two mixture model assumptions for a particular data set are true. Note that 
although naïve Bayesian classification makes additional assumptions as we 
discussed in Sect. 3.7 of Chap. 3, it performs surprisingly well despite the 
obvious violation of the assumptions. The two mixture model assumptions, 
however, can cause major problems when they do not hold. In many real-
life situations, they may be violated. It is often the case that a class (or 
topic) contains a number of sub-classes (or sub-topics). For example, the 
class Sports may contain documents about different sub-classes of sports, 

Algorithm EM(L, U)  
1 Learn an initial naïve Bayesian classifier f from only the labeled set L (us-

ing Equations (27) and (28) in Chap. 3); 
2 repeat  

 // E-Step 
3 for each example di in U do   
4 Using the current classifier f to compute Pr(cj|di) (using Equation 

(29) in Chap. 3).  
5 end 

  // M-Step 
6 learn a new naïve Bayesian classifier f from L ∪ U by computing Pr(cj) 

and Pr(wt|cj) (using Equations (27) and (28) in Chap. 3).  
7 until the classifier parameters stabilize 
Return the classifier f from the last iteration.  

Fig. 5.1. The EM algorithm with naïve Bayesian classification 
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e.g., Baseball, Basketball, Tennis, and Softball. Worse still, a class cj may 
even contain documents from completely different topics, e.g., Science, 
Politics, and Sports. The first assumption above is usually not a problem. 
The second assumption is critical. If the condition holds, EM works very 
well and is particularly useful when the labeled set is very small, e.g., 
fewer than five labeled documents per class. In such cases, every iteration 
of EM is able to improve the classifier dramatically. However, if the sec-
ond condition does not hold, the classifier from each iteration can become 
worse and worse. That is, the unlabeled set hurts learning instead of help-
ing it.  

Two methods are proposed to remedy the situation. 

Weighting the Unlabeled Data: In LU learning, the labeled set is small, 
but the unlabeled set is very large. So the EM’s parameter estimation is 
almost completely determined by the unlabeled set after the first iteration. 
This means that EM essentially performs unsupervised clustering. When 
the two mixture model assumptions are true, the natural clusters of the data 
are in correspondence with the class labels. The resulting clusters can be 
used as the classifier. However, when the assumptions are not true, the 
clustering can go very wrong, i.e., the clustering may not converge to mix-
ture components corresponding to the given classes, and are therefore det-
rimental to classification accuracy. In order to reduce the effect of the 
problem, we can weight down the unlabeled data during parameter estima-
tion (EM iterations). Specifically, we change the computation of Pr(wt|cj) 
(Equation (27) in Chap. 3) to the following, where the counts of the unla-
beled documents are decreased by a factor of µ, 0 ≤ µ ≤ 1:  
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When µ = 1, each unlabeled document is weighted the same as a labeled 
document. When µ = 0, the unlabeled data are not considered. The value of 
µ can be chosen based on leave-one-out cross-validation accuracy on the 
labeled training data. The µ value that gives the best result is used.  

Finding Mixture Components: Instead of weighting unlabeled data low, 
we can attack the problem head on, i.e., by finding the mixture components 
(sub-classes) of the class. For example, the original class Sports may con-
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sist of documents from Baseball, Tennis, and Basketball, which are three 
mixture components (sub-classes or sub-topics) of Sports. Instead of using 
the original class, we try to find these components and treat each of them 
as a class. That is, if we can find the three mixture components, we can use 
them to replace the class Sports. There are several automatic approaches 
for identifying mixture components. For example, a hierarchical clustering 
technique was proposed in [111] to find the mixture components, which 
showed good performances. A simple approach based on leave-one-out 
cross-validation on the labeled training set was also given in [413].  

Manually identifying different components may not be a bad option for 
text documents because one only needs to read the documents in the la-
beled set (or some sampled unlabeled documents), which is very small.  

5.1.2 Co-Training 

Co-training is another approach to learning from labeled and unlabeled ex-
amples. This approach assumes that the set of attributes (or features) in the 
data can be partitioned into two subsets. Each of them is sufficient for 
learning the target classification function. For example, in Web page clas-
sification, one can build a classifier using either the text appearing on the 
page itself, or the anchor text attached to hyperlinks pointing to the page 
from other pages on the Web. This means that we can use the same train-
ing data to build two classifiers using two subsets of features.  

Traditional learning algorithms do not consider this division of features 
(attributes), or feature redundancy. All the features are pooled together in 
learning. In some cases, feature selection algorithms are applied to remove 
redundant features. Co-training exploits this feature division to learn sepa-
rate classifiers over each of the feature sets, and utilizes the fact that the 
two classifiers must agree on their labeling of the unlabeled data to do LU 
learning.  

Blum and Mitchell [55] formalize the co-training setting and provide a 
theoretical guarantee for accurate learning subject to certain assumptions. 
In the formalization, we have an example (data) space X = X1 × X2, where 
X1 and X2 provide two different “views” of the example. That is, each ex-
ample x (represented as a vector) is given as a pair (x1, x2). This simply 
means that the set of features (or attributes) is partitioned into two subsets. 
Each “view” or feature subset is sufficient for correct classification. Under 
some further assumptions, it was proven that co-training algorithms can 
learn from unlabeled data starting from only a weak classifier built using 
the small set of labeled training documents.  
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The first assumption is that the example distribution is compatible with 
the target functions; that is, for most examples, the target classification 
functions over the feature sets predict the same label. In other words, if f 
denotes the combined classifier, f1 denotes the classifier learned from X1, f2 
denotes the classifier learned from X2 and c is the actual class label of ex-
ample x, then f(x) = f1(x1) = f2(x2) = c for most examples.  

The second assumption is that the features in one set of an example are 
conditionally independent of the features in the other set, given the class 
of the example. In the case of Web page classification, this assumes that 
the words on a Web page are not related to the words on its incoming hy-
perlinks, except through the class of the Web page. This is a somewhat un-
realistic assumption in practice.  

The co-training algorithm explicitly uses the feature split to learn from 
labeled and unlabeled data. The algorithm is iterative. The main idea is that 
in each iteration, it learns a classifier from the labeled set L with each sub-
set of the features, and then applies the classifier to classify (or label) the 
unlabeled examples in U. A number (ni) of most confidently classified ex-
amples in U from each class ci are added to L. This process ends when U 
becomes empty (or a fixed number of iterations is reached). In practice, we 
can set a different ni for a different class ci depending on class distribu-
tions. For example, if a data set has one third of class 1 examples and two 
thirds of class 2 examples, we can set n1 = 1 and n2 = 2.  

The whole co-training algorithm is shown in Fig. 5.2. Lines 2 and 3 
build two classifiers f1 and f2 from the two “views” of the data respectively. 
f1 and f2 are then applied to classify the unlabeled examples in U (lines 4 
and 5). Some most confidently classified examples are removed from U 
and added to L. The algorithm then goes to the next iteration.  

Algorithm co-training(L, U)   
1 repeat 
2 Learn a classifier f1 using L based on only x1 portion of the examples x.  
3 Learn a classifier f2 using L based on only x2 portion of the examples x. 
4 Apply f1 to classify the examples in U, for each class ci, pick ni examples 

that f1 most confidently classifies as class ci, and add them to L.  
5 Apply f2 to classify the examples in U, for each class ci, pick ni examples 

that f2 most confidently classifies as class ci, and add them to L.  
6 until U becomes empty or a fixed number of iterations are reached  

Fig. 5.2. A co-training algorithm 

When the co-training algorithm ends, it returns two classifiers. At classi-
fication time, for each test example the two classifiers are applied sepa-
rately and their scores are combined to decide the class. For naïve Bayes-
ian classifiers, we multiply the two probability scores, i.e.,  
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Pr(cj|x) = Pr(cj|x1)Pr(cj|x2) (3) 

The key idea of co-training is that classifier f1 adds examples to the la-
beled set that are used for learning f2 based on the X2 view, and vice versa. 
Due to the conditional independence assumption, the examples added by f1 
can be considered as new and random examples for learning f2 based on the 
X2 view. Then the learning will progress. The situation is illustrated in Fig. 
5.3. This example has classes, positive and negative, and assumes linear 
separation of the two classes. In the X1 view (Fig. 5.3(A)), the circled ex-
amples are most confident positive and negative examples classified (or 
labeled) by f1 in the unlabeled set U. In the X2 view (Fig. 5.3(B)), these cir-
cled examples appear randomly. With these random examples from U 
added to L, a better f2 will be learned in the next iteration. 

 
Fig. 5.3. Two views of co-training.  

However, if the added examples to L are not random examples in the X2 
space but very similar to the situation in Fig. 5.3(A), then these examples 
are not informative to learning. That is, if the two subsets of features are 
correlated given the class or the conditional independence assumption is 
violated, the added examples will not be random but isolated in a specific 
region similar to those in Fig. 5.3(A). Then they will not be as useful or in-
formative to learning. Consequently, co-training will not be effective.  

In [411], it is shown that co-training produces more accurate classifiers 
than the EM algorithm presented in the previous section, even for data sets 
whose feature division does not completely satisfy the strict requirements 
of compatibility and conditional independence.  

5.1.3 Self-Training 

Self-training, which is similar to both EM and co-training, is another 
method for LU learning. It is an incremental algorithm that does not use 
the split of features. Initially, a classifier (e.g., naïve Bayesian classifier) is 
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trained with the small labeled set considering all features. The classifier is 
then applied to classify the unlabeled set. Those most confidently classi-
fied (or unlabeled) documents of each class, together with their predicted 
class labels, are added to the labeled set. The classifier is then re-trained 
and the procedure is repeated. This process iterates until all the unlabeled 
documents are given class labels. The basic idea of this method is that the 
classifier uses its own predictions to teach itself.  

5.1.4 Transductive Support Vector Machines 

Support vector machines (SVM) is one of the most effective methods for 
text classification. One way to use unlabeled data in training SVM is by se-
lecting the labels of the unlabeled data in such a way that the resulting 
margin of the classifier is maximized. Training for the purpose of labeling 
known (unlabeled) test instances is referred to as transduction, giving rise 
to the name transductive SVM [526]. An example of how transduction 
can change the decision boundary is shown in Fig. 5.4. In this example, the 
old decision boundary, constructed using only labeled data, would have a 
very small margin on the unlabeled data. By utilizing the unlabeled data in 
the training process, a classifier that has the largest margin on both the la-
beled and unlabeled data can be obtained. 

 
 

y = 1 

y = -1
x- 

x+ 

Old decision boundary

New decision 
boundary 

 
Fig. 5.4. The old decision boundary (before the addition of unlabeled data) and the 
new decision boundary created by transductive SVM. The unlabeled data are indi-
cated by circles around them 

The main difficulty with applying transductive SVM is the computa-
tional complexity. When all the labels are observed, training SVM is a 
convex optimization problem that can be solved efficiently. The problem 
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of assigning labels to unlabeled examples in such a way that the resulting 
margin of the classifier is maximized can no longer be solved efficiently.   

To solve the problem, Joachims [259] used a sub-optimal iterative 
method that starts by learning a classifier using only the labeled data. The 
method then treats a subset of unlabeled instances that are most confi-
dently labeled positive by the learned classifier as initial positive examples 
while the rest of the unlabeled examples are treated as initial negative ex-
amples. The number of instances to label as positive can be specified by 
the user to change the precision–recall trade-off and is maintained through-
out the iterations. The method then tries to improve the soft margin cost 
function by iteratively changing the labels of some of the instances and re-
training the SVM. The ratio of positive to negative instances is maintained 
by selecting one positively labeled instance p and one negatively labeled 
instance q to change in each iteration. It was shown in [259] that if the two 
instances are selected such that the slack variables ξp > 0, ξq > 0 and ξp + 
ξq > 2, the soft margin cost function will decreases at each iteration. Fur-
ther improvements described in [259] include allowing the soft margin er-
ror of unlabeled examples to be penalized differently from the soft margin 
error of the labeled examples and penalizing the soft margin error on the 
positive unlabeled examples differently from the soft margin error on the 
negative unlabeled examples. The penalty on the unlabeled examples is 
also iteratively increased from a small value to the desired value. This may 
improve the chances of finding a good local optimum as it may be easier to 
improve the cost function when the penalty is small. The method was ap-
plied successfully to text classification problems.  

Like other methods of learning from labeled and unlabeled examples, 
transductive SVM can be sensitive to its assumptions. When the large 
margin assumption is correct on the dataset, it may improve performance 
but when the assumption is incorrect, it can decrease performance com-
pared to supervised learning. As an example, the transductive SVM per-
formed poorly using small labeled data sets when separating Project Web 
pages from other types of university Web pages in [259]. It was conjec-
tured that, with a small number of labeled data, separating the Web pages 
according to some of the underlying topics of the Web pages may give a 
larger margin than separating them according to whether the Web pages 
are Project pages or not. 

5.1.5 Graph-Based Methods  

Graph-based LU learning methods can be viewed as extensions of nearest 
neighbor supervised learning algorithms that work with both labeled and 
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unlabeled instances. The basic idea in these methods is to treat labeled and 
unlabeled instances as vertices in a graph where a similarity function is 
used to define the edge weights between instances. The graph, with similar 
instances connected by larger weights, is then used to help label the unla-
beled instances in such a way that labels of vertices connected by edges 
with large weights tend to agree with each other. Methods used for con-
structing the graphs include connecting each instance to its k-nearest 
neighbors, connecting each instance to other instances within a certain dis-
tance δ and using a fully connected graph with an exponentially decreasing 
similarity function such as the Gaussian function to assign the weights. 
The assumptions used in these methods are similar to those of the nearest 
neighbor classifier, that is, near neighbors should have the same labels and 
we have a good measure of similarity between instances. We discuss three 
types of graph-based LU learning methods below: mincut, Gaussian 
fields and spectral graph transducer. All three methods work on binary 
classification problems but, like the support vector machines, can be used 
with strategies such as one-against-rest for solving multiple class classifi-
cation problems. 

Mincut: This method was proposed by Blum and Chalwa [54]. A 
weighted graph G = (V, E, W) is constructed first, where V consists of the 
labeled and unlabeled instances, E consists of edges between the instances 
and W is a function on the edges with W(i, j) = wij denoting the similarity 
of instances i and j. The vertices associated with labeled instances are then 
given values from {0, 1} consistent with their binary labels. The idea in the 
mincut algorithm is to find an assignment of values vi from the set {0, 1} 
to the unlabeled instances in V such that the cost function ∑ ∈

−
Eji jiij vvw

),(
||  

is minimized. The advantage of this formulation is that the problem can be 
solved in polynomial time even though it is a combinatorial optimization 
problem. One way to do this is to transform the problem into a max-flow 
problem (see [116] for a description of the max-flow problem). To do that, 
we convert the graph into a flow network by introducing a source vertex v+ 
and a sink vertex v−, where the source vertex is connected by edges with 
infinite capacities to the positive labeled instances while the sink vertex is 
connected by edges with infinite capacities to the negative labeled in-
stances. The other edge weights in the graph are also treated as edge ca-
pacities in the flow network. A cut of the network is a partition of the ver-
tices into two subsets V+ and V− such that v+ ∈ V+ and v− ∈ V−. A minimum 
cut is a partition that has the smallest sum of capacities in the edges con-
necting V+ and V−. Finding a minimum cut is equivalent to minimizing the 
function ∑ ∈

−
Eji jiij vvw

),(
||  since all the vertices are assigned values from {0, 
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1}. Max-flow algorithms can be used to efficiently find a mincut of the 
network in time O(|V|3). 

Gaussian Fields: Instead of minimizing ∑ ∈
−

Eji jiij vvw
),(

|| , Zhu et al. [619] 

proposed minimizing ∑ ∈
−

Eji jiij vvw
),(

2)(  with the value of the vertices being 

selected from [0, 1] instead of {0, 1}. The advantage of using this formula-
tion is that it allows the solution to be obtained using linear algebra. Let W 
be the weight matrix corresponding to the graph,  
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where WLL , WLU , WUL and WUU are sub-matrices with the subscript L de-
noting labeled instances and the subscript U denoting the unlabeled in-
stances. Let D be a diagonal matrix where ∑= j ijii wD is the sum of the en-

tries in row (or column) i. We also form a vector v, consisting of values 
assigned to the labeled and unlabeled instances. The labeled instances are 
assigned fixed values in {0, 1} consistent with their labels while the values 
vi assigned to the unlabeled instances are chosen to minimize 
∑ ∈

−
Eji jiij vvw

),(
2.)(  The solution can be written as 

,)( 1
LULUUUUU vv WWD −−=  (5) 

where vU is the part of the vector v that contains values assigned to the 
unlabeled instances, vL is the part of the vector that contains values as-
signed to labeled instances and DUU is the sub-matrix of D consisting of 
sum of entries of rows in W associated with unlabeled instances. 

The optimization problem ∑ ∈
−

Eji jiij vvw
),(

2)(  can also be written in ma-

trix form as vT∆v where ∆ = D − W is known as the combinatorial Lapla-
cian of the graph. The matrix ∆ is known to be positive semidefinite, so it 
can be viewed as an inverse covariance matrix of a multivariate Gaussian 
random variable, giving rise to the name Gaussian field.  

Spectral Graph Transducer: One potential problem with the mincut 
formulation is that the mincut cost function tends to prefer unbalanced cuts 
where the number of instances in either the positive or negative class 
vastly outnumbers the number of instances in the other class. Unbalanced 
cuts tend to have a lower cost in the mincut formulation because the num-
ber of edges between V+ and V−  is maximized when the sizes of V+ and V−  
are equal and is small when either one of them is small.  For example, if 
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we have n vertices and V+ contains a single element, then there are poten-
tially n−1 edges between V+ and V− . In contrast, if V+ and V−  are the same 
size, then there are potentially n2/4 edges between the two sets of vertices.  

Let cut(V+, V−) be the sum of the edge weights connecting V+ and V−. To 
mitigate the effect of preferring unbalanced cut, Joachims [261] proposed 
to minimize a cost function of normalized cut 

||||
),(

−+

−+

VV
VVcut , where the cut 

value is normalized by the number of edges between the two sets. Mini-
mizing this cost function is computationally difficult, so Joachims [261] 
proposed minimizing a relaxed version of the problem.  

Let ∆ be the combinatorial Laplacian of the graph. It can be shown that 
minimizing the normalized cut (with no labeled data) using α and β num-
ber of instances (α and β are specified by the user) in the two partitions is 
equivalent to minimizing vT∆v for vi ∈ {γ+, γ−}, where 

α
βγ =+     and    

β
αγ −=− . (6) 

Instead of using vi ∈ {γ+, γ−}, Joachims [261] proposed to allow vi to take 
real values under the constraint vT1=0 and vTv=n, where 1 is the all one 
vector. To make sure that the labeled instances are properly classified, a 
term (v−γ)TC(v−γ) is added to the cost function, where C is a diagonal ma-
trix with non-zero entries only for labeled instances and γ is the target vec-
tor for approximation by v. The components of γ that correspond to posi-
tive and negative instances are set to γ+ and γ− respectively, while the 
components of γ  that correspond to unlabeled instances do not affect the 
cost function because their corresponding diagonal entries of C are set to 
zero. The values of the non-zero entries of C can be set by the user to give 
different misclassification costs to each instance. This gives the combined 
optimization problem of  
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where c gives a trade-off between the cost for the labeled and unlabeled 
parts. The solution of Equation (7) is obtained using spectral methods. 

The Gaussian field method and spectral graph transduction have been 
applied to the natural language processing problem of word sense disam-
biguation in [414, 442]. Word sense disambiguation is the problem of as-
signing appropriate meanings to words (which may have multiple mean-
ings) according to the context that they appear in. Although some 
improvements are observed, the success of these methods is still limited. 
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5.1.6 Discussion 

We discuss two issues: (1) whether the unlabeled set U is always helpful 
and (2) the evaluation of LU learning.  

Does the Unlabeled Set Always Help? The answer is no. As we have 
seen, all approaches make strong assumptions. For example, EM makes 
two mixture model assumptions, and co-training makes the feature split as-
sumption. When the assumptions are true for an application data set, unla-
beled data can help learning (even dramatically). When the assumptions 
are not true, the unlabeled data may harm learning. Automatically detect-
ing bad match of the problem structure with the model assumptions in ad-
vance is, however, very hard and remains an open problem.  

A related issue is that researchers have not shown that when the labeled 
data set is sufficiently large, the unlabeled data still help. Manual labeling 
more text documents may not be as difficult as it seems in some applica-
tions, especially when the number of classes is small. In most cases, to la-
bel a document one does not even need to read the entire document (if it is 
long). Typically, the first few sentences can already tell its class. Com-
pounded with the problem of inability to decide whether the unlabeled data 
indeed help classification, practical applications of LU learning are still 
limited.   

Evaluation: The evaluation of LU learning is commonly done in the same 
way as traditional classification. However, there is a problem with the 
availability of sufficient test data. In practice, users always want to have a 
reasonable guarantee on the predictive accuracy of a classification system 
before they are willing to use the system. This means that test data sets 
have to be used to evaluate the system. Existing algorithms for LU learn-
ing assume that there is a large set of labeled test data for this purpose. 
However, this contradicts the LU learning problem statement, which says 
that the labeled set is very small. If we can ask the user to label more data, 
then we do not need LU learning because some examples of the test set can 
be used in training. Evaluation without more labeled data is also an open 
problem.  

One may look at this problem in another way. We first use the classifier 
generated by LU learning to classify the unlabeled set or a new test set and 
then sample some classified documents to be checked manually in order to 
estimate the classification accuracy. If classification is sufficiently accu-
rate, the results of the classifier will be used. Otherwise, improvements 
need to be made. In this case, additional labeled data obtained during man-
ual inspection can be added to the original labeled set. You see we end up 
doing more labeling! Hopefully, we do not have to do too much labeling.  
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5.2 Learning from Positive and Unlabeled Examples 

In some applications, the problem is to identify a particular class P of 
documents from a set of mixed documents, which contains documents of 
class P and also other kinds of documents. We call the class of documents 
that one is interested in the positive class documents, or simply positive 
documents. We call the rest of the documents the negative class docu-
ments or simply negative documents.  

This problem can be seen as a classification problem with two classes, 
positive and negative. However, there are no labeled negative documents 
for training. The problem is stated more formally as follows,  

Problem Statement: Given a set P of positive documents that we are in-
terested in, and a set U of unlabeled documents (the mixed set), which 
contains both positive documents and negative documents, we want to 
build a classifier using P and U that can identify positive documents in U 
or in a separate test set − in other words, we want to accurately classify 
positive and negative documents in U or in the test (or future) data set. 

This problem is called PU learning. Note that the set U can be used in 
both training and testing because U is unlabeled.  

The key feature of this problem is that there is no labeled negative 
document for learning. Traditional supervised learning algorithms are thus 
not directly applicable because they all require both labeled positive and 
labeled negative documents to build a classifier. This is also the case for 
LU learning, although the labeled set for each class may be very small. 

5.2.1 Applications of PU Learning 

The PU learning problem occurs frequently in Web and text retrieval ap-
plications because most of the time the user is only interested in Web 
pages or text documents of a particular topic. For example, one may be in-
terested in only travel related pages (positive pages). Then all the other 
types of pages are negative pages. Let us use a concrete example to show 
the actual setting of a PU learning application.   

Example 1: We want to build a repository of data mining research papers. 
We can start with an initial set of papers from a data mining conference or 
journal, which are positive examples. We then want to find data mining 
papers from online journals and conference series in the fields of databases 
and artificial intelligence. Journals and conferences in these fields all con-
tain some data mining papers. They also contain many other types of pa-
pers. The problem is how to extract data mining papers from such confer-
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ences and journals, or in other words, how to classify the papers from these 
sources into data mining papers and non-data mining papers without label-
ing any negative papers in any source.  ▀ 

In practical applications, positive documents are usually available be-
cause if one has worked on a particular task for some time one should have 
accumulated many related documents. Even if no positive document is 
available initially, collecting some from the Web or any other source is 
relatively easy. One can then use this set to find the same class of docu-
ments from other sources without manually labeling any negative docu-
ments. PU learning is particularly useful in the following situations: 

1. Learning with multiple unlabeled sets: In some applications, one 
needs to find positive documents from a large number of document col-
lections. For example, we want to identify Web pages that sell printers. 
We can easily obtain a set of positive pages from an online merchant, 
e.g., amazon.com. Then we want to find printer pages from other mer-
chants. We can crawl each site one by one, and extract printer pages 
from each site using PU learning. We do not need to manually label 
negative pages (non-printer pages) from any site.  

Although it may not be hard to label some negative pages from a sin-
gle site, it is difficult to label for every site. Note that in general the 
classifier built based on the negative pages from one site s1 may not be 
used to classify pages from another site s2 because the negative pages in 
s2 can be very different from the negative pages in s1. The reason is that 
although both sites sell printers, the other products that they sell can be 
quite different. Thus using the classifier built for s1 to classify pages in 
s2 may violate the fundamental assumption of machine learning: the dis-
tribution of training examples is identical to the distribution of test ex-
amples. As a consequence, we may obtain poor accuracy results.   

2. Learning with unreliable negative examples: This situation often oc-
curs in experimental sciences. For example, in biology, biologists per-
form experiments to determine some biological functions. They are of-
ten quite confident about positive cases that they have discovered. 
However, they may not be confident about negative cases because labo-
ratory results can be affected by all kinds of conditions. The negative 
cases are thus unreliable. It is perhaps more appropriate to treat such 
negative cases as unlabeled examples than negative examples. 

PU learning is also useful for the following seemingly unrelated problems:  

Detecting unexpected documents in the test set: In many applications, 
the test set (or future instance set in practice) contains some classes of 
documents that are not seen in the training set. For instance, our training 
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set has only two classes, Sports and Science. Then, a learning algorithm 
will produce a classifier to separate Sports and Science documents. How-
ever, in the test set, some other types of documents, e.g., Politics and Relig-
ion, may appear, which are called unexpected documents. In traditional 
classification, those Politics and Religion documents in the test set will be 
classified as either Sports or Science documents, which is clearly inappro-
priate. In PU learning, we can remove Politics and Religion documents by 
treating the whole training set as the positive data, and the whole test set as 
the unlabeled data. A study of this problem is reported in [323].  

Detecting outliers: Traditional outlier detection algorithms are mainly 
based on clustering. During clustering, those data points that are too far 
away from cluster centroids are considered outliers. PU learning can be 
applied to outlier detection as follows: A random sample is drawn from the 
original data. The sample is treated as the set of positive examples, and the 
remaining data is treated as the set of unlabeled examples. The method 
given in [323] can then be applied. This strategy may work because since 
the number of outliers is small, the chance of selecting them during sam-
pling will be extremely small. To make the method more robust, one can 
run the technique multiple times using multiple random samples.   

Before discussing theoretical foundations of PU learning, let us first de-
velop some intuition on why PU learning is possible and why unlabeled 
data are helpful. Figure 5.5 shows the idea.  

 
Fig. 5.5. Unlabeled data are helpful 

In Fig. 5.5(A), we see only positive documents (data points) represented 
with +’s. We assume that a linear classifier is sufficient for the classifica-
tion task. In this case, it is hard to know where to draw the line to separate 
positive and negative examples because we do not know where the nega-
tive examples might be. There are infinite possibilities. However, if the 
unlabeled data (represented by small circles) are added to the space (Fig. 
5.5(B)), it is very clear where the separation line should be. Let us now 
discuss the theoretical result of PU learning.  

(A) With only positive data (B) With both positive and unlabeled data 
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5.2.2 Theoretical Foundation 

Let (xi, yi) be random variables drawn independently from probability dis-
tribution D(x,y) where y ∈ {−1, 1} is the conditional random variable that 
we wish to estimate given x. xi represents a document, and yi is its class, 
which can be 1 (positive) or –1 (negative). Let Dx|y=1 be the conditional 
distribution from which the positive examples are independently drawn 
and let Dx be the marginal distribution from which unlabeled examples are 
independently drawn. Our objective is to learn a classification function f 
that can separate positive and negative documents. Since learning is to 
produce a classifier that has the minimum probability of error, Pr(f(x)≠y), 
let us rewrite it into a more useful form, 

Pr(f(x)≠y) = Pr(f(x)=1 and y=−1) + Pr(f(x)= −1 and y=1). (8) 

The first term can be rewritten as   

Pr(f(x)=1 and y=−1) 
= Pr(f(x)=1) – Pr(f(x)=1 and y=1) 
= Pr(f(x)=1) – (Pr(y=1) – Pr(f(x)= −1 and y=1)). 

(9) 

Substituting (9) into Equation (8), we obtain 

Pr(f(x)≠y)  
= Pr(f(x)=1) – Pr(y=1) + 2Pr(f(x)= −1|y=1)Pr(y=1). 

(10) 

Since Pr(y = 1) is constant (although it is unknown), we can minimize the 
probability of error by minimizing  

Pr(f(x)=1) + 2Pr(f(x)= −1|y =1)Pr(y=1). (11) 

If we can hold Pr(f(x)= −1|y=1) small, then learning is approximately 
the same as minimizing Pr(f(x)=1). Holding Pr(f(x)= −1|y=1) small while 
minimizing Pr(f(x)=1) is approximately the same as minimizing 
Pru(f(x)=1) (on the unlabeled set U) while holding PrP(f(x)=1) ≥ r (on the 
positive set P), where r is the recall, i.e., Pr(f(x)=1|y=1). Note that 
(PrP(f(x)=1) ≥ r) is the same as (PrP(f(x)= −1) ≤ 1–r).  

Two theorems given by Liu et al. [348] state these formally and show 
that in both the noiseless case (P has no error) and the noisy case (P con-
tains errors, i.e., some negative documents) reasonably good learning re-
sults can be achieved if  

• the problem is posed as a constrained optimization problem where the 
algorithm tries to minimize the number of unlabeled examples labeled 
positive subject to the constraint that the fraction of errors on the posi-
tive examples is no more than 1− r.  
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Example 2: Figure 5.6 illustrates the constrained optimization problem. 
Assume that positive and negative documents can be linearly separated. 
Positive documents are represented with +’s, and unlabeled documents 
with small circles. Assume also that the positive set has no error and we 
want the recall r on the positive set to be 100%. Each line in the figure is a 
possible linear classifier. Every document on the left of each line will be 
labeled (classified) by the line as positive, and every document on the right 
will be labeled as negative. Lines 1 and 2 are clearly not solutions because 
the constraint “the fraction of errors on the positive examples must be no 
more than 1− r (= 0)” is violated, although the number of unlabeled exam-
ples labeled (classified) as positive is minimized by line 1. Lines 4, 5, and 
6 are poor solutions too because the number of unlabeled examples labeled 
as positive is not minimized by any of them. Line 3 is the optimal solution. 
Under the constraint that no positive example is labeled negative, line 3 
minimizes the number of unlabeled examples labeled as positive.  ▀ 

 

Fig. 5.6. An illustration of the constrained optimization problem  

Based on the constrained optimization idea, two kinds of approaches 
have been proposed to build PU classifiers: the two-step approach and the 
direct approach. In the actual learning algorithms, the user may not need 
to specify a desired recall level r on the positive set because some of these 
algorithms have their evaluation methods that can automatically determine 
whether a good solution has been found.    

5.2.3 Building Classifiers: Two-Step Approach 

As its name suggests the two-step approach works in two steps:   

1. Identifying a set of reliable negative documents (denoted by RN) from 
the unlabeled set U.  

2. Building a classifier using P, RN and U − RN. This step may apply an 
existing learning algorithm once or iteratively depending on the quality 
and the size of the RN set.  
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This two-step approach is illustrated in Fig. 5.7. Here, we assume that 
step 2 uses an iterative algorithm. In step 1, a set of reliable negative 
documents (RN) is found from the unlabeled set U, which divides U into 
two subsets, RN and Q (= U − RN). Q is called the likely positive set. In 
step 2, the algorithm iteratively improves the results by adding more 
documents to RN until a convergence criterion is met. We can see that the 
process is trying to minimize the number of unlabeled examples labeled 
positive since Q becomes smaller and smaller while RN becomes larger 
and larger. In other words, it tries to iteratively increase the number of 
unlabeled examples that are labeled negative while maintaining the posi-
tive examples in P correctly classified. We present several techniques for 
each step below. 

 
Fig. 5.7. An illustration of the two-step approach 

Techniques for Step 1 

We introduce four methods to extract reliable negative documents from the 
unlabeled set U.  

Spy Technique: This technique works by sending some “spy” documents 
from the positive set P to the unlabeled set U. Figure 5.8 gives the algo-
rithm of the technique, which is used in the S-EM system [348]. The algo-
rithm has three sub-steps: 

1. It randomly samples a set S of positive documents from P and put them 
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM. 
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The documents in S act as “spy” documents from the positive set to the 
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of 
the unknown positive documents in U.  

2. It randomly samples a set S of positive documents from P and put them 
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM. 
The documents in S act as “spy” documents from the positive set to the 
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of 
the unknown positive documents in U.  

3. It runs the naïve Bayesian (NB) algorithm using the set P − S as positive 
and the set U ∪ S as negative (lines 3–7). The NB classifier is then ap-
plied to classify each document d in U ∪ S (or Us), i.e., to assign it a 
probabilistic class label Pr(1|d), where 1 represents the positive class.  

4. It uses the probabilistic labels of the spies to decide which documents 
are most likely to be negative. A threshold t is employed to make the 
decision. Those documents in U with lower probabilities (Pr(1|d)) than t 
are the most likely negative documents, denoted by RN (lines 10–14).  

We now discuss how to determine t using spies (line 9). Let the set of 
spies be S = {s1, s2, …, sk}, and the probabilistic labels assigned to each 
si be Pr(1|si). Intuitively, we can use the minimum probability in S as the 
threshold value t, i.e., t = min{Pr(1|s1), Pr(1|s2), …, Pr(1|sk)}, which 
means that we want to retrieve all spy documents. In a noiseless case, 
using the minimum probability is acceptable. However, most real-life 
document collections have outliers and noise. Using the minimum prob-

Algorithm Spy(P, U) 
1.  RN ← ∅;  
2.  S ← Sample(P, s%);  
3. Us ← U ∪ S; 
4. Ps ← P – S; 
5. Assign each document in Ps the class label 1; 
6. Assign each document in Us the class label −1; 
7. NB(Us, Ps);  // This produces a NB classifier. 
8. Classify each document in Us using the NB classifier; 
9. Determine a probability threshold t using S;  
10. for each document d ∈ Us do 
11.  if its probability Pr(1|d) < t then 
12.  RN ← RN ∪ {d}; 
13. endif 
14. endfor 

Fig. 5.8. The spy technique.  
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ability is unreliable. The reason is that the posterior probability Pr(1|si) 
of an outlier document si in S could be 0  or smaller than most (or even 
all) actual negative documents. However, we do not know the noise 
level of the data. To be safe, the S-EM system uses a large noise level l 
= 15% as the default. The final classification result is not very sensitive 
to l as long it is not too small. To determine t, we first sort the docu-
ments in S according to their Pr(1|si) values. We then use the selected 
noise level l to decide t: we select t such that l percent of documents in S 
have probability less than t. Hence, t is not a fixed value. The actual pa-
rameter is in fact l.  

Note that the reliable negative set RN can also be found through multiple 
iterations. That is, we run the spy algorithm multiple times. Each time a 
new random set of spies S is selected from P and a different set of reliable 
negative documents is obtained, denoted by RNi. The final set of reliable 
negative documents is the intersection of all RNi. This may be a better 
technique because we do not need to worry that one set of random spies S 
may not be chosen well, especially when the set P is not large. 

1DNF Technique: The 1DNF method (Fig. 5.9) is used in [583]. It first 
builds a positive feature set PF containing words that occur in the positive 
set P more frequently than in the unlabeled set U (lines 1–7). Line 1 col-
lects all the words in U ∪ P to obtain a vocabulary V. Lines 8–13 try to 
identify reliable negative documents from U. A document in U that does 
not contain any feature in PF is regarded as a reliable negative document.  

NB Technique: This method is employed in [340]. It simply uses a naïve 
Bayesian classifier to identify a set of reliable negative documents RN 
from the unlabeled set U. The algorithm is given in Fig. 5.10. 

This method may also be run multiple times. Each time we randomly 
remove a few documents from P to obtain a different set of reliable nega-
tive documents, denoted by RNi. The final set of reliable negative docu-
ments RN is the intersection of all RNi. 

Rocchio technique: This method is employed in [321]. The algorithm is 
the same as that in Fig. 5.10 except that NB is replaced with Rocchio. The 
Rocchio classification method is described in Sect. 6.3. 

Techniques for Step 2 

There are two approaches for this step.  

1. Run a learning algorithm (e.g., NB or SVM) using P and RN. The set of 
documents in U−RN is discarded. This method works well if the reliable 
negative set RN is sufficiently large and contains mostly negative docu-
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ments. The spy technique, NB and Rocchio in step 1 are often able to 
produce a sufficiently large set of negative documents. The 1DNF tech-
nique may only identify a very small set of negative documents. Then 
running a learning algorithm will not be able to build a good classifier.   

2. Run a learning algorithm iteratively till it converges or some stopping 
criterion is met. This method is used when the set RN is small.  

We will not discuss the first approach as it is straightforward. SVM usually 
does very well. Below, we introduce two techniques for the second ap-
proach, which are based on EM and SVM respectively.  

EM Algorithm with Naïve Bayesian Classification: The EM algorithm 
can be used naturally here [348]. As in LU learning, the Expectation step 
basically fills in the missing data. In our case, it produces and revises the 
probabilistic labels of the documents in U−RN (see below). The parameters 
are estimated in the Maximization step after the missing data are filled. 
This leads to the next iteration of the algorithm. EM converges when its 
parameters stabilize. Using NB in each iteration, EM employs the same 
equations as those used in building a NB classifier (Equation (29) for the 
Expectation step, and Equations (27) and (28) for the Maximization step). 

Algorithm 1DNF(P, U)  
1. Assume the word feature set be V = {w1,…, wn}, wi ∈U ∪ P;  
2. Let positive feature set PF ← ∅; 
3. for each wi ∈ V do // freq(wi, P): number of times 
4.      if (freq(wi, P) / |P| > freq(wi, U) / |U|) then // that wi appears in P 
5. PF ← PF ∪ {wi}; 
6. endif 
7. endfor; 
8. RN ← U; 
9. for each document d ∈ U do 
10. if ∃wj freq(wj, d) > 0 and wj ∈ PF then 
11.    RN ← RN – {d} 
12. endif 
13. endfor 

Fig. 5.9. The 1DNF technique for step 1 

1. Assign each document in P the class label 1; 
2. Assign each document in U the class label −1;  
3. Build a NB classifier using P and U; 
4. Use the classifier to classify U. Those documents in U that are classified as 

negative form the reliable negative set RN.  

Fig. 5.10. The NB method for Step 1 
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The class probability given to each document in U−RN takes the value in 
[0, 1] instead of {0, 1}. The algorithm is given in Fig. 5.11.  

The EM algorithm here makes the same mixture model assumptions as 
in LU learning. Thus, it has the same problem of model mismatch. See the 
discussions in Sect. 5.1.1.  

Iterative SVM: In this method, SVM is run iteratively using P, RN and Q 
(= U−RN). The algorithm, called I-SVM, is given in Fig. 5.12. The basic 
idea is as follows: In each iteration, a new SVM classifier f is constructed 
from P and RN (line 4). Here RN is regarded as the set of negative exam-
ples (line 2). The classifier f is then applied to classify the documents in Q 
(line 5). The set W of documents in Q that are classified as negative (line 

Algorithm EM(P, U, RN)  
1. Each document in P is assigned the class label 1; 
2. Each document in RN is assigned the class label −1; 
3. Learn an initial NB classifier f from P and RN (using Equations (27) and 

(28) in Chap. 3); 
4 repeat  
 // E-Step 
5 for each example di in U−RN do   
6 Using the current classifier f to compute Pr(cj|di) using Equation (29) 

in Chap. 3.  
7 end 
  // M-Step 
8 learn a new NB classifier f from P, RN and U−RN by computing Pr(cj) 

and Pr(wt|cj) (using Equations (27) and (28) in Chap. 3).  
9 until the classifier parameters stabilize 
10. Return the classifier f from the last iteration.  

Fig. 5.11. EM algorithm with the NB classifier 

Algorithm I-SVM(P, RN, Q)  
1. Every document in P is assigned the class label 1; 
2. Every document in RN is assigned the class label –1; 
3. loop  
4.       Use P and RN to train a SVM classifier f; 
5.       Classify Q using f; 
6.       Let W be the set of documents in Q that is classified as negative; 
7.       if W = ∅ then  exit-loop // convergence  
8.       else Q ← Q – W; 
9.         RN ← RN ∪ W; 
10. endif; 

Fig. 5.12. Running SVM iteratively 



5.2 Learning from Positive and Unlabeled Examples      175 

6) is removed from Q (line 8) and added to RN (line 9). The iteration stops 
when no document in Q is classified as negative, i.e., W = ∅ (line 7). The 
final classifier is the result. This method is used in [321, 582, 583].  

Finally, we note again that if the first step is able to identify a large 
number of reliable negative documents from U, running SVM once in step 
2 is sufficient. Iterative approaches may not be necessary, which are also 
less efficient. The Spy, NB and Rocchio methods for step 1 are often able 
to identify a large number of reliable negative documents. See [340] for an 
evaluation of various methods based on two benchmark text collections.  

Classifier Selection 

The iterative methods discussed above produce a new classifier at each it-
eration. However, the classifier at the convergence may not be the best 
classifier. In general, each iteration of the algorithm gives a classifier that 
may potentially be a better classifier than the classifier produced at con-
vergence. This is true for both EM and SVM.  

The main problem with EM is that classes and topics may not have one-
to-one correspondence. This is the same problem as in LU learning. SVM 
may also produce poor classifiers at the convergence because SVM is sen-
sitive to noise. If the RN set is not chosen well or in an iteration some posi-
tive documents are classified as negative, then the subsequent iterations 
may produce very poor results. In such cases, it is often better to stop at an 
earlier iteration. One simple method is to apply the theory directly. That is, 
each classifier is applied to classify a positive validation set, Pv. If many 
documents from Pv (e.g., > 5%) are classified as negative, the algorithm 
should stop (that is a recall of 95%). If the set P is small, the method can 
also be applied to P directly. A principled method is given in the next sub-
section, i.e., Equation (14).  

5.2.4 Building Classifiers: Direct Approach 

We now present a direct approach, called biased-SVM. This approach 
modifies the SVM formulation slightly so that it is suitable for PU learn-
ing. Let the set of training examples be {(x1, y1), (x2, y2), …, (xn, yn)}, 
where xi is an input vector and yi is its class label, yi ∈ {1, −1}. Assume 
that the first k−1 examples are positive examples P (labeled 1), while the 
rest are unlabeled examples U, which are treated as negative and labeled 
−1. Thus, the negative set has errors, i.e., containing positive documents. 
We consider two cases.  
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1. Noiseless case: There is no error in the positive examples but only in 
unlabeled examples. The theoretical result in Sect. 5.2.2 states that if the 
sample size is large enough, minimizing the number of unlabeled exam-
ples classified as positive while constraining the positive examples to be 
correctly classified will give a good classifier. Following the theory, in 
this noiseless case, we have this following SVM formulation  
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In this formulation, we do not allow any error in the positive set P, 
which is the first constraint, but allow errors for the negative set (the 
original unlabeled set), which is the second constraint. Clearly, the for-
mulation follows the theory exactly due to the second term in the objec-
tive function. The subscript in the second term starts from k, which is 
the index of the first unlabeled example. To distinguish this formulation 
from the classic SVM, we call it the biased-SVM [340].  

2. Noisy case: In practice, the positive set may also contain some errors. 
Thus, if we allow noise (or error) in positive examples, we have the fol-
lowing soft margin version of the biased-SVM which uses two parame-
ters C+ and C− to weigh positive errors and negative errors differently.  
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We can vary C+ and C− to achieve our objective. Intuitively, we give a 
bigger value for C+ and a smaller value for C− because the unlabeled set, 
which is assumed to be negative, contains positive data.  

We now focus on Equation (13) as it is more realistic in practice. We need 
to choose values for C+ and C−. The common practice is to try a range of 
values for both C+ and C− and use a separate validation set to verify the 
performance of the resulting classifier. The C+ and C− values that give the 
best classification results on the validation set are selected as the final pa-
rameter values for them. Cross-validation is another possible technique for 
the purpose. Since the need to learn from positive and unlabeled examples 
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often arises in retrieval situations (retrieving positive documents from the 
unlabeled set), we employ the commonly used F-score as the performance 
measure, F = 2pr/(p+r), where p is the precision and r is the recall.  

Unfortunately it is not clear how to estimate the F-score without labeled 
negative examples. In [309], Lee and Liu proposed an alternative perform-
ance measure to compare different classifiers. It behaves similarly to the F-
score but can be estimated directly from the validation set without the need 
of labeled negative examples. The measure is  

,
)1)(Pr(

2

=xf
r  (14) 

where f is the classifier and Pr(f(x)=1) is the probability that a document is 
classified as positive. It is not easy to see why Equation (14) behaves simi-
larly to the F-score, but we can show that r2/Pr(f(x)=1) = pr/Pr(y=1), where 
Pr(y=1) is the probability of positive documents. pr/Pr(y=1) behaves simi-
larly to the F-score in the sense that it is large when both p and r are large 
and is small when either p or r is small.  

We first write recall (r) and precision (p) in terms of probability:  

r = Pr(f(x)=1| y=1) (15) 

p = Pr(y=1| f(x)=1). (16) 

According to probability theory, we have 

Pr(f(x)=1|y=1)Pr(y=1) = Pr(y=1| f(x)=1)Pr(f(x)=1), (17) 

which can be written as  
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Multiplying both sides by r, we obtain the result: 
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The quantity r2/Pr(f(x)=1) can be estimated based on the validation set, 
which contains both positive and unlabeled documents. r can be estimated 
using the positive examples in the validation set and Pr(f(x) = 1) can be es-
timated from the whole validation set.  

This criterion in fact reflects the theory in Sect. 5.2.2 very well. The 
quantity is large when r is large and Pr(f(x) = 1) is small, which means that 
the number of unlabeled examples labeled as positive should be small. In 
[340], it is shown that biased-SVM works better than two-step techniques.  
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5.2.5 Discussion 

Does PU Learning Always Work? Theoretical results show that it should 
if the positive set and the unlabeled set are sufficiently large [348]. This 
has been confirmed by many experimental studies. Interested readers can 
find the detailed results in [340, 348], which we summarize below:  
1. PU learning can achieve about the same classification results as fully 

supervised learning (i.e., both labeled positive and negative examples 
are available for training) when the positive set and the unlabeled set are 
sufficiently large. This implies that labeled negative examples do not 
provide much information for learning. When the positive set is very 
small, PU learning is poorer than fully supervised learning.  

2. For the two-step approaches, using SVM for the second step performs 
better than EM. SVM needs to be run only once if step 1 can extract a 
large number of reliable negative documents. Both Spy and Rocchio 
(and to some extent NB as well) are able to do that. Thus, the iterative 
method in step 2 is not necessary.  
 The generative model of naïve Bayes with EM in the second step can 
perform very well if the mixture model assumptions hold [348]. How-
ever, if the mixture model assumptions do not hold, the classification re-
sults can be very poor [340]. Note that SVM is usually called a dis-
criminative model (or classifier) because it does not make any model 
assumptions. It simply finds a hyperplane to separate positive and nega-
tive examples in the training data.  

3. Biased-SVM performs slightly better than the 2-step approaches. How-
ever, it is very slow in training because SVM needs to be run a large 
number of times in order to select the best values for C+ and C−.  

Evaluation: Unlike LU learning, here we do not even have labeled nega-
tive examples, which makes the evaluation difficult. Although Equation 
(14) and other heuristics allow a system to choose a “better” classifier 
among a set of classifiers, it is unable to give the actual accuracy, precision 
or recall of each classifier. Evaluation is an open problem. The results re-
ported in [340, 348] assume that a set of labeled positive and negative test 
examples is available, which, of source, is unrealistic in practice because 
the PU learning model states that no labeled negative example is available.   

In some cases, the evaluation can be done with some confidence. For 
example, if the user needs to extract positive documents from many unla-
beled sets as in the example of identifying printer pages from multiple 
Web sites, a PU learning algorithm can be applied to one site and then the 
user manually checks the classification result to see whether it is satisfac-
tory. If the result is satisfactory, the algorithm can be applied to the rest of 
the sites without further manual evaluation.  
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Appendix: Derivation of EM for Naïve Bayesian Classification 

EM is a method for performing a classical statistical estimation technique 
called maximum likelihood estimation. In maximum likelihood estima-
tion, the aim is to find the model parameter Θ̂  that maximizes the likeli-
hood function Pr(Do; Θ) for observed data Do. In other words, maximum 
likelihood estimation aims to select the model that is most likely to have 
generated the observed data. In many cases, such as in the naïve Bayesian 
classification model, the maximum likelihood estimator is easy to find and 
has a closed form solution when all components of the data D are ob-
served. However, the problem becomes difficult when the data D actually 
consists of an observed component Do and an unobserved component Du. 
In such cases, iterative methods that converge only to a local maximum, 
such as the EM method, are usually used. 

Maximizing the log likelihood function logPr(Do; Θ) produces the same 
solution as maximizing the likelihood function and is easier to handle 
mathematically. In the presence of unobserved data Du, the log likelihood 
function becomes ).;,Pr(log);Pr(log Θ=Θ ∑ uoDo DDD

u
 Instead of maxi-

mizing the log likelihood ∑ Θ
uD uo DD );,Pr(log  directly, at each iteration 

T, the EM algorithm finds the value Θ that maximizes the expected com-
plete log likelihood  
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where ΘT−1 is the parameter that was produced in iteration T−1. In many 
cases, such as in the naïve Bayesian model, the expected log likelihood is 
easy to maximize and has a closed form solution. It can be shown (see 
[127]) that the log likelihood increases monotonically with each iteration 
of the EM algorithm. 

We now derive the EM update for the naïve Bayesian model. We first 
consider the complete log likelihood, that is, the log likelihood when all 
variables are observed. The conditional probability of a document given its 
class is (see Sect. 3.7.2 in Chap. 3) 

∏
=

Θ
=Θ

||

1 !
);|Pr(|!||)Pr(|);|Pr(

V

t

N

ti

ti
jt

iiji

N
cwddcd  (21) 

Each document and its class label are assumed to have been sampled 
independently. Let c(i) be the class label of document i. The likelihood 
function can hence be written as 
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Taking logs, we have the complete log likelihood function 
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where φ is a constant containing the terms unaffected by Θ. To facilitate 
the process of taking expectation when some of the class labels are not ob-
served, we introduce indicator variables, hik, that take the value 1 when 
document i takes the label k and the value 0 otherwise. The complete log 
likelihood can be written in the following equivalent form 
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When some of the labels are not observed, we take the conditional expec-
tation for the unobserved variables hik with respect to ΘT−1 to get the ex-
pected complete log likelihood 
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where, for the observed labels c(i), we use the convention that Pr(ck|di;ΘT−1) 
takes the value one for ck = c(i) and zero otherwise. We maximize the ex-
pected complete log likelihood subject to the coefficients summing to one 
using the Lagrange multiplier method. The Lagrangian is  
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Differentiating the Lagrangian with respect to λ, we get .1);Pr(
||

1
=Θ∑ =
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k kc  

Differentiating with respect to Pr(ck; Θ), we get 
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Summing the left and right-hand side over k and using ,1);Pr(
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Working similarly, we can get the update equation for Pr(wt|cj; ΘT), 
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To handle the 0 count problem (see Sect. 3.7.2 in Chap. 3), we can use 
Lidstone smoothing (Equation (27) in Chap. 3). 
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for transduction, i.e. classifying test instances that are known during train-
ing. The graph-based mincut algorithm was introduced by Blum and 
Chalwa [54]. The graph-based Gaussian field method was proposed by 
Zhu et al. [619] while the spectral graph transducer was proposed by 
Joachims [261]. The edited book by Chapelle et al. [93] gives a compre-
hensive coverage of various LU learning algorithms. 

On learning from positive and unlabeled examples (or PU learning), 
Denis [129] reported a theoretical study of PAC learning in this setting un-
der the statistical query model [272], which basically assumes that the pro-
portion of positive instances in the unlabeled set is known. Letouzey et al. 
[315] presented a learning algorithm based on a modified decision tree 
method in this model. PU learning is also studied theoretically by Muggle-
ton [398] from the Bayesian framework where the distribution of functions 
and examples are assumed known. Liu et al. [348] gives another theoreti-
cal study, in which both the noiseless case and the noisy case are consid-
ered. It was concluded that a reasonable generalization (learning) can be 
achieved if the problem is posed as a constrained optimization problem 
(see Sect. 5.2.2). Most existing algorithms for solving the problem are 
based on this constrained optimization model.  

Over the years, several practical algorithms were proposed. The first 
class of algorithms deals with the problem in two steps. These algorithms 
include S-EM [348], PEBL [582, 583], and Roc-SVM [321], which have 
been studied in this chapter. The second class of algorithm follows the 
theoretical result directly. Lee and Liu [309] described a weighted logistic 
regression technique. Liu et al. [340] described a biased-SVM technique. 
They both require a performance criterion to determine the quality of the 
classifier. The criterion is given in [309], which has been presented in Sect. 
5.2.4. Liu et al. reported a comprehensive comparison of various tech-
niques in [340]. It was shown that biased-SVM performed better than other 
techniques. Some other works on PU learning include those of Agichtein 
[6], Barbara et al. [35], Deng et al. [128], Denise et al. [130], Fung, et al. 
[188], Li and Liu [322], Zhang and Lee [603], etc. 

A closely related work to PU learning is one-class SVM, which uses 
only positive examples to build a classifier. This method was proposed by 
Scholkopf et al. [478]. Manevitz and Yousef [360] studied text classifica-
tion using one-class SVM. Li and Liu [321] showed that its accuracy re-
sults were poorer than PU learning for text classification. Unlabeled data 
does help classification significantly.  
 



 

6 Information Retrieval and Web Search 

Web search needs no introduction. Due to its convenience and the richness 
of information on the Web, searching the Web is increasingly becoming 
the dominant information seeking method. People make fewer and fewer 
trips to libraries, but more and more searches on the Web. In fact, without 
effective search engines and rich Web contents, writing this book would 
have been much harder.  

Web search has its root in information retrieval (or IR for short), a 
field of study that helps the user find needed information from a large col-
lection of text documents. Traditional IR assumes that the basic informa-
tion unit is a document, and a large collection of documents is available to 
form the text database. On the Web, the documents are Web pages.  

Retrieving information simply means finding a set of documents that is 
relevant to the user query. A ranking of the set of documents is usually 
also performed according to their relevance scores to the query. The most 
commonly used query format is a list of keywords, which are also called 
terms. IR is different from data retrieval in databases using SQL queries 
because the data in databases are highly structured and stored in relational 
tables, while information in text is unstructured. There is no structured 
query language like SQL for text retrieval.   

It is safe to say that Web search is the single most important application 
of IR. To a great extent, Web search also helped IR. Indeed, the tremen-
dous success of search engines has pushed IR to the center stage. Search is, 
however, not simply a straightforward application of traditional IR models. 
It uses some IR results, but it also has its unique techniques and presents 
many new problems for IR research.  

First of all, efficiency is a paramount issue for Web search, but is only 
secondary in traditional IR systems mainly due to the fact that document 
collections in most IR systems are not very large. However, the number of 
pages on the Web is huge. For example, Google indexed more than 8 bil-
lion pages when this book was written. Web users also demand very fast 
responses. No matter how effective an algorithm is, if the retrieval cannot 
be done efficiently, few people will use it. 

Web pages are also quite different from conventional text documents 
used in traditional IR systems. First, Web pages have hyperlinks and an-
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chor texts, which do not exist in traditional documents (except citations in 
research publications). Hyperlinks are extremely important for search and 
play a central role in search ranking algorithms as we will see in the next 
chapter. Anchor texts associated with hyperlinks too are crucial because a 
piece of anchor text is often a more accurate description of the page that its 
hyperlink points to. Second, Web pages are semi-structured. A Web page 
is not simply a few paragraphs of text like in a traditional document. A 
Web page has different fields, e.g., title, metadata, body, etc. The informa-
tion contained in certain fields (e.g., the title field) is more important than 
in others. Furthermore, the content in a page is typically organized and 
presented in several structured blocks (of rectangular shapes). Some blocks 
are important and some are not (e.g., advertisements, privacy policy, copy-
right notices, etc). Effectively detecting the main content block(s) of a 
Web page is useful to Web search because terms appearing in such blocks 
are more important.  

Finally, spamming is a major issue on the Web, but not a concern for 
traditional IR. This is so because the rank position of a page returned by a 
search engine is extremely important. If a page is relevant to a query but is 
ranked very low (e.g., below top 30), then the user is unlikely to look at the 
page. If the page sells a product, then this is bad for the business. In order 
to improve the ranking of some target pages, “illegitimate” means, called 
spamming, are often used to boost their rank positions. Detecting and 
fighting Web spam is a critical issue as it can push low quality (even ir-
relevant) pages to the top of the search rank, which harms the quality of 
the search results and the user’s search experience.  

In this chapter, we first study some information retrieval models and 
methods that are closely related to Web search. We then dive into some 
Web search specific issues.  

6.1 Basic Concepts of Information Retrieval  

Information retrieval (IR) is the study of helping users to find information 
that matches their information needs. Technically, IR studies the acquisi-
tion, organization, storage, retrieval, and distribution of information. His-
torically, IR is about document retrieval, emphasizing document as the ba-
sic unit. Fig. 6.1 gives a general architecture of an IR system.  

In Figure 6.1, the user with information need issues a query (user 
query) to the retrieval system through the query operations module. The 
retrieval module uses the document index to retrieve those documents that 
contain some query terms (such documents are likely to be relevant to the 
query), compute relevance scores for them, and then rank the retrieved 
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documents according to the scores. The ranked documents are then pre-
sented to the user. The document collection is also called the text data-
base, which is indexed by the indexer for efficient retrieval.  

 

Fig. 6.1. A general IR system architecture 

A user query represents the user’s information needs, which is in one of 
the following forms:  

1. Keyword queries: The user expresses his/her information needs with a 
list of (at least one) keywords (or terms) aiming to find documents that 
contain some (at least one) or all the query terms. The terms in the list 
are assumed to be connected with a “soft” version of the logical AND. 
For example, if one is interested in finding information about Web min-
ing, one may issue the query ‘Web mining’ to an IR or search engine 
system. ‘Web mining’ is retreated as ‘Web AND mining’. The retrieval 
system then finds those likely relevant documents and ranks them suita-
bly to present to the user. Note that a retrieved document does not have 
to contain all the terms in the query. In some IR systems, the ordering of 
the words is also significant and will affect the retrieval results.  

2. Boolean queries: The user can use Boolean operators, AND, OR, and 
NOT to construct complex queries. Thus, such queries consist of terms 
and Boolean operators. For example, ‘data OR Web’ is a Boolean 
query, which requests documents that contain the word ‘data’ or ‘Web. 
A page is returned for a Boolean query if the query is logically true in 
the page (i.e., exact match). Although one can write complex Boolean 
queries using the three operators, users seldom write such queries. 
Search engines usually support a restricted version of Boolean queries.  

3. Phrase queries: Such a query consists of a sequence of words that 
makes up a phrase. Each returned document must contain at least one 
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instance of the phrase. In a search engine, a phrase query is normally 
enclosed with double quotes. For example, one can issue the following 
phrase query (including the double quotes), “Web mining techniques 
and applications” to find documents that contain the exact phrase.  

4. Proximity queries: The proximity query is a relaxed version of the 
phrase query and can be a combination of terms and phrases. Proximity 
queries seek the query terms within close proximity to each other. The 
closeness is used as a factor in ranking the returned documents or pages. 
For example, a document that contains all query terms close together is 
considered more relevant than a page in which the query terms are far 
apart. Some systems allow the user to specify the maximum allowed 
distance between the query terms. Most search engines consider both 
term proximity and term ordering in retrieval.   

5. Full document queries: When the query is a full document, the user 
wants to find other documents that are similar to the query document. 
Some search engines (e.g., Google) allow the user to issue such a query 
by providing the URL of a query page. Additionally, in the returned re-
sults of a search engine, each snippet may have a link called “more like 
this” or “similar pages.” When the user clicks on the link, a set of pages 
similar to the page in the snippet is returned.   

6. Natural language questions: This is the most complex case, and also 
the ideal case. The user expresses his/her information need as a natural 
language question. The system then finds the answer. However, such 
queries are still hard to handle due to the difficulty of natural language 
understanding. Nevertheless, this is an active research area, called ques-
tion answering. Some search systems are starting to provide question 
answering services on some specific types of questions, e.g., definition 
questions, which ask for definitions of technical terms. Definition ques-
tions are usually easier to answer because there are strong linguistic pat-
terns indicating definition sentences, e.g., “defined as”, “refers to”, etc. 
Definitions can usually be extracted offline [339, 280]. 

The query operations module can range from very simple to very com-
plex. In the simplest case, it does nothing but just pass the query to the re-
trieval engine after some simple pre-processing, e.g., removal of stop-
words (words that occur very frequently in text but have little meaning, 
e.g., “the”, “a”, “in”, etc). We will discuss text pre-processing in Sect. 6.5. 
In more complex cases, it needs to transform natural language queries into 
executable queries. It may also accept user feedback and use it to expand 
and refine the original queries. This is usually called relevance feedback, 
which will be discussed in Sect. 6.3.  

The indexer is the module that indexes the original raw documents in 
some data structures to enable efficient retrieval. The result is the docu-
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ment index. In Sect. 6.6, we study a particular type of indexing scheme, 
called the inverted index, which is used in search engines and most IR 
systems. An inverted index is easy to build and very efficient to search.  

The retrieval system computes a relevance score for each indexed 
document to the query. According to their relevance scores, the documents 
are ranked and presented to the user. Note that it usually does not compare 
the user query with every document in the collection, which is too ineffi-
cient. Instead, only a small subset of the documents that contains at least 
one query term is first found from the index and relevance scores with the 
user query are then computed only for this subset of documents.  

6.2 Information Retrieval Models 

An IR model governs how a document and a query are represented and 
how the relevance of a document to a user query is defined. There are four 
main IR models: Boolean model, vector space model, language model and 
probabilistic model. The most commonly used models in IR systems and 
on the Web are the first three models, which we study in this section.  

Although these three models represent documents and queries differ-
ently, they used the same framework. They all treat each document or 
query as a “bag” of words or terms. Term sequence and position in a sen-
tence or a document are ignored. That is, a document is described by a set 
of distinctive terms. A term is simply a word whose semantics helps re-
member the document’s main themes. We should note that the term here 
may not be a natural language word in a dictionary. Each term is associ-
ated with a weight. Given a collection of documents D, let V = {t1, t2, ..., 
t|V|} be the set of distinctive terms in the collection, where ti is a term. The 
set V is usually called the vocabulary of the collection, and |V| is its size, 
i.e., the number of terms in V. A weight wij > 0 is associated with each 
term ti of a document dj ∈ D. For a term that does not appear in document 
dj, wij = 0. Each document dj is thus represented with a term vector,  

dj = (w1j, w2j, ..., w|V|j),  

where each weight wij corresponds to the term ti ∈ V, and quantifies the 
level of importance of ti in document dj. The sequence of the components 
(or terms) in the vector is not significant. Note that following the conven-
tion of this book, a bold lower case letter is used to represent a vector.  

With this vector representation, a collection of documents is simply rep-
resented as a relational table (or a matrix). Each term is an attribute, and 
each weight is an attribute value. In different retrieval models, wij is com-
puted differently.  
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6.2.1 Boolean Model 

The Boolean model is one of the earliest and simplest information retrieval 
models. It uses the notion of exact matching to match documents to the 
user query. Both the query and the retrieval are based on Boolean algebra.  

Document Representation: In the Boolean model, documents and queries 
are represented as sets of terms. That is, each term is only considered pre-
sent or absent in a document. Using the vector representation of the docu-
ment above, the weight wij (∈ {0, 1}) of term ti in document dj is 1 if ti ap-
pears in document dj, and 0 otherwise, i.e.,  
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ij
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d  (1) 

Boolean Queries: As we mentioned in Sect. 6.1, query terms are com-
bined logically using the Boolean operators AND, OR, and NOT, which 
have their usual semantics in logic. Thus, a Boolean query has a precise 
semantics. For instance, the query, ((x AND y) AND (NOT z)) says that a 
retrieved document must contain both the terms x and y but not z. As an-
other example, the query expression (x OR y) means that at least one of 
these terms must be in each retrieved document. Here, we assume that x, y 
and z are terms. In general, they can be Boolean expressions themselves.  

Document Retrieval: Given a Boolean query, the system retrieves every 
document that makes the query logically true. Thus, the retrieval is based 
on the binary decision criterion, i.e., a document is either relevant or ir-
relevant. Intuitively, this is called exact match. There is no notion of par-
tial match or ranking of the retrieved documents. This is one of the major 
disadvantages of the Boolean model, which often leads to poor retrieval re-
sults. It is quite clear that the frequency of terms and their proximity con-
tribute significantly to the relevance of a document.  

Due to this problem, the Boolean model is seldom used alone in prac-
tice. Most search engines support some limited forms of Boolean retrieval 
using explicit inclusion and exclusion operators. For example, the fol-
lowing query can be issued to Google, ‘mining –data +“equipment price”’, 
where + (inclusion) and – (exclusion) are similar to Boolean operators 
AND and NOT respectively. The operator OR may be supported as well.  

6.2.2 Vector Space Model  

This model is perhaps the best known and most widely used IR model.  
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Document Representation 

A document in the vector space model is represented as a weight vector, in 
which each component weight is computed based on some variation of TF 
or TF-IDF scheme. The weight wij of term ti in document dj is no longer in 
{0, 1} as in the Boolean model, but can be any number. 

Term Frequency (TF) Scheme: In this method, the weight of a term ti in 
document dj is the number of times that ti appears in document dj, denoted 
by fij. Normalization may also be applied (see Equation (2)).  

The shortcoming of the TF scheme is that it does not consider the situa-
tion where a term appears in many documents of the collection. Such a 
term may not be discriminative. 

TF-IDF Scheme: This is the most well known weighting scheme, where 
TF still stands for the term frequency and IDF the inverse document 
frequency. There are several variations of this scheme. Here we only give 
the most basic one.  

Let N be the total number of documents in the system or the collection 
and dfi be the number of documents in which term ti appears at least once. 
Let fij be the raw frequency count of term ti in document dj. Then, the 
normalized term frequency (denoted by tfij) of ti in dj is given by 

,
},...,,max{ ||21 jVjj

ij
ij fff

f
tf =  (2) 

where the maximum is computed over all terms that appear in document 
dj. If term ti does not appear in dj then tfij = 0. Recall that |V| is the vocabu-
lary size of the collection.  

The inverse document frequency (denoted by idfi) of term ti is given by: 

.log
i

i df
Nidf =  (3) 

The intuition here is that if a term appears in a large number of documents 
in the collection, it is probably not important or not discriminative. The fi-
nal TF-IDF term weight is given by: 

.iijij idftfw ×=  (4) 

Queries 

A query q is represented in exactly the same way as a document in the 
document collection. The term weight wiq of each term ti in q can also be 
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computed in the same way as in a normal document, or slightly differently. 
For example, Salton and Buckley [470] suggested the following: 
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Document Retrieval and Relevance Ranking 

It is often difficult to make a binary decision on whether a document is 
relevant to a given query. Unlike the Boolean model, the vector space 
model does not make such a decision. Instead, the documents are ranked 
according to their degrees of relevance to the query. One way to compute 
the degree of relevance is to calculate the similarity of the query q to each 
document dj in the document collection D. There are many similarity 
measures. The most well known one is the cosine similarity, which is the 
cosine of the angle between the query vector q and the document vector dj,  
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Cosine similarity is also widely used in text/document clustering.  
The dot product of the two vectors is another similarity measure, 

.),( 〉•〈= qdqd jjsim  (7) 

Ranking of the documents is done using their similarity values. The top 
ranked documents are regarded as more relevant to the query.  

Another way to assess the degree of relevance is to directly compute a 
relevance score for each document to the query. The Okapi method and its 
variations are popular techniques in this setting. The Okapi retrieval for-
mula given here is based on that in [465, 493]. It has been shown that 
Okapi variations are more effective than cosine for short query retrieval.  

Since it is easier to present the formula directly using the “bag” of 
words notation of documents than vectors, document dj will be denoted by 
dj and query q will be denoted by q. Additional notations are as follows:  

ti is a term  
fij is the raw frequency count of term ti in document dj 
fiq is the raw frequency count of term ti in query q 
N is the total number of documents in the collection 
dfi is the number of documents that contain the term ti 
dlj is the document length (in bytes) of dj 
avdl is the average document length of the collection 
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The Okapi relevance score of a document dj for a query q is: 
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where k1 (between 1.0-2.0), b (usually 0.75) and k2 (between 1-1000) are 
parameters.  

Yet another score function is the pivoted normalization weighting 
score function, denoted by pnw [493]:   
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where s is a parameter (usually set to 0.2). Note that these are empirical 
functions based on intuitions and experimental evaluations. There are 
many variations of these functions used in practice.  

6.2.3 Statistical Language Model 

Statistical language models (or simply language models) are based on 
probability and have foundations in statistical theory. The basic idea of this 
approach to retrieval is simple. It first estimates a language model for each 
document, and then ranks documents by the likelihood of the query given 
the language model. Similar ideas have previously been used in natural 
language processing and speech recognition. The formulation and discus-
sion in this section is based on those in [595, 596]. Information retrieval 
using language models was first proposed by Ponte and Croft [448].  

Let the query q be a sequence of terms, q = q1q2…qm and the document 
collection D be a set of documents, D = {d1, d2, …, dN}. In the language 
modeling approach, we consider the probability of a query q as being 
“generated” by a probabilistic model based on a document dj, i.e., Pr(q|dj). 
To rank documents in retrieval, we are interested in estimating the poste-
rior probability Pr(dj|q). Using the Bayes rule, we have  

)Pr(
)Pr()|Pr(

)|Pr(
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ddq
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For ranking, Pr(q) is not needed as it is the same for every document. 
Pr(dj) is usually considered uniform and thus will not affect ranking. We 
only need to compute Pr(q|dj).  

The language model used in most existing work is based on unigram, 
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i.e., only individual terms (words) are considered. That is, the model as-
sumes that each term (word) is generated independently, which is essen-
tially a multinomial distribution over words. The general case is the n-
gram model, where the nth term is conditioned on the previous n-1 terms.  

Based on the multinomial distribution and the unigram model, we have  
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where fiq is the number of times that term ti occurs in q, and 
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which can be the relative frequency,  
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Recall that fij is the number of times that term ti occurs in document dj. |dj| 
denotes the total number of words in dj.  

However, one problem with this estimation is that a term that does not 
appear in dj has the probability of 0, which underestimates the probability 
of the unseen term in the document. This situation is similar to text classi-
fication using the naïve Bayesian model (see Sect. 3.7). A non-zero prob-
ability is typically assigned to each unseen term in the document, which is 
called smoothing. Smoothing adjusts the estimates of probabilities to pro-
duce more accurate probabilities. The name smoothing comes from the 
fact that these techniques tend to make distributions more uniform, by ad-
justing low probabilities such as zero probabilities upward, and high prob-
abilities downward. Not only do smoothing methods aim to prevent zero 
probabilities, but they also attempt to improve the accuracy of the model as 
a whole. Traditional additive smoothing is     
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When λ = 1, it is the Laplace smoothing and when 0 < λ < 1, it is the Lid-
stone smoothing. Many other more sophisticated smoothing methods can 
be found in [97, 596].  

6.3 Relevance Feedback 

To improve the retrieval effectiveness, researchers have proposed many 
techniques. Relevance feedback is one of the effective ones. It is a process 
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where the user identifies some relevant and irrelevant documents in the ini-
tial list of retrieved documents, and the system then creates an expanded 
query by extracting some additional terms from the sample relevant and ir-
relevant documents for a second round of retrieval. The system may also 
produce a classification model using the user-identified relevant and ir-
relevant documents to classify the documents in the document collection 
into relevant and irrelevant documents. The relevance feedback process 
may be repeated until the user is satisfied with the retrieved result. 

The Rocchio Method 

This is one of the early and effective relevance feedback algorithms. It is 
based on the first approach above. That is, it uses the user-identified rele-
vant and irrelevant documents to expand the original query. The new (or 
expanded) query is then used to perform retrieval again.  

Let the original query vector be q, the set of relevant documents selected 
by the user be Dr, and the set of irrelevant documents be Dir. The expanded 
query qe is computed as follows, 
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where α, β and γ are parameters. Equation (14) simply augments the origi-
nal query vector q with additional terms from relevant documents. The 
original query q is still needed because it directly reflects the user’s infor-
mation need. Relevant documents are considered more important than ir-
relevant documents. The subtraction is used to reduce the influence of 
those terms that are not discriminative (i.e., they appear in both relevant 
and irrelevant documents), and those terms that appear in irrelevant docu-
ments only. The three parameters are set empirically. Note that a slight 
variation of the algorithm is one without the normalization of |Dr| and |Dir|. 
Both these methods are simple and efficient to compute, and usually pro-
duce good results. 

Machine Learning Methods 

Since we have a set of relevant and irrelevant documents, we can construct 
a classification model from them. Then the relevance feedback problem 
becomes a learning problem. Any supervised learning method may be 
used, e.g., naïve Bayesian classification and SVM. Similarity comparison 
with the original query is no longer needed. 

In fact, a variation of the Rocchio method above, called the Rocchio 
classification method, can be used for this purpose too. Building a Roc-



194      6 Information Retrieval and Web Search 

chio classifier is done by constructing a prototype vector ci for each class i, 
which is either relevant or irrelevant in this case (negative elements or 
components of the vector ci are usually set to 0): 
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where Di is the set of documents of class i, and α and β are parameters. 
Using the TF-IDF term weighting scheme, α = 16 and β = 4 usually work 
quite well.  

In classification, cosine similarity is applied. That is, each test document 
dt is compared with every prototype ci based on cosine similarity. dt is as-
signed to the class with the highest similarity value (Fig. 6.2).   

Algorithm 
1 for each class i do  
2 construct its prototype vector ci using Equation (15) 
3 endfor 
4 for each test document dt do  
5 the class of dt is ),(maxarg iti cosine cd   
6 endfor 

Fig. 6.2. Training and testing of a Rocchio classifier 

Apart from the above classic methods, the following learning techniques 
are also applicable:   
Learning from Labeled and Unlabeled Examples (LU Learning): Since 
the number of user-selected relevant and irrelevant documents may be 
small, it can be difficult to build an accurate classifier. However, unlabeled 
examples, i.e., those documents that are not selected by the user, can be 
utilized to improve learning to produce a more accurate classifier. This fits 
the LU learning model exactly (see Sect. 5.1). The user-selected relevant 
and irrelevant documents form the small labeled training set.  
Learning from Positive and Unlabeled Examples (PU Learning): The 
two learning models mentioned above assume that the user can confidently 
identify both relevant and irrelevant documents. However, in some cases, 
the user only selects (or clicks) documents that he/she feels relevant based 
on the title or summary information (e.g., snippets in Web search), which 
are most likely to be true relevant documents, but does not indicate irrele-
vant documents. Those documents that are not selected by the user may 
not be treated as irrelevant because he/she has not seen them. Thus, they 
can only be regarded as unlabeled documents. This is called implicit feed-
back. In order to learn in this case, we can use PU learning, i.e., learning 
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from positive and unlabeled examples (see Sect. 5.2). We regard the user-
selected documents as positive examples, and unselected documents as 
unlabeled examples. Researchers have experimented with this approach in 
the Web search context and obtained good results [128].  

Using Ranking SVM and Language Models: In the implicit feedback 
setting, a technique called ranking SVM is proposed in [260] to rank the 
unselected documents based on the selected documents. A language model 
based approach is also proposed in [487]. 

Pseudo-Relevance Feedback 

Pseudo-relevance feedback is another technique used to improve retrieval 
effectiveness. Its basic idea is to extract some terms (usually frequent 
terms) from the top-ranked documents and add them to the original query 
to form a new query for a second round of retrieval. Again, the process can 
be repeated until the user is satisfied with the final results. The main dif-
ference between this method and the relevance feedback method is that in 
this method, the user is not involved in the process. The approach simply 
assumes that the top-ranked documents are likely to be relevant. Through 
query expansion, some relevant documents missed in the initial round can 
be retrieved to improve the overall performance. Clearly, the effectiveness 
of this method relies on the quality of the selected expansion terms.  

6.4 Evaluation Measures 

Precision and recall measures have been described in Chap. 3 on super-
vised learning, where each document is classified to a specific class. In IR 
and Web search, usually no decision is made on whether a document is 
relevant or irrelevant to a query. Instead, a ranking of the documents is 
produced for the user. This section studies how to evaluate such rankings.  

Again, let the collection of documents in the database be D, and the total 
number of documents in D be N. Given a user query q, the retrieval algo-
rithm first computes relevance scores for all documents in D and then pro-
duce a ranking Rq of the documents based on the relevance scores, i.e.,  

,,...,,   : 21 >< q
N

qq
qR ddd  (16) 

where d1
q ∈ D is the most relevant document to query q and dq

N ∈ D is the 
most irrelevant document to query q.  

Let Dq (⊆ D) be the set of actual relevant documents of query q in D. 
We can compute the precision and recall values at each di

q in the ranking.  
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Recall at rank position i or document di
q (denoted by r(i)) is the fraction of 

relevant documents from d1
q to di

q in Rq. Let the number of relevant docu-
ments from d1

q to di
q in Rq be si (≤ |Dq|) (|Dq| is the size of Dq). Then, 
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Precision at rank position i or document di
q (denoted by p(i)) is the frac-

tion of documents from d1
q to di

q in Rq that are relevant: 

i
sip i=)(  (18) 

Example 1: We have a document collection D with 20 documents. Given 
a query q, we know that eight documents are relevant to q. A retrieval al-
gorithm produces the ranking (of all documents in D) shown in Fig. 6.3.  

Rank i +/− p(i) r(i) 
1 + 1/1 = 100% 1/8 = 13% 
2 + 2/2 = 100% 2/8 = 25% 
3 + 3/3 = 100% 3/8 = 38% 
4 − 3/4 = 75% 3/8 = 38% 
5 + 4/5 = 80% 4/8 = 50% 
6 − 4/6 = 67% 4/8 = 50% 
7 + 5/7 = 71% 5/8 = 63% 
8 − 5/8 = 63% 5/8 = 63% 
9 + 6/9 = 67% 6/8 = 75% 

10 + 7/10 = 70% 7/8 = 88% 
11 − 7/11 = 63% 7/8 = 88% 
12 − 7/12 = 58% 7/8 = 88% 
13 + 8/13 = 62% 8/8 = 100% 
14 − 8/14 = 57% 8/8 = 100% 
15 − 8/15 = 53% 8/8 = 100% 
16 − 8/16 = 50% 8/8 = 100% 
17 − 8/17 = 53% 8/8 = 100% 
18 − 8/18 = 44% 8/8 = 100% 
19 − 8/19 = 42% 8/8 = 100% 
20 − 8/20 = 40% 8/8 = 100% 

Fig. 6.3. Precision and recall values at each rank position 

In column 1 of Fig. 6.3, 1 represents the highest rank and 20 represents 
the lowest rank. “+” and “−” in column 2 indicate a relevant document and 
an irrelevant document respectively. The precision (p(i)) and recall (r(i)) 
values at each position i are given in columns 3 and 4.  ▀ 
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Average Precision: Sometimes we want a single precision to compare dif-
ferent retrieval algorithms on a query q. An average precision (pavg) can be 
computed based on the precision at each relevant document in the ranking,  
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For the ranking in Fig. 6.3 of Example 1, the average precision is 81%:  
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Precision–Recall Curve: Based on the precision and recall values at each 
rank position, we can draw a precision–recall curve where the x-axis is the 
recall and the y-axis is the precision. Instead of using the precision and re-
call at each rank position, the curve is commonly plotted using 11 standard 
recall levels, 0%, 10%, 20%, …, 100%. 

Since we may not obtain exactly these recall levels in the ranking, inter-
polation is needed to obtain the precisions at these recall levels, which is 
done as follows: Let ri be a recall level, i ∈ {0, 1, 2, …, 10}, and p(ri) be 
the precision at the recall level ri. p(ri) is computed with  
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That is, to interpolate precision at a particular recall level ri, we take the 
maximum precision of all recalls between level ri and level r10.  

Example 2: Following Example 1, we obtain the interpolated precisions at 
all 11 recall levels in the table of Fig. 6.4. The precision-recall curve is 
shown on the right. 

i p(ri) ri 
0 100% 0% 
1 100% 10% 
2 100% 20% 
3 100% 30% 
4 80% 40% 
5 80% 50% 
6 71% 60% 
7 70% 70% 
8 70% 80% 
9 62% 90% 

10 62% 100% 

Fig. 6.4. The precision-recall curve ▀ 
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Comparing Different Algorithms: Frequently, we need to compare the 
retrieval results of different algorithms. We can draw their precision-recall 
curves together in the same figure for comparison. Figure 6.5 shows the 
curves of two algorithms on the same query and the same document collec-
tion. We observe that the precisions of one algorithm are better than those 
of the other at low recall levels, but are worse at high recall levels.  
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Fig. 6.5. Comparison of two retrieval algorithms based on their precision-recall 
curves 

Evaluation Using Multiple Queries: In most retrieval evaluations, we are 
interested in the performance of an algorithm on a large number of queries. 
The overall precision (denoted by )( irp ) at each recall level ri is computed 
as the average of individual precisions at that recall level, i.e.,  

),(
||

1)(
||

1
i

Q

j
ji rp

Q
rp ∑

=

=  (22) 

where Q is the set of all queries and pj(ri) is the precision of query j at the 
recall level ri. Using the average precision at each recall level, we can also 
draw a precision-recall curve.  

Although in theory precision and recall do not depend on each other, in 
practice a high recall is almost always achieved at the expense of preci-
sion, and a high precision is achieved at the expense of recall. Thus, preci-
sion and recall has a trade-off. Depending on the application, one may 
want a high precision or a high recall.  

One problem with precision and recall measures is that, in many appli-
cations, it can be very hard to determine the set of relevant documents Dq 
for each query q. For example, on the Web, Dq is almost impossible to de-
termine because there are simply too many pages to manually inspect. 
Without Dq, the recall value cannot be computed. In fact, recall does not 
make much sense for Web search because the user seldom looks at pages 
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ranked below 30. However, precision is critical, and it can be estimated for 
top ranked documents. Manual inspection of only the top 30 pages is rea-
sonable. The following precision computation is commonly used.  

Rank Precision: We compute the precision values at some selected rank 
positions. For a Web search engine, we usually compute precisions for the 
top 5, 10, 15, 20, 25 and 30 returned pages (as the user seldom looks at 
more than 30 pages). We assume that the number of relevant pages is more 
than 30. Following Example 1, we have p(5) = 80%, p(10) = 70%, p(15) = 
53%, and p(20) = 40%.  

We should note that precision is not the only measure for evaluating 
search ranking, reputation or quality of the top ranked pages are also very 
important as we will see later in this chapter and also in Chap. 7.  

F-score: Another often used evaluation measure is the F-score, which we 
have used in Chap. 3. Here we can compute the F-score at each rank posi-
tion i. Recall that F-score is the harmonic mean of precision and recall:  
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Finally, the precision and recall breakeven point is also a commonly 
used measure, which we have discussed in Sect. 3.3.2 in Chap. 3.  

6.5  Text and Web Page Pre-Processing 

Before the documents in a collection are used for retrieval, some pre-
processing tasks are usually performed. For traditional text documents (no 
HTML tags), the tasks are stopword removal, stemming, and handling of 
digits, hyphens, punctuations, and cases of letters. For Web pages, addi-
tional tasks such as HTML tag removal and identification of main content 
blocks also require careful considerations. We discuss them in this section.  

6.5.1 Stopword Removal 

Stopwords are frequently occurring and insignificant words in a language 
that help construct sentences but do not represent any content of the docu-
ments. Articles, prepositions and conjunctions and some pronouns are 
natural candidates. Common stopwords in English include: 

a, about, an, are, as, at, be, by, for, from, how, in, is, of, on, or, 
that, the, these, this, to, was, what, when, where, who, will, with 
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Such words should be removed before documents are indexed and stored. 
Stopwords in the query are also removed before retrieval is performed.  

6.5.2 Stemming  

In many languages, a word has various syntactical forms depending on the 
contexts that it is used. For example, in English, nouns have plural forms, 
verbs have gerund forms (by adding “ing”), and verbs used in the past 
tense are different from the present tense. These are considered as syntactic 
variations of the same root form. Such variations cause low recall for a re-
trieval system because a relevant document may contain a variation of a 
query word but not the exact word itself. This problem can be partially 
dealt with by stemming.  

Stemming refers to the process of reducing words to their stems or roots. 
A stem is the portion of a word that is left after removing its prefixes and 
suffixes. In English, most variants of a word are generated by the introduc-
tion of suffixes (rather than prefixes). Thus, stemming in English usually 
means suffix removal, or stripping. For example, “computer”, “comput-
ing”, and “compute” are reduced to “comput”. “walks”, “walking” and 
“walker” are reduced to “walk”. Stemming enables different variations of 
the word to be considered in retrieval, which improves the recall. There are 
several stemming algorithms, also known as stemmers. In English, the 
most popular stemmer is perhaps the Martin Porter's stemming algorithm 
[449], which uses a set of rules for stemming.  

Over the years, many researchers evaluated the advantages and disad-
vantages of using stemming. Clearly, stemming increases the recall and re-
duces the size of the indexing structure. However, it can hurt precision be-
cause many irrelevant documents may be considered relevant. For 
example, both “cop” and “cope” are reduced to the stem “cop”. However, 
if one is looking for documents about police, a document that contains 
only “cope” is unlikely to be relevant. Although many experiments have 
been conducted by researchers, there is still no conclusive evidence one 
way or the other. In practice, one should experiment with the document 
collection at hand to see whether stemming helps. 

6.5.3 Other Pre-Processing Tasks for Text 

Digits: Numbers and terms that contain digits are removed in traditional 
IR systems except some specific types, e.g., dates, times, and other pre-
specified types expressed with regular expressions. However, in search en-
gines, they are usually indexed. 
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Hyphens: Breaking hyphens are usually applied to deal with inconsistency 
of usage. For example, some people use “state-of-the-art”, but others use 
“state of the art”. If the hyphens in the first case are removed, we eliminate 
the inconsistency problem. However, some words may have a hyphen as 
an integral part of the word, e.g., “Y-21”. Thus, in general, the system can 
follow a general rule (e.g., removing all hyphens) and also have some ex-
ceptions. Note that there are two types of removal, i.e., (1) each hyphen is 
replaced with a space and (2) each hyphen is simply removed without leav-
ing a space so that “state-of-the-art” may be replaced with “state of the 
art” or “stateoftheart”. In some systems both forms are indexed as it is 
hard to determine which is correct, e.g., if “pre-processing” is converted to 
“pre processing”, then some relevant pages will not be found if the query 
term is “preprocessing”. 

Punctuation Marks: Punctuation can be dealt with similarly as hyphens.  

Case of Letters: All the letters are usually converted to either the upper or 
lower case.   

6.5.4 Web Page Pre-Processing 

We have indicated at the beginning of the section that Web pages are dif-
ferent from traditional text documents. Thus, additional pre-processing is 
needed. We describe some important ones below.  

1. Identifying different text fields: In HTML, there are different text 
fields, e.g., title, metadata, and body. Identifying them allows the re-
trieval system to treat terms in different fields differently. For example, 
in search engines terms that appear in the title field of a page are re-
garded as more important than terms that appear in other fields and are 
assigned higher weights because the title is usually a concise description 
of the page. In the body text, those emphasized terms (e.g., under header 
tags <h1>, <h2>, …, bold tag <b>, etc.) are also given higher weights.  

2. Identifying anchor text: Anchor text associated with a hyperlink is 
treated specially in search engines because the anchor text often repre-
sents a more accurate description of the information contained in the 
page pointed to by its link. In the case that the hyperlink points to an ex-
ternal page (not in the same site), it is especially valuable because it is a 
summary description of the page given by other people rather than the 
author/owner of the page, and is thus more trustworthy.  

3. Removing HTML tags: The removal of HTML tags can be dealt with 
similarly to punctuation. One issue needs careful consideration, which 
affects proximity queries and phrase queries. HTML is inherently a vis-
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ual presentation language. In a typical commercial page, information is 
presented in many rectangular blocks (see Fig. 6.6). Simply removing 
HTML tags may cause problems by joining text that should not be 
joined. For example, in Fig. 6.6, “cite this article” at the bottom of the 
left column will join “Main Page” on the right, but they should not be 
joined. They will cause problems for phrase queries and proximity que-
ries. This problem had not been dealt with satisfactorily by search en-
gines at the time when this book was written.   

4. Identifying main content blocks: A typical Web page, especially a 
commercial page, contains a large amount of information that is not part 
of the main content of the page. For example, it may contain banner ads, 
navigation bars, copyright notices, etc., which can lead to poor results 
for search and mining. In Fig. 6.6, the main content block of the page is 
the block containing “Today’s featured article.” It is not desirable to in-
dex anchor texts of the navigation links as a part of the content of this 
page. Several researchers have studied the problem of identifying main 
content blocks. They showed that search and data mining results can be 

 
Fig. 6.6. An example of a Web page from Wikipedia 
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improved significantly if only the main content blocks are used. We 
briefly discuss two techniques for finding such blocks in Web pages.   

 Partitioning based on visual cues: This method uses visual information 
to help find main content blocks in a page. Visual or rendering informa-
tion of each HTML element in a page can be obtained from the Web 
browser. For example, Internet Explorer provides an API that can output 
the X and Y coordinates of each element. A machine learning model can 
then be built based on the location and appearance features for identify-
ing main content blocks of pages. Of course, a large number of training 
examples need to be manually labeled (see [77, 495] for details). 

  Tree matching: This method is based on the observation that in most 
commercial Web sites pages are generated by using some fixed tem-
plates. The method thus aims to find such hidden templates. Since 
HTML has a nested structure, it is thus easy to build a tag tree for each 
page. Tree matching of multiple pages from the same site can be per-
formed to find such templates. In Chap. 9, we will describe a tree 
matching algorithm for this purpose. Once a template is found, we can 
identify which blocks are likely to be the main content blocks based on 
the following observation: the text in main content blocks are usually 
quite different across different pages of the same template, but the non-
main content blocks are often quite similar in different pages. To deter-
mine the text similarity of corresponding blocks (which are sub-trees), 
the shingle method described in the next section can be used.  

6.5.5 Duplicate Detection  

Duplicate documents or pages are not a problem in traditional IR. How-
ever, in the context of the Web, it is a significant issue. There are different 
types of duplication of pages and contents on the Web.  

Copying a page is usually called duplication or replication, and copy-
ing an entire site is called mirroring. Duplicate pages and mirror sites 
are often used to improve efficiency of browsing and file downloading 
worldwide due to limited bandwidth across different geographic regions 
and poor or unpredictable network performances. Of course, some dupli-
cate pages are the results of plagiarism. Detecting such pages and sites can 
reduce the index size and improve search results. 

Several methods can be used to find duplicate information. The simplest 
method is to hash the whole document, e.g., using the MD5 algorithm, or 
computing an aggregated number (e.g., checksum). However, these meth-
ods are only useful for detecting exact duplicates. On the Web, one seldom 
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finds exact duplicates. For example, even different mirror sites may have 
different URLs, different Web masters, different contact information, dif-
ferent advertisements to suit local needs, etc.  

One efficient duplicate detection technique is based on n-grams (also 
called shingles). An n-gram is simply a consecutive sequence of words of 
a fixed window size n. For example, the sentence, “John went to school 
with his brother,” can be represented with five 3-gram phrases “John went 
to”, “went to school”, “to school with”, “school with his”, and “with his 
brother”. Note that 1-gram is simply the individual words.  

Let Sn(d) be the set of distinctive n-grams (or shingles) contained in 
document d. Each n-gram may be coded with a number or a MD5 hash 
(which is usually a 32-digit hexadecimal number). Given the n-gram repre-
sentations of the two documents d1 and d2, Sn(d1) and Sn(d2), the Jaccard 
coefficient can be used to compute the similarity of the two documents,  
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A threshold is used to determine whether d1 and d2 are likely to be dupli-
cates of each other. For a particular application, the window size n and the 
similarity threshold are chosen through experiments.  

6.6 Inverted Index and Its Compression 

The basic method of Web search and traditional IR is to find documents 
that contain the terms in the user query. Given a user query, one option is 
to scan the document database sequentially to find the documents that con-
tain the query terms. However, this method is obviously impractical for a 
large collection, such as the Web. Another option is to build some data 
structures (called indices) from the document collection to speed up re-
trieval or search. There are many index schemes for text [31]. The in-
verted index, which has been shown superior to most other indexing 
schemes, is a popular one. It is perhaps the most important index method 
used in search engines. This indexing scheme not only allows efficient re-
trieval of documents that contain query terms, but also very fast to build.  

6.6.1 Inverted Index 

In its simplest form, the inverted index of a document collection is basi-
cally a data structure that attaches each distinctive term with a list of all 
documents that contains the term. Thus, in retrieval, it takes constant time 
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to find the documents that contains a query term. Finding documents con-
taining multiple query terms is also easy as we will see later.  

Given a set of documents, D = {d1, d2, …, dN}, and each document has a 
unique identifier (ID). An inverted index consists of two parts: a vocabu-
lary V, containing all the distinct terms in the document set, and for each 
distinct term ti an inverted list of postings. Each posting stores the ID 
(denoted by idj) of the document dj that contains term ti and other pieces of 
information about term ti in document dj. Depending on the need of the re-
trieval or ranking algorithm, different pieces of information may be in-
cluded. For example, to support phrase and proximity search, a posting for 
a term ti usually consists of the following, 

<idj, fij, [o1, o2, …, o| fij|]> 

where idj is the ID of document dj that contains the term ti, fij is the fre-
quency count of ti in dj, and ok are the offsets (or positions) of term ti in dj. 
Postings of a term are sorted in increasing order based on the idj’s and so 
are the offsets in each posting (see Example 3). This facilitates compres-
sion of the inverted index as we will see in Sect. 6.6.4.   

Example 3: We have three documents of id1, id2, and id3: 

 id1: Web mining is useful. 
 1 2 3 4 
 id2: Usage mining applications. 
 1 2 3   

 id3: Web structure mining studies the Web hyperlink structure.  
 1 2 3 4 5 6 7 8 

The numbers below each document are the offset position of each word. 
The vocabulary is the set:  

{Web, mining, useful, applications, usage, structure, studies, hyperlink} 

Stopwords “is” and “the” have been removed, but no stemming is applied. 
Figure 6.7 shows two inverted indices.  

Applications: id2  Applications: <id2, 1, [3]> 
Hyperlink: id3  Hyperlink: <id3, 1, [7]> 
Mining:  id1, id2, id3  Mining:  <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 
Structure: id3  Structure: <id3, 2, [2, 8]> 
Studies: id3  Studies: <id3, 1, [4]> 
Usage: id2  Usage: <id2, 1, [1]> 
Useful: id1  Useful: <id1, 1, [4]> 
Web:  id1, id3  Web:  <id1, 1, [1]>, <id3, 2, [1, 6]> 

(A) (B) 

Fig. 6.7. Two inverted indices: a simple version and a more complex version 
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Figure 6.7(A) is a simple version, where each term is attached with only an 
inverted list of IDs of the documents that contain the term. Each inverted 
list in Fig. 6.7(B) is more complex as it contains additional information, 
i.e., the frequency count of the term and its positions in each document. 
Note that we use idi as the document IDs to distinguish them from offsets. 
In an actual implementation, they may also be positive integers. Note also 
that a posting can contain other types of information depending on the 
need of the retrieval or search algorithm (see Sect. 6.8).  ▀ 

6.6.2 Search Using an Inverted Index 

Queries are evaluated by first fetching the inverted lists of the query terms, 
and then processing them to find the documents that contain all (or some) 
terms. Specifically, given the query terms, searching for relevant docu-
ments in the inverted index consists of three main steps: 

Step 1 (vocabulary search): This step finds each query term in the vo-
cabulary, which gives the inverted list of each term. To speed up the 
search, the vocabulary usually resides in the main memory. Various in-
dexing methods, e.g., hashing, tries or B-tree, can be used to speed up 
the search. Lexicographical ordering may also be employed due to its 
space efficiency. Then the binary search method can be applied. The 
complexity is O(log|V|), where |V| is the vocabulary size.  

If the query contains only a single term, this step gives all the relevant 
documents and the algorithm then goes to step 3. If the query contains 
multiple terms, the algorithm proceeds to step 2.  

Step 2 (results merging): After the inverted list of each term is found, 
merging of the lists is performed to find their intersection, i.e., the set of 
documents containing all query terms. Merging simply traverses all the 
lists in synchronization to check whether each document contains all 
query terms. One main heuristic is to use the shortest list as the base to 
merge with the other longer lists. For each posting in the shortest list, a 
binary search may be applied to find it in each longer list. Note that par-
tial match (i.e., documents containing only some of the query terms) can 
be achieved as well in a similar way, which is more useful in practice. 

Usually, the whole inverted index cannot fit in memory, so part of it 
is cached in memory for efficiency. Determining which part to cache in-
volves analysis of query logs to find frequent query terms. The inverted 
lists of these frequent query terms can be cached in memory.    

Step 3 (Rank score computation): This step computes a rank (or rele-
vance) score for each document based on a relevance function (e.g., 
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okapi or cosine), which may also consider the phrase and term prox-
imity information. The score is then used in the final ranking.   

Example 4: Using the inverted index built in Fig. 6.7(B), we want to 
search for “web mining” (the query). In step 1, two inverted lists are found:  

Mining:  <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 
Web:  <id1, 1, [1]>, <id3, 2, [1, 6]> 

In step 2, the algorithm traverses the two lists and finds documents con-
taining both words (documents id1 and id3). The word positions are also re-
trieved. In step 3, we compute the rank scores. Considering the proximity 
and the sequence of words, we give id1 a higher rank (or relevance) score 
than id3 as “web” and “mining” are next to each other in id1 and in the same 
sequence as that in the query. Different search engines may use different 
algorithms to combine these factors.  ▀ 

6.6.3 Index Construction 

The construction of an inverted index is quite simple and can be done effi-
ciently using a trie data structure among many others. The time complexity 
of the index construction is O(T), where T is the number of all terms (in-
cluding duplicates) in the document collection (after pre-processing).  

For each document, the algorithm scans it sequentially and for each 
term, it finds the term in the trie. If it is found, the document ID and other 
information (e.g., the offset of the term) are added to the inverted list of the 
term. If the term is not found, a new leaf is created to represent the term.  

Example 5: Let us build an inverted index for the three documents in Ex-
ample 3, which are reproduced below for easy reference. Figure 6.8 shows 
the vocabulary trie and the inverted lists for all terms.  
 id1: Web mining is useful. 
 1 2 3 4 
 id2: Usage mining applications. 
 1 2 3   

 id3: Web structure mining studies the Web hyperlink structure  ▀ 
 1 2 3 4 5 6 7 8 

To build the index efficiently, the trie is usually stored in memory. 
However, in the context of the Web, the whole index will not fit in the 
main memory. The following technique can be applied.  

We follow the above algorithm to build the index until the memory is 
full. The partial index I1 obtained so far is written on the disk. Then, we 
process the subsequent documents and build the partial index I2 in memory, 
and so on. After all documents have been processed, we have k partial in-
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dices, I1, I2, …, Ik, on disk. We then merge the partial indices in a hierar-
chical manner. That is, we first perform pair-wise merges of I1 and I2, I3 
and I4, and so on. This gives us larger indices I1-2, I3-4 and so on. After the 
first level merging is complete, we proceed to the second level merging, 
i.e., we merge I1-2 and I3-4, I5-6 and I7-8 and so on. This process continues 
until all the partial indices are merged into a single index. Each merge is 
fairly straightforward because the vocabulary in each partial index is sorted 
by the trie construction. The complexity of each merge is thus linear in the 
number of terms in both partial indices. Since each level needs a linear 
process of the whole index, the complete merging process takes O(klog k) 
time. To reduce the disk space requirement, whenever a new partial index 
is generated, we can merge it with a previously merged index. That is, 
when we have I1 and I2, we can merge them immediately to produce I1-2, 
and when I3 is produced, it is merged with I1-2 to produce I1-2-3 and so on.  

 
Fig. 6.8. The vocabulary trie and the inverted lists  

Instead of using a trie, an alternative method is to use an in-memory 
hash table (or other data structures) for terms. The algorithm is quite 
straightforward and will not be discussed further.  

On the Web, an important issue is that pages are constantly added, 
modified or deleted. It may be quite inefficient to modify the main index 
because a single page change can require updates to a large number of re-
cords of the index. One simple solution is to construct two additional indi-
ces, one for added pages and one for deleted pages. Modification can be 
regarded as a deletion and then an addition. Given a user query, it is 
searched in the main index and also in the two auxiliary indices. Let the 
pages returned from the search in the main index be D0, the pages returned 
from the search in the index of added pages be D+ and the pages returned 
from the search in the index of deleted pages be D–. Then, the final results 
returned to the user is (D0 ∪ D+) – D. When the two auxiliary indices be-
come too large, they can be merged into the main index.       

structure: <id3, 2, [2, 8]> 

useful: <id1, 1, [4]> 

hyperlink: <id3, 1, [7]> 

mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 

usage: <id2, 1, [2]> 

web: <id1, 1, [1]>, <id3, 2, [1, 6]>

applications: <id2, 1, [3]> 

studies: <id3, 1, [4]> 

‘a’ 

‘s’ 
‘m’ 
‘h’ 

‘u’ 
‘u’ 

‘r’ 
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‘e’ 
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6.6.4 Index Compression  

An inverted index can be very large. In order to speed up the search, it 
should reside in memory as much as possible to avoid disk I/O. Because of 
this, reducing the index size becomes an important issue. A natural solu-
tion to this is index compression, which aims to represent the same infor-
mation with fewer bits or bytes. Using compression, the size of an inverted 
index can be reduced dramatically. In the lossless compression, the origi-
nal index can also be reconstructed exactly using the compressed version. 
Lossless compression methods are the focus of this section.  

The inverted index is quite amiable to compression. Since the main 
space used by an inverted index is for the storage of document IDs and off-
sets of each term, we thus want to reduce this space requirement. Since all 
the information is represented with positive integers, we only discuss inte-
ger compression techniques in this section. 

Without compression, on most architectures an integer has a fixed-size 
representation of four bytes (32 bits). However, few integers need 4 bytes 
to represent, so a more compact representation (compression) is clearly 
possible. There are generally two classes of compression schemes for in-
verted lists: the variable-bit scheme and the variable-byte scheme.  

In the variable-bit (also called bitwise) scheme, an integer is represented 
with an integral number of bits. Well known bitwise methods include 
unary coding, Elias gamma coding and delta coding [161], and Golomb 
coding [202]. In the variable-byte scheme, an integer is stored in an inte-
gral number of bytes, where each byte has 8 bits. A simple bytewise 
scheme is the variable-byte coding [547]. These coding schemes basically 
map integers onto self-delimiting binary codewords (bits), i.e., the start bit 
and the end bit of each integer can be detected with no additional delimit-
ers or markers. 

An interesting feature of the inverted index makes compression even 
more effective. Since document IDs in each inverted list are sorted in in-
creasing order, we can store the difference between any two adjacent 
document IDs, idi and idi+1, where idi+1> idi, instead of the actual IDs. This 
difference is called the gap between idi and idi+1. The gap is a smaller 
number than idi+1 and thus requires fewer bits. In search, if the algorithm 
linearly traverses each inverted list, document IDs can be recovered easily. 
Since offsets in each posting are also sorted, they can be stored similarly.  

For example, the sorted document IDs are: 4, 10, 300, and 305. They 
can be represented with gaps, 4, 6, 290 and 5. Given the gap list 4, 6, 290 
and 5, it is easy to recover the original document IDs, 4, 10, 300, and 305. 
We note that for frequent terms (which appear in a large number of docu-
ments) the gaps are small and can be encoded with short codes (fewer 
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bits). For infrequent or rare terms, the gaps can be large, but they do not 
use up much space due to the fact that only a small number of documents 
contain them. Storing gaps can significantly reduce the index size. 

We now discuss each of the coding schemes in detail. Each scheme in-
cludes a method for coding (or compression) and a method for decoding 
(decompression). 

Unary Coding  

Unary coding is simple. It represents a number x with x−1 bits of zeros 
followed by a bit of one. For example, 5 is represented as 00001. The one 
bit is simply the delimitor. Decoding is also straightforward. This scheme 
is effective for very small numbers, but wasteful for large numbers. It is 
thus seldom used alone in practice. 

Table 6.1 shows example codes of different coding schemes for 10 
decimal integers. Column 2 shows the unary code for each integer.  

Table 6.1: Example codes for integers of different coding schemes: Spacing in the 
Elias, Golomb, and variable-byte codes separates the prefix of the code from the suffix. 

   Elias  Elias  Golomb  Golomb  Variable  
Decimal  Unary Gamma  Delta  (b = 3)  (b = 10)  byte 
1  1  1  1  1 10  1 001  0000001 0 
2  01  0 10  0 100  1 11  1 010  0000010 0 
3  001  0 11  0 101  01 0  1 011  0000011 0 
4  0001  00 100  0 1100  01 10  1 100  0000100 0 
5  00001  00 101  0 1101  01 11  1 101  0000101 0 
6  000001  00 110  0 1110  001 0  1 1100  0000110 0 
7  0000001  00 111  0 1111  001 10  1 1101  0000111 0 
8  00000001  000 1000  00 100000  001 11  1 1110  0001000 0 
9  000000001  000 1001  00 100001  0001 0  1 1111  0001001 0 
10  0000000001 000 1010  00 100010  0001 10  01 000  0001010 0 

Elias Gamma Coding 

Coding: In the Elias gamma coding, a positive integer x is represented by: 
1+⎣log2x⎦ in unary (i.e., ⎣log2x⎦ 0-bits followed by a 1-bit), followed by the 
binary representation of x without its most significant bit. Note that 
1+⎣log2x⎦ is simply the number of bits of x in binary. The coding can also 
be described with the following two steps:  

1. Write x in binary. 
2. Subtract 1 from the number of bits written in step 1 and prepend that 

many zeros.  
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Example 6: The number 9 is represented by 0001001, since 1+⎣log29⎦ = 4, 
or 0001 in unary, and 9 is 001 in binary with the most significant bit re-
moved. Alternatively, we first write 9 in binary, which is 1001 with 4 bits, 
and then prepend three zeros. In this way, 1 is represented by 1 (in one bit), 
and 2 is represented by 010. Additional examples are shown in column 3 
of Table 6.1. ▀ 

Decoding: We decode an Elias gamma-coded integer in two steps: 

1. Read and count zeroes from the stream until we reach the first one. Call 
this count of zeroes K.  

2. Consider the one that was reached to be the first digit of the integer, 
with a value of 2K, read the remaining K bits of the integer. 

Example 7: To decompress 0001001, we first read all zero bits from the 
beginning until we see a bit of 1. We have K = 3 zero bits. We then include 
the 1 bit with the following 3 bits, which give us 1001 (binary for 9).  ▀  

 Gamma coding is efficient for small integers but is not suited to large in-
tegers for which the parameterized Golomb code or the Elias delta code is 
more suitable. 

Elias Delta Coding 

Elias delta codes are somewhat longer than gamma codes for small inte-
gers, but for larger integers such as document numbers in an index of Web 
pages, the situation is reversed.  

Coding: In the Elias delta coding, a positive integer x is stored with the 
gamma code representation of 1+⎣log2x⎦, followed by the binary represen-
tation of x less the most significant bit. 

Example 8: Let us code the number 9. Since 1+⎣log2x⎦ = 4, we have its 
gamma code 00100 for 4. Since 9’s binary representation less the most 
significant bit is 001, we have the delta code of 00100001 for 9. Additional 
examples are shown in column 4 of Table 6.1.  ▀ 

Decoding: To decode an Elias delta-coded integer x, we first decode the 
gamma-code part 1+⎣log2x⎦ as the magnitude M (the number of bits of x in 
binary), and then retrieve the binary representation of x less the most sig-
nificant bit. Specifically, we use the following steps:  

1. Read and count zeroes from the stream until you reach the first one. Call 
this count of zeroes L.  

2. Considering the one that was reached to be the first bit of an integer, 
with a value of 2L, read the remaining L digits of the integer. This is the 
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integer M.  
3. Put a one in the first place of our final output, representing the value 2M. 

Read and append the following M-1 bits.  

Example 9: We want to decode 00100001. We can see that L = 2 after step 
1, and after step 2, we have read and consumed 5 bits. We also obtain M = 
4 (100 in binary). Finally, we prepend 1 to the M-1 bits (which is 001) to 
give 1001, which is 9 in binary.  ▀ 

While Elias codes yield acceptable compression and fast decoding, a 
better performance in both aspects is possible with the Golomb coding.     

Golomb Coding 

The Golomb coding is a form of parameterized coding in which integers to 
be coded are stored as values relative to a constant b. Several variations of 
the original Golomb scheme exist, which save some bits in coding com-
pared to the original scheme. We describe one version here.  

Coding: A positive integer x is represented in two parts:  
1. The first part is a unary representation of q+1, where q is the quotient 
⎣(x/b)⎦, and  

2. The second part is a special binary representation of the remainder r = 
x−qb. Note that there are b possible remainders. For example, if b = 3, 
the possible remainders will be 0, 1, and 2.  

The binary representation of a remainder requires ⎣log2b⎦ or ⎡log2b⎤ bits. 
Clearly, it is not possible to write every remainder in ⎣log2b⎦ bits in binary. 
To save space, we want to write the first few remainders using ⎣log2b⎦ bits 
and the rest using ⎡log2b⎤ bits. We must do so such that the decoder knows 
when ⎣log2b⎦ bits are used and when ⎡log2b⎤ bits are used. Let i = ⎣log2b⎦. 
We code the first d remainders using i bits,  

d  = 2i+1 – b. (25) 

It is worth noting that these d remainders are all less than d. The rest of 
the remainders are coded with ⎡log2b⎤ bits and are all greater than or equal 
to d. They are coded using a special binary code (also called a fixed prefix 
code) with ⎡log2b⎤ (or i+1) bits.  

Example 10: For b = 3, to code x = 9, we have the quotient q = ⎣9/3⎦ = 3. 
For remainder, we have i = ⎣log2 3⎦ = 1 and d = 1. Note that for b = 3, there 
are three remainders, i.e., 0, 1, and 2, which are coded as 0, 10, and 11 re-
spectively. The remainder for 9 is r = 9 − 3 × 3 = 0. The final code for 9 is 
00010. Additional examples for b = 3 are shown in column 5 of Table 6.1. 
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For b = 10, to code x = 9, we have the quotient q = ⎣9/10⎦ = 0. For re-
mainder, we have i = ⎣log2 10⎦ = 3 and d = 6. Note that for b = 10, there are 
10 remainders, i.e., 0, 1, 2, …, 10, which are coded as 000, 001, 010, 011, 
100, 101, 1100, 1101, 1110, 1111 respectively. The remainder of 9 is r = 9 
− 0 × 5 = 9. The final code for 9 is 11111. Additional examples for b = 10 
are shown in column 6 of Table 6.1. ▀ 

We can see that the first d remainders are standard binary codes, but the 
rest are not. They are generated using a tree instead. Figure 6.9 shows an 
example based on b = 5. The leaves are the five remainders. The first three 
remainders (0, 1, 2) are in the standard binary code, and the rest (3 and 4) 
have an additional bit. It is important to note that the first 2 bits (i = 2) of 
the remainder 3 (the first remainder coded in i+1 bits) is 11, which is 3 
(i.e., d) in binary. This information is crucial for decoding because it en-
ables the algorithm to know when i+1 bits are used. We also notice that d 
is completely determined by b, which helps decoding. 

 
Fig. 6.9. The coding tree for b = 5 

If b is a power of 2 (called Golomb–Rice coding), i.e., b = 2k for integer 
k ≥ 0, every remainder is coded with the same number of bits because 
⎣log2b⎦ = ⎡log2b⎤. This is also easy to see from Equation (25), i.e., d = 2k.  

Decoding: To decode a Golomb-coded integer x, we use the following 
steps: 
1. Decode unary-coded quotient q (the relevant bits are comsumed). 
2. Compute i = ⎣log2 b⎦ and d = 2i+1 – b.  
3. Retrieve the next i bits and assign it to r.  
4. If r ≥ d then 
 retrieve one more bit and append it to r at the end; 
 r = r – d.  
5. Return x = qb + r. 

Some explanation is in order for step 4. As we discussed above, if r ≥ d 
we need i+1 bits to code the remainder. The first line of step 4 retrieves the 
additional bit and appends it to r. The second line obtains the true value of 
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the remainder r. 

Example 11: We want to decode 11111 for b = 10. We see that q = 0 be-
cause there is no zero at the beginning. The first bit is consumed. We know 
that i = ⎣log2 10⎦ = 3 and d = 6. We then retrieve the next three bits, 111, 
which is 7 in decimal, and assign it to r (= 111). Since 7 > 6 (which is d), 
we retrieve one more bit, which is 1, and r is now 1111 (15 in decimal). 
The new r = r – d = 15 – 6 = 9. Finally, x = qb + r = 0 + 9 = 9. ▀ 

Now we discuss the selection of b for each term. For gap compression, 
Witten et al. [551] reported that a suitable b is  

,69.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

tn
Nb  

(26) 

where N is the total number of documents and nt is the number of docu-
ments that contain term t.  

Variable-Byte Coding  

Coding: In this method, seven bits in each byte are used to code an inte-
ger, with the least significant bit set to 0 in the last byte, or to 1 if further 
bytes follow. In this way, small integers are represented efficiently. For 
example, 135 is represented in two bytes, since it lies in the range 27 and 
214, as 00000011 00001110. Additional examples are shown in column 6 
of Table 6.1. 

Decoding: Decoding is performed in two steps: 

1. Read all bytes until a byte with the zero last bit is seen.  
2. Remove the least significant bit from each byte read so far and concate-

nate the remaining bits.  

For example, 00000011 00001110 is decoded to 00000010000111, which 
is 135. 

Finally, experimental results in [547] show that non-parameterized Elias 
coding is generally not as space-efficient or as fast as parameterized 
Golomb coding for retrieval. Gamma coding does not work well. Variable-
byte integers are often faster than variable-bit integers, despite having 
higher storage costs, because fewer CPU operations are required to decode 
variable-byte integers and they are byte-aligned on disk. A suitable com-
pression technique can allow retrieval to be up to twice as fast than without 
compression, while the space requirement averages 20% – 25% of the cost 
of storing uncompressed integers.  
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6.7 Latent Semantic Indexing 

The retrieval models discussed so far are based on keyword or term match-
ing, i.e., matching terms in the user query with those in the documents. 
However, many concepts or objects can be described in multiple ways (us-
ing different words) due to the context and people’s language habits. If a 
user query uses different words from the words used in a document, the 
document will not be retrieved although it may be relevant because the 
document uses some symonyms of the words in the user query. This 
causes low recall. For example, “picture”, “image” and “photo” are syno-
nyms in the context of digital cameras. If the user query only has the word 
“picture”, relevant documents that contain “image” or “photo” but not 
“picture” will not be retrieved. 

Latent semantic indexing (LSI), proposed by Deerwester et al. [125], 
aims to deal with this problem through the identification of statistical asso-
ciations of terms. It is assumed that there is some underlying latent seman-
tic structure in the data that is partially obscured by the randomness of 
word choice. It then uses a statistical technique, called singular value de-
composition (SVD) [203], to estimate this latent structure, and to remove 
the “noise”. The results of this decomposition are descriptions of terms and 
documents based on the latent semantic structure derived from SVD. This 
structure is also called the hidden “concept” space, which associates syn-
tactically different but semantically similar terms and documents. These 
transformed terms and documents in the “concept” space are then used in 
retrieval, not the original terms or documents. Furthermore, the query is 
also transformed into the “concept” space before retrieval. 

Let D be the text collection, the number of distinctive words in D be m 
and the number of documents in D be n. LSI starts with an m×n term-
document matrix A. Each row of A represents a term and each column 
represents a document. The matrix may be computed in various ways, e.g., 
using term frequency or TF-IDF values. We use term frequency as an ex-
ample in this section. Thus, each entry or cell of the matrix A, denoted by 
Aij, is the number of times that term i occurs in document j.  

6.7.1 Singular Value Decomposition  

What SVD does is to factor matrix A (a m×n matrix) into the product of 
three matrices, i.e., 

,TVUΣA =  (27) 
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where  
U is a m×r matrix and its columns, called right singular vectors, are ei-

genvectors associated with the r non-zero eigenvalues of AAT. Fur-
thermore, the columns of U are unit orthogonal vectors, i.e., UTU = I 
(identity matrix). 

V is an n×r matrix and its columns, called right singular vectors, are 
eigenvectors associated with the r non-zero eigenvalues of ATA. The 
columns of V are also unit orthogonal vectors, i.e., VTV = I.  

Σ  is a r×r diagonal matrix, Σ = diag(σ1, σ2, …, σr), σi > 0. σ1, σ2, …, 
and σr, called singular values, are the non-negative square roots of 
the r (non-zero) eigenvalues of AAT. They are arranged in decreasing 
order, i.e., σ1 ≥ σ2 ≥ … ≥ σr > 0.  

We note that initially U is in fact an m×m matrix and V an n×n ma-
trix and Σ an m×n diagonal matrix. Σ ’s diagonal consists of nonnega-
tive eigenvalues of AAT or ATA. However, due to zero eigenvalues, Σ 
has zero-valued rows and columns. Matrix multiplication tells us that 
those zero-valued rows and columns from Σ can be dropped. Then, 
the last m−r columns in U and the last n−r columns in V can also be 
dropped. 

m is the number of row (terms) in A, representing the number of terms. 
n is the number of columns in A, representing the number of documents. 
r is the rank of A, r ≤ min(m, n).  

The singular value decomposition of A always exists and is unique up to 

1. allowable permutations of columns of U and V and elements of Σ  leav-
ing it still diagonal; that is, columns i and j of Σ may be interchanged iff 
row i and j of Σ are interchanged, and columns i and j of U and V are in-
terchanged. 

2. sign (+/−) flip in U and V.  

An important feature of SVD is that we can delete some insignificant 
dimensions in the transformed (or “concept”) space to optimally (in the 
least square sense) approximate matrix A. The significance of the dimen-
sions is indicated by the magnitudes of the singular values in Σ, which are 
already sorted. In the context of information retrieval, the insignificant di-
mensions may represent “noise” in the data, and should be removed. Let us 
use only the k largest singular values in Σ and set the remaining small ones 
to zero. The approximated matrix of A is denoted by Ak. We can also re-
duce the size of the matrices Σ, U and V by deleting the last r−k rows and 
columns from Σ, the last r−k columns in U and the last r−k columns in V. 
We then obtain  
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,T
kkkk VΣUA =  (28) 

which means that we use the k-largest singular triplets to approximate the 
original (and somewhat “noisy”) term-document matrix A. The new space 
is called the k-concept space. Figure 6.10 shows the original matrices and 
the reduced matrices schematically. 

 
Fig. 6.10. The schematic representation of A and Ak 

It is critical that the LSI method does not re-construct the original term-
document matrix A perfectly. The truncated SVD captures most of the im-
portant underlying structures in the association of terms and documents, 
yet at the same time removes the noise or variability in word usage that 
plagues keyword matching retrieval methods. 

Intuitive Idea of LSI: The intuition of LSI is that SVD rotates the axes of 
m-dimensional space of A such that the first axis runs along the largest 
variation (variance) among the documents, the second axis runs along the 
second largest variation (variance) and so on. Figure 6.11 shows an exam-
ple. 

The original x-y space is mapped to the x′-y′ space generated by SVD. 
We can see that x and y are clearly correlated. In our retrieval context, each 
data point represents a document and each axis (x or y) in the original 
space represents a term. Hence, the two terms are correlated or co-occur 
frequently. In the SVD, the direction of x′ in which the data has the largest 
variation is represented by the first column vector of U, and the direction 
of y′ is represented by the second column vector of U. ΣVT represents the 
documents in the transformed “concept” space. The singular values in Σ 
are simply scaling factors. 

We observe that y′ direction is insignificant, and may represent some 
“noise”, so we can remove it. Then, every data point (document) is pro-
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jected to x′. We have an outlier document di that contains term x, but not 
term y. However, if it is projected to x′, it becomes closer to other points. 

Let us see what happens if we have a query q represented with a star in 
Fig. 6.11, which contains only a single term “y”. Using the traditional ex-
act term matching, di is not relevant because “y” does not appear in di. 
However, in the new space after projection, they are quite close or similar.  

 
Fig. 6.11. Intuition of the LSI.  

6.7.2 Query and Retrieval  

Given a user query q (represented by a column vector as those in A), it is 
first converted into a document in the k-concept space, denoted by qk. This 
transformation is necessary because SVD has transformed the original 
documents into the k-concept space and stored them in Vk. The idea is that 
q is treated as a new document in the original space represented as a col-
umn in A, and then mapped to qk (a row vector) as an additional document 
(or column) in Vk

T. From Equation (28), it is easy to see that  

  .T
kkk qq ΣU=  (29) 

Since the columns in U are unit orthogonal vectors, Uk
TUk = I. Thus,  

 .T
kk

T
k qq ΣU =  (30) 

As the inverse of a diagonal matrix is still a diagonal matrix, and each 
entry on the diagonal is 1/σi (1 ≤ i ≤ k), if it is multiplied on both sides of 
Equation (30), we obtain,  

.1 T
k

T
k

-
k qq =UΣ  (31) 

Finally, we get the following (notice that the transpose of a diagonal 
matrix is itself),  

.1-
kk

T
k ΣUqq =  (32) 
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For retrieval, we simply compare qk with each document (row) in Vk us-
ing a similarity measure, e.g., the cosine similarity. Recall that each row of 
Vk (or each column of Vk

T ) corresponds to a document (column) in A. This 
method has been used traditionally.  

Alternatively, since ΣkVk
T (not Vk

T) represents the documents in the 
transformed k-concept space, we can compare the similarity of the query 
document in the transformed space, which is Σkqk

T, and each transformed 
document in ΣkVk

T for retrieval. The difference between the two methods is 
obvious. This latter method considers scaling effects of the singular values 
in Σk, but the former does not. However, it is not clear which method per-
forms better as I know of no reported study on this alternative method.  

6.7.3 An Example 

Example 12: We will use the example in [125] to illustrate the process. 
The document collection has the following nine documents. The first five 
documents are related to human computer interaction, and the last four 
documents are related to graphs. To reduce the size of the problem, only 
the underlined terms are used in our computation.  

c1:  Human machine interface for Lab ABC computer applications 
c2:  A survey of user opinion of computer system response time 
c3:  The EPS user interface management system 
c4:  System and human system engineering testing of EPS 
c5:  Relation of user-perceived response time to error measurement 
m1:  The generation of random, binary, unordered trees 
m2:  The intersection graph of paths in trees 
m3:  Graph minors IV: Widths of trees and well-quasi-ordering 
m4:  Graph minors: A survey 

The term-document matrix A is given below, which is a 9×12 matrix.  
 c1  c2  c3  c4  c5  m1  m2  m3  m4 
 1  0  0  1  0  0  0  0  0  human 
 1  0  1  0  0  0  0  0  0  interface 
 1  1  0  0  0  0  0  0  0  computer 
 0  1  1  0  1  0  0  0  0  user 
 0  1  1  2  0  0  0  0  0  system 
 A = 0  1  0  0  1  0  0  0  0  response 
 0  1  0  0  1  0  0  0  0  time 
 0  0  1  1  0  0  0  0  0  EPS 
 0  1  0  0  0  0  0  0  1  survey 
 0  0  0  0  0  1  1  1  0  trees 
 0  0  0  0  0  0  1  1  1  graph 
 0  0  0  0  0  0  0  1  1 minors 
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After performing SVD, we obtain three matrices, U, Σ and VT, which are 
given below. Singular values on the diagonal of Σ are in decreasing order.  
  0.22  -0.11  0.29  -0.41  -0.11  -0.34  0.52  -0.06  -0.41 
  0.20  -0.07  0.14  -0.55  0.28  0.50  -0.07  -0.01  -0.11 
  0.24  0.04  -0.16  -0.59  -0.11  -0.25  -0.30  0.06  0.49 
  0.40  0.06  -0.34  0.10  0.33  0.38  0.00  0.00  0.01 
  0.64  -0.17  0.36  0.33  -0.16  -0.21  -0.17  0.03  0.27 
 U = 0.27  0.11  -0.43  0.07  0.08  -0.17  0.28  -0.02  -0.05 
  0.27  0.11  -0.43  0.07  0.08  -0.17  0.28  -0.02  -0.05 
  0.30  -0.14  0.33  0.19  0.11  0.27  0.03  -0.02  -0.17 
  0.21  0.27  -0.18  -0.03  -0.54  0.08  -0.47  -0.04  -0.58 
  0.01  0.49  0.23  0.03  0.59  -0.39  -0.29  0.25  -0.23 
  0.04  0.62  0.22  0.00  -0.07  0.11  0.16  -0.68  0.23 
  0.03  0.45  0.14  -0.01  -0.30  0.28  0.34  0.68  0.18 

 3.34  0 0 0 0 0 0 0 0 
 0 2.54 0 0 0 0 0 0 0 

 0 0 2.35 0 0 0 0 0 0 
 0 0 0 1.64 0 0 0 0 0 

Σ = 0 0 0 0 1.50 0 0 0 0 
 0 0 0 0 0 1.31 0 0 0 
 0 0 0 0 0 0 0.85 0 0 

 0 0 0 0 0 0 0 0.56 0 
 0 0 0 0 0 0 0 0 0.36 

  0.20   -0.06  0.11  -0.95  0.05  -0.08  0.18  -0.01  -0.06 
  0.61   0.17  -0.50  -0.03  -0.21  -0.26  -0.43  0.05  0.24 
  0.46  -0.13  0.21  0.04  0.38  0.72  -0.24  0.01  0.02 
  0.54  -0.23  0.57  0.27  -0.21  -0.37  0.26  -0.02  -0.08 
 VT = 0.28  0.11  -0.51  0.15  0.33  0.03  0.67  -0.06  -0.26 
  0.00  0.19  0.10  0.02  0.39  -0.30  -0.34  0.45  -0.62 
  0.01  0.44  0.19  0.02  0.35  -0.21  -0.15  -0.76  0.02 
  0.02  0.62  0.25  0.01  0.15  0.00  0.25  0.45  0.52 
  0.08  0.53  0.08  -0.03  -0.60  0.36  0.04  -0.07  -0.45 

Now let us choose only two largest singular values from Σ, i.e., k = 2.  
Thus, the concept space has only two dimensions. The other two matrices 
are also truncated accordingly. We obtain the 3 matrix Uk, Σk and Vk

T: 

 Uk  Σk      Vk
 T 

 0.22  -0.11  3.34  0 0.20  0.61  0.46  0.54  0.28  0.00  0.02  0.02  0.08 
 0.20  -0.07  0 2.54  -0.06  0.17  -0.13  -0.23  0.11  0.19  0.44  0.62  0.53 
 0.24  0.04 
 0.40  0.06 
 0.64  -0.17 
Ak = 0.27  0.11 
 0.27  0.11 
 0.30  -0.14 
 0.21  0.27 
 0.01  0.49 
 0.04  0.62 
 0.03  0.45 
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Now we issue a search query q, “user interface”, to find relevant docu-
ments. The transformed query document qk of query q in the k-concept 
space is computed below using Equation (32), which is (0.179  -0.004).  
  0 T  0.22  -0.11    
  1  0.20  -0.07    
  0 0.24  0.04 
  1 0.40  0.06 
  0 0.64  -0.17 

   0 0.27  0.11 3.34  0   -1 
  0 0.27  0.11  0 2.54 
  0 0.30  -0.14 
  0 0.21  0.27 
  0 0.01  0.49 
  0 0.04  0.62 
  0 0.03  0.45 

qk is then compared with every document vector in Vk using the cosine 
similarity. The similarity values are as follows:  

c1: 0.964 
c2: 0.957 
c3: 0.968 
c4: 0.928 
c5: 0.922 
m1: −0.022 
m2: 0.023 
m3: 0.010 
m4: 0.127 

We obtain the final ranking of (c3, c1, c2, c4, c5, m4, m2, m3, m1).  ▀ 

6.7.4 Discussion 

LSI has been shown to perform better than traditional keywords based 
methods. The main drawback is the time complexity of the SVD, which is 
O(m2n). It is thus difficult to use for a large document collection such as 
the Web. Another drawback is that the concept space is not interpretable as 
its description consists of all numbers with little semantic meaning.  

Determining the optimal number of dimensions k of the concept space is 
also a major difficulty. There is no general consensus for an optimal num-
ber of dimensions. The original paper [125] of LSI suggests 50–350 di-
mensions. In practice, the value of k needs to be determined based on the 
specific document collection via trial and error, which is a very time con-
suming process due to the high time complexity of the SVD.  

To close this section, one can imagine that association rules may be able 
to approximate the results of LSI and avoid its shortcomings. Association 

= (0.179 −0.004) qk = 
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rules represent term correlations or co-occurrences. Association rule min-
ing has two advantages. First, its mining algorithm is very efficient. Since 
we may only need rules with 2-3 terms, which are sufficient for practical 
purposes, the mining algorithm only needs to scan the document collection 
2-3 times. Second, rules are easy to understand. However, little research 
has been done in this direction so far.  

6.8 Web Search 

We now put it all together and describe the working of a search engine. 
Since it is difficult to know the internal details of a commercial search en-
gine, most contents in this section are based on research papers, especially 
the early Google paper [68]. Due to the efficiency problem, latent semantic 
indexing is probably not used in Web search yet. Current search algorithms 
are still mainly based on the vector space model and term matching. 

A search engine starts with the crawling of pages on the Web. The 
crawled pages are then parsed, indexed, and stored. At the query time, the 
index is used for efficient retrieval. We will not discuss crawling here. Its 
details can be found in Chap. 8. The subsequent operations of a search en-
gine are described below:  

Parsing: A parser is used to parse the input HTML page, which produces a 
stream of tokens or terms to be indexed. The parser can be constructed us-
ing a lexical analyzer generator such as YACC and Flex (which is from the 
GNU project). Some pre-processing tasks described in Sect. 6.5 may also 
be performed before or after parsing.  

Indexing: This step produces an inverted index, which can be done using 
any of the methods described in Sect. 6.6. For retrieval efficiency, a search 
engine may build multiple inverted indices. For example, since the titles 
and anchor texts are often very accurate descriptions of the pages, a small 
inverted index may be constructed based on the terms appeared in them 
alone. Note that here the anchor text is for indexing the page that its link 
points to, not the page containing it. A full index is then built based on all 
the text in each page, including anchor texts (a piece of anchor text is in-
dexed both for the page that contains it, and for the page that its link points 
to). In searching, the algorithm may search in the small index first and then 
the full index. If a sufficient number of relevant pages are found in the 
small index, the system may not search in the full index.  

Searching and Ranking: Given a user query, searching involves the fol-
lowing steps: 
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1. pre-processing the query terms using some of the methods described in 
Sect. 6.5, e.g., stopword removal and stemming; 

2. finding pages that contain all (or most of) the query terms in the inverted 
index; 

3. ranking the pages and returning them to the user.  

The ranking algorithm is the heart of a search engine. However, little is 
known about the algorithms used in commercial search engines. We give a 
general description based on the algorithm in the early Google system.  

As we discussed earlier, traditional IR uses cosine similarity values or 
any other related measures to rank documents. These measures only con-
sider the content of each document. For the Web, such content based 
methods are not sufficient. The problem is that on the Web there are too 
many relevant documents for almost any query. For example, using “web 
mining” as the query, the search engine Google estimated that there were 
46,500,000 relevant pages. Clearly, there is no way that any user will look 
at this huge number of pages. Therefore, the issue is how to rank the pages 
and present the user the “best” pages at the top.  

An important ranking factor on the Web is the quality of the pages, 
which was hardly studied in traditional IR because most documents used in 
IR evaluations are from reliable sources. However, on the Web, anyone 
can publish almost anything, so there is no quality control. Although a 
page may be 100% relevant, it may not be a quality page due to several 
reasons. For example, the author may not be an expert of the query topic, 
the information given in the page may be unreliable or biased, etc.  

However, the Web does have an important mechanism, the hyperlinks 
(links), that can be used to assess the quality of each page to some extent. 
A link from page x to page y is an implicit conveyance of authority of page 
x to page y. That is, the author of page x believes that page y contains qual-
ity or authoritative information. One can also regard the fact that page x 
points to page y as a vote of page x for page y. This democratic nature of 
the Web can be exploited to assess the quality of each page. In general, the 
more votes a page receives, the more likely it is a quality page. The actual 
algorithms are more involved than simply counting the number of votes or 
links pointing to a page (called in-links). We will describe the algorithms 
in the next chapter. PageRank is the most well known such algorithm (see 
Sect. 7.3). It makes use of the link structure of Web pages to compute a 
quality or reputation score for each page. Thus, a Web page can be evalu-
ated based on both its content factors and its reputation. Content-based 
evaluation depends on two kinds of information:   

Occurrence Type: There are several types of occurrences of query terms 
in a page:  
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Title: a query term occurs in the title field of the page.  
Anchor text: a query term occurs in the anchor text of a page pointing 

to the current page being evaluated.  
URL: a query term occurs in the URL of the page. Many URL ad-

dresses contain some descriptions of the page. For example, a page 
on Web mining may have the URL http://www.domain.edu/Web-
mining.html.  

Body: a query term occurs in the body field of the page. In this case, the 
prominence of each term is considered. Prominence means whether 
the term is emphasized in the text with a large font, or bold and/or 
italic tags. Different prominence levels can be used in a system. Note 
that anchor texts in the page can be treated as plain texts for the 
evaluation of the page.  

Count: The number of occurrences of a term of each type. For example, a 
query term may appear in the title field of the page 2 times. Then, the ti-
tle count for the term is 2.  

Position: This is the position of each term in each type of occurrence. The 
information is used in proximity evaluation involving multiple query 
terms. Query terms that are near to each other are better than those that 
are far apart. Furthermore, query terms appearing in the page in the 
same sequence as they are in the query are also better.  

For the computation of the content based score (also called the IR score), 
each occurrence type is given an associated weight. All type weights form 
a fixed vector. Each raw term count is converted to a count weight, and all 
count weights also form a vector.  

The quality or reputation of a page is usually computed based on the 
link structure of Web pages, which we will study in Chap. 7. Here, we as-
sume that a reputation score has been computed for each page.  

Let us now look at two kinds of queries, single word queries and 
multi-word queries. A single word query is the simplest case with only a 
single term. After obtaining the pages containing the term from the in-
verted index, we compute the dot product of the type weight vector and 
the count weight vector of each page, which gives us the IR score of the 
page. The IR score of each page is then combined with its reputation 
score to produce the final score of the page.   

For a multi-word query, the situation is similar, but more complex since 
there is now the issue of considering term proximity and ordering. Let us 
simplify the problem by ignoring the term ordering in the page. Clearly, 
terms that occur close to each other in a page should be weighted higher 
than those that occur far apart. Thus multiple occurrences of terms need to 
be matched so that nearby terms are identified. For every matched set, a 
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proximity value is calculated, which is based on how far apart the terms 
are in the page. Counts are also computed for every type and proximity. 
Each type and proximity pair has a type-proximity-weight. The counts are 
converted into count-weights. The dot product of the count-weights and 
the type-proximity-weights gives an IR score to the page. Term ordering 
can be considered similarly and included in the IR score, which is then 
combined with the page reputation score to produce the final rank score.  

6.9 Meta-Search and Combining Multiple Rankings 

In the last section, we described how an individual search engine works. 
We now discuss how several search engines can be used together to pro-
duce a meta-search engine, which is a search system that does not have its 
own database of Web pages. Instead, it answers the user query by combin-
ing the results of some other search engines which normally have their da-
tabases of Web pages. Figure 6.12 shows a meta-search architecture. 

After receiving a query from the user through the search interface, the 
meta-search engine submits the query to the underlying search engines 
(called its component search engines). The returned results from all these 
search engines are then combined (fused or merged) and sent to the user.   

A meta-search engine has some intuitive appeals. First of all, it increases 
the search coverage of the Web. The Web is a huge information source, 
and each individual search engine may only cover a small portion of it. If 
we use only one search engine, we will never see those relevant pages that 
are not covered by the search engine. 

 
Fig. 6.12. A meta-search architecture 

Meta-search may also improve the search effectiveness. Each compo-
nent search engine has its ranking algorithm to rank relevant pages, which 
is often biased, i.e., it works well for certain types of pages or queries but 
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not for others. By combining the results from multiple search engines, their 
biases can be reduced and thus the search precision can be improved.  

The key operation in meta-search is to combine the ranked results from 
the component search engines to produce a single ranking. The first task is 
to identify whether two pages from different search engines are the same, 
which facilitates combination and duplicate removal. Without download-
ing the full pages (which is too time consuming), this process is not simple 
due to aliases, symbolic links, redirections, etc. Typically, several heuris-
tics are used for the purpose, e.g., comparing domain names of URLs, ti-
tles of the pages, etc.  

The second task is to combine the ranked results from individual search 
engines to produce a single ranking, i.e., to fuse individual rankings. There 
are two main classes of meta-search combination (or fusion) algorithms: 
ones that use similarity scores returned by each component system and 
ones that do not. Some search engines return a similarity score (with the 
query) for each returned page, which can be used to produce a better com-
bined ranking. We discuss these two classes of algorithms below.  

It is worth noting that the first class of algorithms can also be used to 
combine scores from different similarity functions in a single IR system or 
in a single search engine. Indeed, the algorithms below were originally 
proposed for this purpose. It is likely that search engines already use some 
such techniques (or their variations) within their ranking mechanisms be-
cause a ranking algorithm needs to consider multiple factors. 

6.9.1 Combination Using Similarity Scores 
 

Let the set of candidate documents to be ranked be D = {d1, d2, …, dN}. 
There are k underlying systems (component search engines or ranking 
techniques). The ranking from system or technique i gives document dj the 
similarity score, sij. Some popular and simple combination methods are de-
fined by Fox and Shaw in [184].  

CombMIN: The combined similarity score for each document dj is the 
minimum of the similarities from all underlying search engine systems: 

CombMIN(dj) = min(s1j, s2j, …, skj). (33) 

CombMAX: The combined similarity score for each document dj is the 
maximum of the similarities from all underlying search engine systems: 

CombMAX(dj) = max(s1j, s2j, …, skj). (34) 

CombSUM: The combined similarity score for each document dj is the 
sum of the similarities from all underlying search engine systems. 
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CombANZ: It is defined as  
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where rj is the number of non-zero similarities, or the number of sys-
tems that retrieved dj.  

CombMNZ: It is defined as 

jjj rdd ×= )(CombSUM)(CombMNZ  (37) 

where rj is the number of non-zero similarities, or the number of sys-
tems that retrieved dj.  

It is a common practice to normalize the similarity scores from each 
ranking using the maximum score before combination. Researchers have 
shown that, in general, CombSUM and CombMNZ perform better. 
CombMNZ outperforms CombSUM slightly in most cases.  

6.9.2 Combination Using Rank Positions 

We now discuss some popular rank combination methods that use only 
rank positions of each search engine. In fact, there is a field of study called 
the social choice theory [273] that studies voting algorithms as techniques 
to make group or social decisions (choices). The algorithms discussed be-
low are based on voting in elections.  

In 1770 Jean-Charles de Borda proposed “election by order of merit”.  
Each voter announces a (linear) preference order on the candidates. For 
each voter, the top candidate receives n points (if there are n candidates in 
the election), the second candidate receives n−1 points, and so on. The 
points from all voters are summed up to give the final points for each can-
didate. If there are candidates left unranked by a voter, the remaining 
points are divided evenly among the unranked candidates. The candidate 
with the most points wins. This method is called the Borda ranking. 

An alternative method was proposed by Marquis de Condorcet in 1785. 
The Condorcet ranking algorithm is a majoritarian method where the 
winner of the election is the candidate(s) that beats each of the other can-
didates in a pair-wise comparison. If a candidate is not ranked by a voter, 
the candidate loses to all other ranked candidates. All unranked candidates 
tie with one another. 
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Yet another simple method, called the reciprocal ranking, sums one 
over the rank of each candidate across all voters. For each voter, the top 
candidate has the score of 1, the second ranked candidate has the score of 
1/2, and the third ranked candidate has the score of 1/3 and so on. If a can-
didate is not ranked by a voter, it is skipped in the computation for this 
voter. The candidates are then ranked according to their final total scores. 
This rank strategy gives much higher weight than Borda ranking to candi-
dates that are near the top of a list. 

Example 13: We use an example in the context of meta-search to illustrate 
the working of these methods. Consider a meta-search system with five 
underlying search engine systems, which have ranked four candidate 
documents or pages, a, b, c, and d as follows:  

system 1:  a, b, c, d 
system 2: b, a, d, c 
system 3: c, b, a, d 
system 4: c, b, d 
system 5: c, b 

Let us denote the score of each candidate x by Score(x).  

Borda Ranking: The score for each page is as follows:  
Score(a) = 4 + 3 + 2 + 1 + 1.5 = 11.5 
Score(b) = 3 + 4 + 3 + 3 + 3 = 16 
Score(c) = 2 + 1 + 4 + 4 + 4 = 15 
Score(d) = 1 + 2 + 1 + 2 + 1.5 = 7.5 

Thus the final ranking is: b, c, a, d. 

Condorcet Ranking: We first build an n×n matrix for all pair-wise com-
parisons, where n is the number of pages. Each non-diagonal entry (i, j) of 
the matrix shows the number of wins, loses, and ties of page i over page j, 
respectively. For our example, the matrix is as follows:  

 a b c d 
a - 1:4:0 2:3:0 3:1:1 
b 4:1:0 - 2:3:0 5:0:0 
c 3:2:0 3:2:0 - 4:1:0 
d 1:3:1 0:5:0 1:4:0 - 

Fig. 6.13. The pair-wise comparison matrix for the four candidate pages 

After the matrix is constructed, pair-wise winners are determined, which 
produces a win, lose and tie table. Each pair in Fig. 6.13 is compared, and 
the winner receives one point in its “win” column and the loser receives 
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one point in its “lose” column. For a pair-wise tie, both receive one point 
in the “tie” column. For example, for page a, it only beats d because a is 
ranked ahead of d three times out of 5 ranks (Fig. 6.13). The win, lose and 
tie table for Fig. 6.13 is given in Fig. 6.14 below. 

 win lose tie 
a 1 2 0 
b 2 1 0 
c 3 0 0 
d 0 3 0 

Fig. 6.14. The win, lose and tie table for the comparison matrix in Fig. 6.13 

To rank the pages, we use their win and lose values. If the number of 
wins that a page i has is higher than another page j, then i wins over j. If 
their win property is equal, we consider their lose scores, and the page 
which has a lower lose score wins. If both their win and lose scores are the 
same, then the pages are tied. The final ranks of the tied pages are random-
ly assigned. Clearly c is the Condorcet winner in our example. The final 
ranking is: c, b, a, d.  

Reciprocal Ranking:  

Score(a) = 1 + 1/2 + 1/3 = 1.83 
Score(b) = 1/2 + 1 + 1/2 + 1/2 + 1/2 = 3 
Score(c) = 1/3 + 1/4 + 1 + 1 + 1 = 3.55 
Score(d) = 1/4 + 1/3 + 1/4 + 1/3= 1.17 

The final ranking is: c, b, a, d.  ▀ 

6.10 Web Spamming 

Web search has become very important in the information age. Increased 
exposure of pages on the Web can result in significant financial gains 
and/or fames for organizations and individuals. The rank positions of Web 
pages in search are perhaps the single most important indicator of such ex-
posures of pages. If a user searches for information that is relevant to your 
pages but your pages are ranked low by search engines, then the user may 
not see the pages because one seldom clicks a large number of returned 
pages. This is not acceptable for businesses, organizations, and even indi-
viduals. Thus, it has become very important to understand search engine 
ranking algorithms and to present the information in one’s pages in such a 
way that the pages will be ranked high when terms related to the contents 
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of the pages are searched. Unfortunately, this also results in spamming, 
which refers to human activities that deliberately mislead search engines to 
rank some pages higher than they deserve.  

There is a gray area between spamming and legitimate page optimiza-
tion. It is difficult to define precisely what are justifiable and unjustifiable 
actions aimed at boosting the importance and consequently the rank posi-
tions of one’s pages. 

Assume that, given a user query, each page on the Web can be assigned 
an information value. All the pages are then ranked according to their in-
formation values. Spamming refers to actions that do not increase the in-
formation value of a page, but dramatically increase its rank position by 
misleading search algorithms to rank it high. Due to the fact that search 
engine algorithms do not understand the content of each page, they use 
syntactic or surface features to assess the information value of the page. 
Spammers exploit this weakness to boost the ranks of their pages.  

Spamming is annoying for users because it makes it harder to find truly 
useful information and leads to frustrating search experiences. Spamming 
is also bad for search engines because spam pages consume crawling 
bandwidth, pollute the Web, and distort search ranking. 

There are in fact many companies that are in the business of helping 
others improve their page ranking. These companies are called Search 
Engine Optimization (SEO) companies, and their businesses are thriving. 
Some SEO activities are ethical and some, which generate spam, are not. 

As we mentioned earlier, search algorithms consider both content based 
factors and reputation based factors in scoring each page. In this section, 
we briefly describe some spam methods that exploit these factors. The sec-
tion is mainly based on [214] by Gyongyi and Garcia-Molina.  

6.10.1  Content Spamming  

Most search engines use variations of TF-IDF based measures to assess the 
relevance of a page to a user query. Content-based spamming methods ba-
sically tailor the contents of the text fields in HTML pages to make spam 
pages more relevant to some queries. Since TF-IDF is computed based on 
terms, content spamming is also called term spamming. Term spamming 
can be placed in any text field:  

Title: Since search engines usually give higher weights to terms in the 
title of a page due to the importance of the title to a page, it is thus com-
mon to spam the title.  

Meta-Tags: The HTML meta-tags in the page header enable the owner 
to include some meta information of the page, e.g., author, abstract, key-
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words, content language, etc. However, meta-tags are very heavily 
spammed. Search engines now give terms within these tags very low 
weights or completely ignore their contents.   

Body: Clearly spam terms can be placed within the page body to boost 
the page ranking.    

Anchor Text: As we discussed in Sect. 6.8, the anchor text of a hyper-
link is considered very important by search engines. It is indexed for the 
page containing it and also for the page that it points to, so anchor text 
spam affects the ranking of both pages.   

URL: Some search engines break down the URL of a page into terms 
and consider them in ranking. Thus, spammers can include spam terms in 
the URL. For example, a URL may be http://www.xxx.com/cheap-MP3-
player-case-battery.html 

There are two main term spam techniques, which simply create syn-
thetic contents containing spam terms.  

1. Repeating some important terms: This method increases the TF 
scores of the repeated terms in a document and thus increases the rele-
vance of the document to these terms. Since plain repetition can be eas-
ily detected by search engines, the spam terms can be weaven into some 
sentences, which may be copied from some other sources. That is, the 
spam terms are randomly placed in these sentences. For example, if a 
spammer wants to repeat the word “mining”, it may add it randomly in 
an unrelated (or related) sentence, e.g., “the picture mining quality of 
this camera mining is amazing,” instead of repeating it many times con-
secutively (next to each other), which is easy to detect. 

2. Dumping of many unrelated terms: This method is used to make the 
page relevant to a large number of queries. In order to create the spam 
content quickly, the spammer may simply copy sentences from related 
pages on the Web and glue them together.  

Advertisers may also take advantage of some frequently searched 
terms on the Web and put them in the target pages so that when users 
search for the frequently search terms, the target pages become relevant. 
For example, to advertise cruise liners or cruise holiday packages, 
spammers put “Tom Cruise” in their advertising pages as “Tom Cruise” 
is a popular film actor in USA and is searched very frequently.  

6.10.2  Link Spamming  

Since hyperlinks play an important role in determining the reputation score 
of a page, spammers also spam on hyperlinks.  
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Out-Link Spamming: It is quite easy to add out-links in one’s pages 
pointing to some authoritative pages to boost the hub cores of one’s 
pages. A page is a hub page if it points to many authoritative (or quality) 
pages. The concepts of authority and hub will be formally studied in the 
next chapter (Sect. 7.4). To create massive out-links, spammers may use a 
technique called directory cloning. There are many directories, e.g., Ya-
hoo!, DMOZ Open Directory, on the Web which contain a large number of 
links to other Web pages that are organized according to some pre-
specified topic hierarchies. Spammers simply replicate a large portion of a 
directory in the spam page to create a massive out-link structure quickly.  

In-Link Spamming: In-link spamming is harder to achieve because it is 
not easy to add hyperlinks on the Web pages of others. Spammers typically 
use one or more of the following techniques.  

1. Creating a honey pot: If a page wants to have a high reputation/quality 
score, it needs quality pages pointing to it (see Sect. 7.3 in the next 
chapter). This method basically tries to create some important pages that 
contain links to target spam pages. For example, the spammer can create 
a set of pages that contains some very useful information, e.g., glossary 
of Web mining terms, or Java FAQ and help pages. The honey pots at-
tract people pointing to them because they contain useful information, 
and consequently have high reputation scores (high quality pages). Such 
honey pots contain (hidden) links to target spam pages that the spam-
mers want to promote. This strategy can significantly boost the spam 
pages.  

2. Adding links to Web directories: Many Web directories allow the user to 
submit URLs. Spammers can submit the URLs of spam pages at multi-
ple directory sites. Since directory pages often have high quality (or au-
thority) and hub scores, they can boost reputation scores of spam pages 
significantly.  

3. Posting links to the user-generated content (reviews, forum discussions, 
blogs, etc): There are numerous sites on the Web that allow the user to 
freely post messages, which are called the user-generated content. 
Spammers can add links pointing to their pages to the seemly innocent 
messages that they post.   

4. Participating in link exchange: In this case, many spammers form a 
group and set up a link exchange scheme so that their sites point to each 
other in order to promote the pages of all the sites.  

5. Creating own spam farm: In this case, the spammer needs to control a 
large number of sites. Then, any link structure can be created to boost 
the ranking of target spam pages. 
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6.10.3  Hiding Techniques  

In most situations, spammer wants to conceal or to hide the spamming sen-
tences, terms and links so that the Web users do not see them. They can 
use a number of techniques. 

Content Hiding: Spam items are made invisible. One simple method is to 
make the spam terms the same color as the background color. For example, 
one may use the following for hiding, 

<body background = white> 
 <font color = white> spam items</font> 
 … 
 </body> 

To hide a hyperlink, one can also use a very small image and a blank 
image. For example, one may use  

<a href = target.html”><img src=”blank.gif”> </a> 

A spammer can also use scripts to hide some of the visual elements on 
the page, for instance, by setting the visible HTML style attribute to false.  

Cloaking: Spam Web servers return a HTML document to the user and a 
different document to a Web crawler. In this way, the spammer can present 
the Web user with the intended content and send a spam page to the search 
engine for indexing.  

Spam Web servers can identify Web crawlers in one of the two ways: 

1. It maintains a list of IP addresses of search engines and identifies search 
engine crawlers by matching IP addresses.  

2. It identifies Web browsers based on the user–agent field in the HTTP 
request message. For instance, the user–agent name of the following 
HTTP request message is the one used by the Microsoft Internet Ex-
plorer 6 browser: 

GET /pub/WWW/TheProject.html HTTP/1.1 
Host: www.w3.org 
User–Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)  

User–agent names are not standard, so it is up to the requesting application 
what to include in the corresponding message field. However, search en-
gine crawlers usually identify themselves by names distinct from normal 
Web browsers in order to allow well-intended, and legitimate optimization. 
For example, some sites serve search engines a version of their pages that 
is free of navigation links and advertisements. 
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Redirection: Spammers can also hide a spammed page by automatically 
redirecting the browser to another URL as soon as the page is loaded. 
Thus, the spammed page is given to the search engine for indexing (which 
the user will never see), and the target page is presented to the Web user 
through redirection. One way to achieve redirection is to use the “refresh” 
meta-tag, and set the refresh time to zero. Another way is to use scripts.  

6.10.4 Combating Spam 

Some spamming activities, like redirection using refresh meta-tag, are easy 
to detect. However, redirections by using scripts are hard to identify be-
cause search engine crawlers do not execute scripts. To prevent cloaking, a 
search engine crawler may identify itself as a regular Web browser.  

Using the terms of anchor texts of links that point to a page to index the 
page is able to fight content spam to some extent because anchor texts 
from other pages are more trustworthy. This method was originally pro-
posed to index pages that were not fetched by search engine crawlers 
[364]. It is now a general technique used by search engines as we have 
seen in Sect. 6.8, i.e., search engines give terms in such anchor texts higher 
weights. In fact, the terms near a piece of anchor text also offer good edito-
rial judgment about the target page.  

The PageRank algorithm [68] is able to combat content spam to a cer-
tain degree as it is based on links that point to the target pages, and the 
pages that point to the target pages need to be reputable or with high Pag-
eRank scores as well (see Chap. 7). However, it does not deal with the in-
link based spamming methods discussed above.  

Instead of combating each individual type of spam, a method (called 
TrustRank) is proposed in [216] to combat all kinds of spamming methods 
at the same time. It takes advantage of the approximate isolation of reputa-
ble and non-spam pages, i.e., reputable Web pages seldom pointing to 
spam pages, and spam pages often link to many reputable pages (in an at-
tempt to improve their hub scores). Link analysis methods are used to 
separate reputable pages and any form of spam without dealing with each 
spam technique individually. 

Combating spam can also be seen as a classification problem, i.e., pre-
dicting whether a page is a spam page or not. One can use any supervised 
learning algorithm to train a spam classifier. The key issue is to design fea-
tures used in learning. The following are some example features used in 
[417] to detect content spam. 

1. Number of words in the page: A spam page tends to contain more words 
than a non-spam page so as to cover a large number of popular words.  
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2. Average word length: The mean word length for English prose is about 
5 letters. Average word length of synthetic content is often different.  

3. Number of words in the page title: Since search engines usually give ex-
tra weights to terms appearing in page titles, spammers often put many 
keywords in the titles of the spam pages. 

4. Fraction of visible content: Spam pages often hide spam terms by mak-
ing them invisible to the user.  

Other features used include the amount of anchor text, compressibility, 
fraction of page drawn from globally popular words, independent n-gram 
likelihoods, conditional n-gram likelihoods, etc. Details can be found in 
[417]. Its spam detection classifier gave very good results. Testing on 2364 
spam pages and 14806 non-spam pages (17170 pages in total), the classi-
fier was able to correctly identify 2,037 (86.2%) of the 2364 spam pages, 
while misidentifying only 526 spam and non-spam pages. 

Another interesting technique for fighting spam is to partition each Web 
page into different blocks using techniques discussed in Sect. 6.5. Each 
block is given an importance level automatically. To combat link spam, 
links in less important blocks are given lower transition probabilities to be 
used in the PageRank computation. The original PageRank algorithm as-
signs every link in a page an equal transition probability (see Sect. 7.3). 
The non-uniform probability assignment results in lower PageRank scores 
for pages pointed to by links in less important blocks. This method is ef-
fective because in the link exchange scheme and the honey pot scheme, the 
spam links are usually placed in unimportant blocks of the page, e.g., at the 
bottom of the page. The technique may also be used to fight term spam in a 
similar way, i.e., giving terms in less important blocks much lower weights 
in rank score computation. This method is proposed in [78]. 

However, sophisticated spam is still hard to detect. Combating spam is 
an on-going process. Once search engines are able to detect certain types 
of spam, spammers invent more sophisticated spamming methods. 

Bibliographic Notes 

Information retrieval (IR) is a major research field. This chapter only gives 
a brief introduction to some commonly used models and techniques. There 
are several text books that have a comprehensive coverage of the field, 
e.g., those by Baeza-Yates and Ribeiro-Neto [31], Grossman and Frieder 
[209], Salton and McGill [471], van Rijsbergen (an online book at 
http://www.dcs.gla.ac.uk/Keith/Preface.html), Witten et al. [551], and Yu 
and Meng [581].  
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A similar chapter in the book by Chakrabarti [85] also discusses many 
Web specific issues and has influenced the writing of this chapter. Below, 
we discuss some further readings related to Web search and mining.  

On index compression, Elias coding was introduced by Elias [161] and 
Golomb coding was introduced by Golomb [202]. Their applications to in-
dex compression was studied by several researchers, e.g., Witten et al. 
[551], Bell et al. [45], Moffat et al. [392], and Williams and Zobel [547]. 
Wikipedia is a great source of information on this topic as well.  

Latent semantic index (LSI) was introduced by Deerwester et al. [125], 
which uses the singular value decomposition technique (SVD) [203]. Ad-
ditional information about LSI and/or SVD can be found in [48, 581, 288]. 
Telcordia Technologies, where LSI was developed, maintains a LSI page at 
http://lsi.research.telcordia.com/ with more references.  

On Web page pre-processing, the focus has been on identifying the main 
content blocks of each page because a typical Web page contains a large 
amount of noise, which can adversely affect the search or mining accuracy. 
Several researchers have attempted the task, e.g., Bar-Yossef et al. [38], 
Debnath et al. [124], Gibson, et al. [199], Li et al. [324], Lin and Ho [336], 
Ma et al. [355], Ramaswamy et al. [456], Song et al. [495], Yi et al. [576], 
Yin and Lee [579], etc.  

Although search is probably the biggest application on the Web, little is 
known about the actual implementation of a search engine except some 
principal ideas. Sect. 6.8 is largely based on the Google paper by Brin and 
Page [68], and bits and pieces in various other sources. Over the years, a 
large number of researchers have studied Web search. More recent studies 
on various aspects of search can be found in [37, 79, 89, 262, 289, 297, 
451, 460, 508, 567, 569, 611].  

For metasearch, the combination methods in Sect. 6.9.1 were proposed 
by Fox and Shaw [184]. Aslam and Montague [28], Montague and Aslam 
[394], and Nuray and Can [418] provide good descriptions of Borda rank-
ing and Condorcet ranking. In addition to ranking, Meng et al. [378] dis-
cussed many other metasearch issues.  

On Web spam, Gyongyi and Garcia-Molina gave an excellent taxonomy 
of different types of spam [214]. The TrustRank algorithm is also due to 
them [216]. An improvement to TrustRank was proposed by Wu et al. 
[557]. General link spam detection was studied by Adali et al. [1], Amitay 
et al. [19], Baeza-Yates et al. [30], Gyongyi and Garcia-Molina [215], Wu 
and Davison [555], Zhang et al. [604], etc. Content spam detection was 
studied by Fetterly et al. [176, 177], and Ntoulas et al. [417]. A cloaking 
detection algorithm is reported in [556].  



7 Link Analysis 

Early search engines retrieved relevant pages for the user based primarily 
on the content similarity of the user query and the indexed pages of the 
search engines. The retrieval and ranking algorithms were simply direct 
implementation of those from information retrieval. Starting from 1996, it 
became clear that content similarity alone was no longer sufficient for 
search due to two reasons. First, the number of Web pages grew rapidly 
during the middle to late 1990s. Given any query, the number of relevant 
pages can be huge. For example, given the search query “classification 
technique”, the Google search engine estimates that there are about 10 mil-
lion relevant pages. This abundance of information causes a major problem 
for ranking, i.e., how to choose only 30–40 pages and rank them suitably 
to present to the user. Second, content similarity methods are easily 
spammed. A page owner can repeat some important words and add many 
remotely related words in his/her pages to boost the rankings of the pages 
and/or to make the pages relevant to a large number of possible queries.  

Starting from around 1996, researchers in academia and search engine 
companies began to work on the problem. They resort to hyperlinks. 
Unlike text documents used in traditional information retrieval, which are 
often considered independent of one another (i.e., with no explicit relation-
ships or links among them except in citation analysis), Web pages are con-
nected through hyperlinks, which carry important information. Some hy-
perlinks are used to organize a large amount of information at the same 
Web site, and thus only point to pages in the same site. Other hyperlinks 
point to pages in other Web sites. Such out-going hyperlinks often indicate 
an implicit conveyance of authority to the pages being pointed to. There-
fore, those pages that are pointed to by many other pages are likely to con-
tain authoritative or quality information. Such linkages should obviously be 
used in page evaluation and ranking in search engines. 

During the period of 1997-1998, two most influential hyperlink based 
search algorithms PageRank [68, 422] and HITS [281] were designed.  
PageRank is the algorithm that powers the successful search engine Google. 
Both PageRank and HITS were originated from social network analysis 
[540]. They both exploit the hyperlink structure of the Web to rank pages 
according to their levels of “prestige” or “authority”. We will study these 
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algorithms in this chapter. We should also note that hyperlink-based page 
evaluation and ranking is not the only method used by search engines. As 
we discussed in Chap. 6, contents and many other factors are also consid-
ered in producing the final ranking presented to the user.  

Apart from search ranking, hyperlinks are also useful for finding Web 
communities. A Web community is a cluster of densely linked pages rep-
resenting a group of people with a common interest. Beyond explicit hy-
perlinks on the Web, links in other contexts are useful too, e.g., for discov-
ering communities of named entities (e.g., people and organizations) in 
free text documents, and for analyzing social phenomena in emails. This 
chapter will introduce some of the current algorithms.   

7.1 Social Network Analysis 

Social network is the study of social entities (people in an organization, 
called actors), and their interactions and relationships. The interactions 
and relationships can be represented with a network or graph, where each 
vertex (or node) represents an actor and each link represents a relationship. 
From the network we can study the properties of its structure, and the role, 
position and prestige of each social actor. We can also find various kinds 
of sub-graphs, e.g., communities formed by groups of actors.  

Social network analysis is useful for the Web because the Web is essen-
tially a virtual society, and thus a virtual social network, where each page 
can be regarded as a social actor and each hyperlink as a relationship. 
Many of the results from social networks can be adapted and extended for 
use in the Web context. The ideas from social network analysis are indeed 
instrumental to the success of Web search engines.   

In this section, we introduce two types of social network analysis, cen-
trality and prestige, which are closely related to hyperlink analysis and 
search on the Web. Both centrality and prestige are measures of degree of 
prominence of an actor in a social network. We introduce them below. For 
a more complete treatment of the topics, please refer to the authoritative 
text by Wasserman and Faust [540]. 

7.1.1  Centrality 

Important or prominent actors are those that are linked or involved with 
other actors extensively. In the context of an organization, a person with 
extensive contacts (links) or communications with many other people in 
the organization is considered more important than a person with relatively 
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fewer contacts. The links can also be called ties. A central actor is one in-
volved in many ties. Fig. 7.1 shows a simple example using an undirected 
graph. Each node in the social network is an actor and each link indicates 
that the actors on the two ends of the link communicate with each other. 
Intuitively, we see that the actor i is the most central actor because he/she 
can communicate with most other actors.  

 
Fig. 7.1. An example of a social network 

There are different types of links or involvements between actors. Thus, 
several types of centrality are defined on undirected and directed graphs. 
We discuss three popular types below.  

Degree Centrality  

Central actors are the most active actors that have most links or ties with 
other actors. Let the total number of actors in the network be n.  

Undirected Graph: In an undirected graph, the degree centrality of an 
actor i (denoted by CD(i)) is simply the node degree (the number of edges) 
of the actor node, denoted by d(i), normalized with the maximum degree, 
n−1. 
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The value of this measure ranges between 0 and 1 as n−1 is the maximum 
value of d(i).  

Directed Graph: In this case, we need to distinguish in-links of actor i 
(links pointing to i), and out-links (links pointing out from i). The degree 
centrality is defined based on only the out-degree (the number of out-links 
or edges), do(i). 
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Closeness Centrality 

This view of centrality is based on the closeness or distance. The basic idea 
is that an actor xi is central if it can easily interact with all other actors. 
That is, its distance to all other actors is short. Thus, we can use the short-
est distance to compute this measure. Let the shortest distance from actor i 
to actor j be d(i, j) (measured as the number of links in a shortest path).  

Undirected Graph: The closeness centrality CC(i) of actor i is defined as  
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The value of this measure also ranges between 0 and 1 as n−1 is the mini-
mum value of the denominator, which is the sum of the shortest distances 
from i to all other actors. Note that this equation is only meaningful for a 
connected graph.  

Directed Graph: The same equation can be used for a directed graph. The 
distance computation needs to consider directions of links or edges.  

Betweenness Centrality 

If two non-adjacent actors j and k want to interact and actor i is on the path 
between j and k, then i may have some control over their interactions. Be-
tweenness measures this control of i over other pairs of actors. Thus, if i is 
on the paths of many such interactions, then i is an important actor.  

Undirected Graph: Let pjk be the number of shortest paths between actors 
j and k. The betweenness of an actor i is defined as the number of shortest 
paths that pass i (denoted by pjk(i), j ≠ i and k ≠ i) normalized by the total 
number of shortest paths of all pairs of actors not including i: 
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Note that there may be multiple shortest paths between actor j and actor k. 
Some pass i and some do not. We assume that all paths are equally likely 
to be used. CB(i) has a minimum of 0, attained when i falls on no shortest 
path. Its maximum is (n−1)(n−2)/2, which is the number of pairs of actors 
not including i.  

In the network of Fig. 7.2, actor 1 is the most central actor. It lies on all 
15 shortest paths linking the other 6 actors. CB(1) has the maximum value 
of 15, and CB(2) = CB(3) = CB(4) = CB(5) = CB(6) = CB(7) = 0. 
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Fig. 7.2. An example of a network illustrating the betweenness centrality 

If we are to ensure that the value range is between 0 and 1, we can normal-
ize it with (n−1)(n−2)/2, which is the maximum value of CB(i). The stan-
dardized betweenness of actor i is defined as  
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Unlike the closeness measure, the betweenness can be computed even if 
the graph is not connected.  

Directed Graph: The same equation can be used but must be multiplied 
by 2 because there are now (n−1)(n−2) pairs considering a path from j to k 
is different from a path from k to j. Likewise, pjk must consider paths from 
both directions.  

7.1.2  Prestige 

Prestige is a more refined measure of prominence of an actor than central-
ity as we will see below. We need to distinguish between ties sent (out-
links) and ties received (in-links). A prestigious actor is defined as one 
who is object of extensive ties as a recipient. In other words, to compute 
the prestige of an actor, we only look at the ties (links) directed or pointed 
to the actor (in-links). Hence, the prestige cannot be computed unless the 
relation is directional or the graph is directed. The main difference between 
the concepts of centrality and prestige is that centrality focuses on out-
links while prestige focuses on in-links. We define three prestige measures. 
The third prestige measure (i.e., rank prestige) forms the basis of most 
Web page link analysis algorithms, including PageRank and HITS.  
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Degree Prestige 

Based on the definition of the prestige, it is clear that an actor is prestig-
ious if it receives many in-links or nominations. Thus, the simplest meas-
ure of prestige of an actor i (denoted by PD(i)) is its in-degree.  
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where dI(i) is the in-degree of i (the number of in-links of i) and n is the to-
tal number of actors in the network. As in the degree centrality, dividing 
by n – 1 standardizes the prestige value to the range from 0 and 1. The 
maximum prestige value is 1 when every other actor links to or chooses 
actor i.  

Proximity Prestige 

The degree index of prestige of an actor i only considers the actors that are 
adjacent to i. The proximity prestige generalizes it by considering both the 
actors directly and indirectly linked to actor i. That is, we consider every 
actor j that can reach i, i.e., there is a directed path from j to i.  

Let Ii be the set of actors that can reach actor i, which is also called the 
influence domain of actor i. The proximity is defined as closeness or dis-
tance of other actors to i. Let d(j, i) denote the shortest path distance from 
actor j to actor i. Each link has the unit distance. To compute the proximity 
prestige, we use the average distance, which is 
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where |Ii| is the size of the set Ii. If we look at the ratio or proportion of ac-
tors who can reach i to the average distance that these actors are from i, we 
obtain the proximity prestige, which has the value range of [0, 1]: 
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where |Ii|/(n−1) is the proportion of actors that can reach actor i. In one ex-
treme, every actor can reach actor i, which gives |Ii|/(n−1) = 1. The de-
nominator is 1 if every actor is adjacent to i. Then, PP(i) = 1. On the other 
extreme, no actor can reach actor i. Then |Ii| = 0, and PP(i) = 0.  
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Rank Prestige 

The above two prestige measures are based on in-degrees and distances. 
However, an important factor that has not been considered is the promi-
nence of individual actors who do the “voting” or “choosing.” In the real 
world, a person i chosen by an important person is more prestigious than 
chosen by a less important person. For example, a company CEO voting 
for a person is much more important than a worker voting for the person. If 
one’s circle of influence is full of prestigious actors, then one’s own pres-
tige is also high. Thus one’s prestige is affected by the ranks or statuses of 
the involved actors. Based on this intuition, the rank prestige PR(i) is de-
fined as a linear combination of links that point to i:  

),(...)2()1()( 21 nPAPAPAiP RniRiRiR +++=  (9) 

where Aji = 1 if j points to i, and 0 otherwise. This equation says that an ac-
tor’s rank prestige is a function of the ranks of the actors who vote or 
choose the actor, which makes perfect sense.  

Since we have n equations for n actors, we can write them in the matrix 
notation. We use P to represent the vector that contains all the rank pres-
tige values, i.e., P = (PR(1), PR(2), …, PR(n))T (T means matrix trans-
pose). P is represented as a column vector. We use matrix A (where Aij = 1 
if i points to j, and 0 otherwise) to represent the adjacency matrix of the 
network or graph. As a notational convention, we use bold italic letters to 
represent matrices. We then have 

PAP T= . (10) 

This equation is precisely the characteristic equation used for finding the 
eigensystem of the matrix AT. P is an eigenvector of AT.  

This equation and the idea behind it turn out to be very useful in Web 
search. Indeed, the most well known ranking algorithms for Web search, 
PageRank and HITS, are directly related to this equation. Sect. 7.3 and 7.4 
will focus on these two algorithms and describe how to solve the equation 
to obtain the prestige value of each actor (or each page on the Web).  

7.2 Co-Citation and Bibliographic Coupling 

Another area of research concerned with links is the citation analysis of 
scholarly publications. A scholarly publication usually cites related prior 
work to acknowledge the origins of some ideas in the publication and to 
compare the new proposal with existing work. Citation analysis is an area 
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of bibliometric research, which studies citations to establish the relation-
ships between authors and their work.  

When a publication (also called a paper) cites another publication, a re-
lationship is established between the publications. Citation analysis uses 
these relationships (links) to perform various types of analysis. A citation 
can represent many types of links, such as links between authors, publica-
tions, journals and conferences, and fields, or even between countries. We 
will discuss two specific types of citation analysis, co-citation and biblio-
graphic coupling. The HITS algorithm of Sect. 7.4 is related to these two 
types of analysis.  

7.2.1 Co-Citation 

Co-citation is used to measure the similarity of two documents. If papers i 
and j are both cited by paper k, then they may be said to be related in some 
sense to one another, even they do not directly cite each other. Figure 7.3 
shows that papers i and j are co-cited by paper k.  If papers i and j are cited 
together by many papers, it means that i and j have a strong relationship or 
similarity. The more papers they are cited by, the stronger their relation-
ship is.  

 
Fig. 7.3. Paper i and paper j are co-cited by paper k 

Let L be the citation matrix. Each cell of the matrix is defined as fol-
lows: Lij = 1 if paper i cites paper j, and 0 otherwise. Co-citation (denoted 
by Cij) is a similarity measure defined as the number of papers that co-cite 
i and j, and is computed with 
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where n is the total number of papers. Cii is naturally the number of papers 
that cite i. A square matrix C can be formed with Cij, and it is called the co-
citation matrix. Co-citation is symmetric, Cij = Cji, and is commonly used 
as a similarity measure of two papers in clustering to group papers of simi-
lar topics together. 
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7.2.2 Bibliographic Coupling  

Bibliographic coupling operates on a similar principle, but in a way it is 
the mirror image of co-citation. Bibliographic coupling links papers that 
cite the same articles so that if papers i and j both cite paper k, they may be 
said to be related, even though they do not directly cite each other. The 
more papers they both cite, the stronger their similarity is. Figure 7.4 
shows both papers i and j citing (referencing) paper k. 

 
Fig. 7.4. Both paper i and paper j cite paper k 

We use Bij to represent the number of papers that are cited by both pa-
pers i and j: 
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Bii is naturally the number of references (in the reference list) of paper i. A 
square matrix B can be formed with Bij, and it is called the bibliographic 
coupling matrix. Bibliographic coupling is also symmetric and is regarded 
as a similarity measure of two papers in clustering. 

We will see later that two important types of pages on the Web, hubs 
and authorities, found by the HITS algorithm are directly related to co-
citation and bibliographic coupling matrices.  

7.3 PageRank 

The year 1998 was an important year for Web link analysis and Web 
search. Both the PageRank and the HITS algorithms were reported in that 
year. HITS was presented by Jon Kleinberg in January, 1998 at the Ninth 
Annual ACM-SIAM Symposium on Discrete Algorithms. PageRank was 
presented by Sergey Brin and Larry Page at the Seventh International 
World Wide Web Conference (WWW7) in April, 1998. Based on the algo-
rithm, they built the search engine Google. The main ideas of PageRank 
and HITS are really quite similar. However, it is their dissimilarity that 

i k

j 
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made a huge difference as we will see later. Since that year, PageRank has 
emerged as the dominant link analysis model for Web search, partly due to 
its query-independent evaluation of Web pages and its ability to combat 
spamming, and partly due to Google’s business success. In this section, we 
focus on PageRank. In the next section, we discuss HITS. A detailed study 
of these algorithms can also be found in [304]. 

PageRank relies on the democratic nature of the Web by using its vast 
link structure as an indicator of an individual page's quality. In essence, 
PageRank interprets a hyperlink from page x to page y as a vote, by page x, 
for page y. However, PageRank looks at more than just the sheer number 
of votes, or links that a page receives. It also analyzes the page that casts 
the vote. Votes casted by pages that are themselves “important” weigh 
more heavily and help to make other pages more “important.” This is ex-
actly the idea of rank prestige in social networks (see Sect. 7.1.2).  

7.3.1 PageRank Algorithm 

PageRank is a static ranking of Web pages in the sense that a PageRank 
value is computed for each page off-line and it does not depend on search 
queries. Since PageRank is based on the measure of prestige in social net-
works, the PageRank value of each page can be regarded as its prestige. 
We now derive the PageRank formula. Let us first state some main con-
cepts again in the Web context.  

In-links of page i: These are the hyperlinks that point to page i from other 
pages. Usually, hyperlinks from the same site are not considered. 

Out-links of page i: These are the hyperlinks that point out to other pages 
from page i. Usually, links to pages of the same site are not considered. 

From the perspective of prestige, we use the following to derive the Pag-
eRank algorithm.  

1. A hyperlink from a page pointing to another page is an implicit convey-
ance of authority to the target page. Thus, the more in-links that a page i 
receives, the more prestige the page i has.  

2. Pages that point to page i also have their own prestige scores. A page 
with a higher prestige score pointing to i is more important than a page 
with a lower prestige score pointing to i. In other words, a page is im-
portant if it is pointed to by other important pages.  

According to rank prestige in social networks, the importance of page i (i’s 
PageRank score) is determined by summing up the PageRank scores of all 
pages that point to i. Since a page may point to many other pages, its pres-
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tige score should be shared among all the pages that it points to. Notice the 
difference from rank prestige, where the prestige score is not shared.  

To formulate the above ideas, we treat the Web as a directed graph G = 
(V, E), where V is the set of vertices or nodes, i.e., the set of all pages, and 
E is the set of directed edges in the graph, i.e., hyperlinks. Let the total 
number of pages on the Web be n (i.e., n = |V|). The PageRank score of the 
page i (denoted by P(i)) is defined by: 

,)()(
),(
∑

∈

=
Eij jO

jPiP  (13) 

where Oj is the number of out-links of page j. Mathematically, we have a 
system of n linear equations (13) with n unknowns. We can use a matrix to 
represent all the equations. Let P be a n-dimensional column vector of 
PageRank values, i.e.,  

P = (P(1), P(2), …, P(n))T. 

Let A be the adjacency matrix of our graph with  
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We can write the system of n equations with (similar to Equation 10) 

PAP T= . (15) 

This is the characteristic equation of the eigensystem, where the solu-
tion to P is an eigenvector with the corresponding eigenvalue of 1.  Since 
this is a circular definition, an iterative algorithm is used to solve it. It turns 
out that if some conditions are satisfied (which will be described shortly), 1 
is the largest eigenvalue and the PageRank vector P is the principal ei-
genvector. A well known mathematical technique called power iteration 
can be used to find P.  

However, the problem is that Equation (15) does not quite suffice be-
cause the Web graph does not meet the conditions. To introduce these 
conditions and the enhanced equation, let us derive the same Equation (15) 
based on the Markov chain [207].  

In the Markov chain model, each Web page or node in the Web graph is 
regarded as a state. A hyperlink is a transition, which leads from one state 
to another state with a probability. Thus, this framework models Web surf-
ing as a stochastic process. It models a Web surfer randomly surfing the 
Web as a state transition in the Markov chain. Recall that we used Oi to 
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denote the number of out-links of a node i. Each transition probability is 
1/Oi if we assume the Web surfer will click the hyperlinks in the page i 
uniformly at random, the “back” button on the browser is not used and the 
surfer does not type in an URL. Let A be the state transition probability 
matrix, a square matrix of the following format, 
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Aij represents the transition probability that the surfer in state i (page i) 
will move to state j (page j). Aij is defined exactly as in Equation (14). 

Given an initial probability distribution vector that a surfer is at each 
state (or page) p0 = (p0(1), p0(2), …, p0(n))T (a column vector) and an n×n 
transition probability matrix A, we have  
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Equation (17) is not quite true for some Web pages because they have 
no out-links. If the matrix A satisfies Equation (17), we say that A is the 
stochastic matrix of a Markov chain.  Let us assume A is a stochastic ma-
trix for the time being and deal with it not being that later.  

In a Markov chain, a question of common interest is: Given the initial 
probability distribution p0 at the beginning, what is the probability that m 
steps/transitions later that the Markov chain will be at each state j? We can 
determine the probability that the system (or the random surfer) is in state 
j after 1 step (1 state transition) by using the following reasoning:  
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where Aij(1) is the probability of going from i to j after 1 transition, and 
Aij(1) = Aij. We can write it with a matrix: 
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0pAp T=1 . (19) 

In general, the probability distribution after k steps/transitions is: 

1-kk pAp T= . (20) 

Equation (20) looks very similar to Equation (15). We are getting there.  
By the Ergodic Theorem of Markov chains [207], a finite Markov chain 

defined by the stochastic transition matrix A has a unique stationary 
probability distribution if A is irreducible and aperiodic. These mathe-
matical terms will be defined as we go along.  

The stationary probability distribution means that after a series of transi-
tions pk will converge to a steady-state probability vector π regardless of 
the choice of the initial probability vector p0, i.e.,  

πp =
∞→ kk

lim . (21) 

When we reach the steady-state, we have pk = pk+1 =π, and thus π =ATπ. 
π is the principal eigenvector of AT with eigenvalue of 1. In PageRank, π 
is used as the PageRank vector P. Thus, we again obtain Equation (15), 
which is re-produced here as Equation (22): 

PAP T= . (22) 

 Using the stationary probability distribution π as the PageRank vector is 
reasonable and quite intuitive because it reflects the long-run probabilities 
that a random surfer will visit the pages. A page has a high prestige if the 
probability of visiting it is high.  

Now let us come back to the real Web context and see whether the 
above conditions are satisfied, i.e., whether A is a stochastic matrix and 
whether it is irreducible and aperiodic. In fact, none of them is satisfied. 
Hence, we need to extend the ideal-case Equation (22) to produce the “ac-
tual PageRank model”. Let us look at each condition below.  

First of all, A is not a stochastic (transition) matrix. A stochastic ma-
trix is the transition matrix for a finite Markov chain whose entries in each 
row are non-negative real numbers and sum to 1 (i.e., Equation 17). This 
requires that every Web page must have at least one out-link. This is not 
true on the Web because many pages have no out-links, which are 
reflected in transition matrix A by some rows of complete 0’s. Such pages 
are called the dangling pages (nodes).  

Example 1: Figure 7.5 shows an example of a hyperlink graph.  
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Fig. 7.5. An example of a hyperlink graph 

If we assume that the Web surfer will click the hyperlinks in a page uni-
formly at random, we have the following transition probability matrix: 
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For example A12 = A13 = 1/2 because node 1 has two out-links. We can see 
that A is not a stochstic matrix because the fifth row is all 0’s, i.e., page 5 
is a dangling page.  ▀ 

We can fix this problem in several ways in order to convert A to a sto-
chastic transition matrix. We describe only two ways here:  

1. Remove those pages with no out-links from the system during the Pag-
eRank computation as these pages do not affect the ranking of any other 
page directly. Out-links from other pages pointing to these pages are 
also removed. After PageRanks are computed, these pages and hyper-
links pointing to them can be added in. Their PageRanks are easy to cal-
culate based on Equation (22). Note that the transition probabilities of 
those pages with removed links will be slightly affected but not signifi-
cantly. This method is suggested in [68].  

2. Add a complete set of outgoing links from each such page i to all the 
pages on the Web. Thus the transition probability of going from i to 
every page is 1/n assuming uniform probability distribution. That is, we 
replace each row containing all 0’s with e/n, where e is n-dimensional 
vector of all 1’s.  

If we use the second method to make A a stochastic matrix by adding a 
link from page 5 to every page, we obtain 
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Below, we assume that either one of the above is done to make A a sto-
chastic matrix.  

Second, A is not irreducible. Irreducible means that the Web graph G is 
strongly connected. 

Definition (strongly connected): A directed graph G = (V, E) is strongly 
connected if and only if, for each pair of nodes u, v ∈ V, there is a path 
from u to v.  

 A general Web graph represented by A is not irreducible because for 
some pair of nodes u and v, there is no path from u to v. For example, in 
Fig. 7.5, there is no directed path from node 3 to node 4. The adjustment in 
Equation (24) is not enough to ensure irreducibility. That is, in A , there is 
still no directed path from node 3 to node 4. This problem and the next 
problem can be dealt with using a single strategy (to be described shortly). 

Finally, A is not aperiodic. A state i in a Markov chain being periodic 
means that there exists a directed cycle that the chain has to traverse. 

Definition (aperiodic): A state i is periodic with period k > 1 if k is the 
smallest number such that all paths leading from state i back to state i 
have a length that is a multiple of k. If a state is not periodic (i.e., k = 1), 
it is aperiodic. A Markov chain is aperiodic if all states are aperiodic.  

Example 2: Figure 7.6 shows a periodic Markov chain with k = 3. The 
transition matrix is given on the left. Each state in this chain has a period 
of 3. For example, if we start from state 1, to come back to state 1 the only 
path is 1-2-3-1 for some number of times, say h. Thus any return to state 1 
will take 3h transitions. In the Web, there could be many such cases.  ▀ 

 
Fig. 7.6. A periodic Markov chain with k = 3.   
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It is easy to deal with the above two problems with a single strategy.  

• We add a link from each page to every page and give each link a small 
transition probability controlled by a parameter d.  

The augmented transition matrix becomes irreducible because it is clearly 
strongly connected. It is also aperiodic because the situation in Fig. 7.6 no 
longer exists as we now have paths of all possible lengths from state i back 
to state i. That is, the random surfer does not have to traverse a fixed cycle 
for any state. After this augmentation, we obtain an improved PageRank 
model. In this model, at a page, the random surfer has two options:  

1. With probability d, he randomly chooses an out-link to follow. 
2. With probability 1−d, he jumps to a random page without a link.  

Equation (25) gives the improved model, 
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where E is eeT (e is a column vector of all 1’s) and thus E is a n×n square 
matrix of all 1’s. 1/n is the probability of jumping to a particular page. n is 
the total number of nodes in the Web graph. Note that Equation (25) as-
sumes that A has already been made a stochastic matrix.  

Example 3: If we follow our example in Fig. 7.5 and Equation (24) (we 
use A for A here), the augmented transition matrix is  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=+−

061610619061061061
157610619061061061
15761061061061061
061610619061157157
061610611211061157
06161061061157061

)1( Td
n

d AE  

 

(26) 

 
 
▀ 

(1−d)E/n + dAT is a stochastic matrix (but transposed). It is also irre-
ducible and aperiodic as we discussed above. Here we use d = 0.9.  

If we scale Equation (25) so that eTP = n, we obtain 

PAeP Tdd +−= )1( . (27) 

Before scaling, we have eTP = 1 (i.e., P(1) + P(2) + … + P(n) = 1 if we re-
call that P is the stationary probability vector π of the Markov chain). The 
scaling is equivalent to multiplying n on both sides of Equation (25).  
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This gives us the PageRank formula for each page i as follows:  
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which is equivalent to the formula given in the PageRank papers [68, 422]: 
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The parameter d is called the damping factor which can be set to between 
0 and 1. d = 0.85 is used in [68, 422].  

The computation of PageRank values of the Web pages can be done us-
ing the well known power iteration method [203], which produces the 
principal eigenvector with the eigenvalue of 1. The algorithm is simple, 
and is given in Fig. 7.7. One can start with any initial assignments of Pag-
eRank values. The iteration ends when the PageRank values do not change 
much or converge. In Fig. 7.7, the iteration ends after the 1-norm of the re-
sidual vector is less than a pre-specified threshold ε. Note that the 1-norm 
for a vector is simply the sum of all the components.  

PageRank-Iterate(G) 
P0 ← e/n 
k ← 1 
repeat 

;)1( 1-k
T

k dd PAeP +−←  
k ← k + 1; 

until ||Pk – Pk-1||1 < ε 
return Pk 

Fig. 7.7. The power iteration method for PageRank 

Since we are only interested in the ranking of the pages, the actual conver-
gence may not be necessary. Thus, fewer iterations are needed. In [68], it 
is reported that on a database of 322 million links the algorithm converges 
to an acceptable tolerance in roughly 52 iterations.  

7.3.2 Strengths and Weaknesses of PageRank 

The main advantage of PageRank is its ability to fight spam. A page is im-
portant if the pages pointing to it are important. Since it is not easy for 
Web page owner to add in-links into his/her page from other important 
pages, it is thus not easy to influence PageRank. Nevertheless, there are 
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reported ways to influence PageRank. Recognizing and fighting spam is an 
important issue in Web search.  

Another major advantage of PageRank is that it is a global measure and 
is query independent. That is, the PageRank values of all the pages on the 
Web are computed and saved off-line rather than at the query time. At the 
query time, only a lookup is needed to find the value to be integrated with 
other strategies to rank the pages. It is thus very efficient at query time. 
Both these two advantages contributed greatly to Google’s success.  

The main criticism is also the query-independence nature of PageRank. 
It could not distinguish between pages that are authoritative in general and 
pages that are authoritative on the query topic. Google may have other 
ways to deal with the problem, which we do not know due to the proprie-
tary nature of Google. Another criticism is that PageRank does not con-
sider time. Let us give some explanation to this. 

7.3.3 Timed PageRank 

The Web is a dynamic environment, and it changes constantly. Quality 
pages in the past may not be quality pages now or in the future. Thus, 
search has a temporal dimension. An algorithm called TimedPageRank 
given in [326, 585] adds the temporal dimension to PageRank. The moti-
vations are:  

1. Users are often interested in the latest information. Apart from pages 
that contain well-established facts and classics which do not change sig-
nificantly over time, most contents on the Web change constantly. New 
pages or contents are added, and ideally, outdated contents and pages 
are deleted. However, in practice many outdated pages and links are not 
deleted. This causes problems for Web search because such outdated 
pages may still be ranked very high.  

2. PageRank favors pages that have many in-links. To some extent, we can 
say that it favors older pages because they have existed on the Web for a 
long time and thus have accumulated many in-links. Then the problem 
is that new pages which are of high quality and also give the up-to-date 
information will not be assigned high scores and consequently will not 
be ranked high because they have fewer or no in-links. It is thus difficult 
for users to find the latest information on the Web based on PageRank. 

The idea of TimedPageRank is simple. Instead of using a constant damp-
ing factor d as the parameter in PageRank, TimedPageRank uses a function 
of time f(t) (0 ≤ f(t) ≤ 1), where t is the difference between the current time 
and the time when the page was last updated. f(t) returns a probability that 
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the Web surfer will follow an actual link on the page. 1−f(t) returns the 
probability that the surfer will jump to a random page. Thus, at a particular 
page i, the Web surfer has two options:  

1. With probability f(ti), he randomly chooses an out-going link to follow. 
2. With probability 1−f(ti), he jumps to a random page without a link.  

The intuition here is that if the page was last updated (or created) a long 
time ago, the pages that it cites (points to) are even older and are probably 
out of date. Then the 1−f(t) value for such a page should be large, which 
means that the surfer will have a high probability of jumping to a random 
page. If a page is new, then its 1−f(t) value should be small, which means 
that the surfer will have a high probability to follow an out-link of the page 
and a small probability of jumping to a random page.  

For a complete new page in a Web site, which does not have any in-
links at all, the method given in [326] uses the average TimedPageRank 
value of the past pages in the Web site. 

Finally, we note again that the link-based ranking is not the only strat-
egy used in a search engine. Many other information retrieval methods, 
heuristics and empirical parameters are also employed. However, their de-
tails are not published. We also note that PageRank is not the only link-
based static and global ranking algorithm. All major search engines, such 
as Yahoo! and MSN, have their own algorithms but are unpublished.   

7.4 HITS 

HITS stands for Hypertext Induced Topic Search [281]. Unlike PageR-
ank which is a static ranking algorithm, HITS is search query dependent. 
When the user issues a search query, HITS first expands the list of relevant 
pages returned by a search engine and then produces two rankings of the 
expanded set of pages, authority ranking and hub ranking.  

An authority is a page with many in-links. The idea is that the page 
may have good or authoritative content on some topic and thus many peo-
ple trust it and link to it. A hub is a page with many out-links. The page 
serves as an organizer of the information on a particular topic and points to 
many good authority pages on the topic. When a user comes to this hub 
page, he/she will find many useful links which take him/her to good con-
tent pages on the topic. Figure 7.8 shows an authority page and a hub page.  

The key idea of HITS is that a good hub points to many good authorities 
and a good authority is pointed to by many good hubs. Thus, authorities 
and hubs have a mutual reinforcement relationship. Figure 7.9 shows a 
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set of densely linked authorities and hubs (a bipartite sub-graph).  
Below, we first present the HITS algorithm, and also make a connection 

between HITS and co-citation and bibliographic coupling in bibliometric 
research. We then discuss the strengths and weaknesses of HITS, and de-
scribe some possible ways to deal with its weaknesses.  

 
Fig. 7.8. An authority page and a hub page 

 
Fig. 7.9. A densely linked set of authorities and hubs 

7.4.1 HITS Algorithm 

Before describing the HITS algorithm, let us first describe how HITS col-
lects pages to be ranked. Given a broad search query, q, HITS collects a set 
of pages as follows: 

1. It sends the query q to a search engine system. It then collects t (t = 200 
is used in the HITS paper) highest ranked pages, which assume to be 
highly relevant to the search query. This set is called the root set W.  

2. It then grows W by including any page pointed to by a page in W and 
any page that points to a page in W. This gives a larger set called S. 
However, this set can be very large. The algorithm restricts its size by 
allowing each page in W to bring at most k pages (k = 50 is used in the 
HITS paper) pointing to it into S. The set S is called the base set.  

An authority A hub

 Authorities  Hubs 
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HITS then works on the pages in S, and assigns every page in S an author-
ity score and a hub score. Let the number of pages to be studied be n. We 
again use G = (V, E) to denote the (directed) link graph of S. V is the set of 
pages (or nodes) and E is the set of directed edges (or links). We use L to 
denote the adjacency matrix of the graph.  

⎩
⎨
⎧ ∈

=
otherwise0

),(if1 Eji
Lij
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Let the authority score of the page i be a(i), and the hub score of page i 
be h(i). The mutual reinforcing relationship of the two scores is repre-
sented as follows: 

∑
∈

=
Eij

jhia
),(

)()(  (31) 

∑
∈

=
Eji

jaih
),(

)()(  (32) 

Writing them in the matrix form, we use a to denote the column vector 
with all the authority scores, a = (a(1), a(2), …, a(n))T, and use h to denote 
the column vector with all the hub scores, h = (h(1), h(2), …, h(n))T, 

a = LTh (33) 

h = La (34) 

The computation of authority scores and hub scores is basically the same 
as the computation of the PageRank scores using the power iteration 
method. If we use ak and hk to denote authority and hub scores at the kth it-
eration, the iterative processes for generating the final solutions are  

ak = LTLak−1
 (35) 

hk = LLThk−1 (36) 

starting with 

a0 = h0 = (1, 1, …, 1). (37) 

Note that Equation (35) (or Equation 36) does not use the hub (or au-
thority) vector due to substitutions of Equation (33) and Equation (34).  

After each iteration, the values are also normalized (to keep them small) 
so that  
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The power iteration algorithm for HITS is given in Fig. 7.10. The itera-
tion ends after the 1-norms of the residual vectors are less than some 
thresholds εa and εh. Hence, the algorithm finds the principal eigenvectors 
at “equilibrium” as in PageRank. The pages with large authority and hub 
scores are better authorities and hubs respectively. HITS will select a few 
top ranked pages as authorities and hubs, and return them to the user.  

Although HITS will always converge, there is a problem with unique-
ness of limiting (converged) authority and hub vectors. It is shown that for 
certain types of graphs, different initializations to the power method pro-
duce different final authority and hub vectors. Some results can be incon-
sistent or wrong. Farahat et al. [171] gave several examples. The heart of 
the problem is that there are repeated dominant (principal) eigenvalues 
(several eigenvalues are the same and are dominant eigenvalues), which 
are caused by the problem that LTL (respectively LLT) is reducible [303]. 
The first PageRank solution (Equation 22) has the same problem. How-
ever, the PageRank inventors found a way to get around the problem. A 
modification similar to PageRank may be applied to HITS.  

HITS-Iterate(G) 
a0 ← h0 ← (1, 1, …, 1); 
k ← 1 
Repeat  

;1−← k
T

k LaLa  
;1−← k

T
k hLLh    

ak ← ak /||ak||1; // normalization 
hk ← hk /||hk||1; // normalization  
k ← k + 1; 

until ||ak – ak-1||1 < εa and ||hk – hk-1||1 < εh; 
return ak and hk 

Fig. 7.10. The HITS algorithm based on power iteration 
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7.4.2 Finding Other Eigenvectors 

The HITS algorithm given in Fig. 7.10 finds the principal eigenvectors, 
which in a sense represent the most densely connected authorities and hubs 
in the graph G defined by a query. However, in some cases, we may also 
be interested in finding several densely linked collections of hubs and au-
thorities among the same base set of pages. Each of such collections could 
potentially be relevant to the query topic, but they could be well-separated 
from one another in the graph G for a variety of reasons. For example,  

1. The query string may be ambiguous with several very different mean-
ings, e.g., “jaguar”, which could be a cat or a car.  

2. The query string may represent a topic that may arise as a term in the 
multiple communities, e.g. “classification”. 

3. The query string may refer to a highly polarized issue, involving groups 
that are not likely to link to one another, e.g. “abortion”.  

In each of these examples, the relevant pages can be naturally grouped into 
several clusters, also called communities. In general, the top ranked au-
thorities and hubs represent the major cluster (or community). The smaller 
clusters (or communities), which are also represented by bipartite sub-
graphs as that in Fig. 7.9, can be found by computing non-principal eigen-
vectors. Non-principal eigenvectors are calculated in a similar way to 
power iteration using methods such as orthogonal iteration and QR itera-
tion. We will not discuss the details of these methods. Interested readers 
can refer to the book by Golub and Van Loan [203].  

7.4.3 Relationships with Co-Citation and Bibliographic 
Coupling 

Authority pages and hub pages have their matches in the bibliometric cita-
tion context. An authority page is like an influential research paper (publi-
cation) which is cited by many subsequent papers. A hub page is like a 
survey paper which cites many other papers (including those influential 
papers). It is no surprise that there is a connection between authority and 
hub, and co-citation and bibliographic coupling.  

Recall that co-citation of pages i and j, denoted by Cij, is computed as 

ij
T

n

k
kjkiij LLC )(

1

LL==∑
=

. (40) 

This shows that the authority matrix (LTL) of HITS is in fact the co-
citation matrix C in the Web context. Likewise, recall that bibliographic 
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coupling of two pages i and j, denoted by Bij, is computed as 
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which shows that the hub matrix (LLT) of HITS is the bibliographic cou-
pling matrix B in the Web context. 

7.4.4 Strengths and Weaknesses of HITS 

The main strength of HITS [281] is its ability to rank pages according to 
the query topic, which may be able to provide more relevant authority and 
hub pages. The ranking may also be combined with information retrieval 
based rankings. However, HITS has several disadvantages.  

• First of all, it does not have the anti-spam capability of PageRank. It is 
quite easy to influence HITS by adding out-links from one’s own page 
to point to many good authorities. This boosts the hub score of the page. 
Because hub and authority scores are interdependent, it in turn also in-
creases the authority score of the page.  

• Another problem of HITS is topic drift. In expanding the root set, it can 
easily collect many pages (including authority pages and hub pages) 
which have nothing to do the search topic because out-links of a page 
may not point to pages that are relevant to the topic and in-links to pages 
in the root set may be irrelevant as well because people put hyperlinks 
for all kinds of reasons, including spamming.  

• The query time evaluation is also a major drawback. Getting the root 
set, expanding it and then performing eigenvector computation are all 
time consuming operations. 
Over the years, many researchers tried to deal with these problems. We 

briefly discuss some of them below.  
It was reported by several researchers in [52, 310, 405] that small 

changes to the Web graph topology can significantly change the final au-
thority and hub vectors. Minor perturbations have little effect on PageR-
ank, which is more stable than HITS. This is essentially due to the random 
jump step of PageRank. Ng et al. [405] proposed a method by introducing 
the same random jump step to HITS (by jumping to the base set uniformly 
at random with probability d), and showed that it could improve the stabil-
ity of HITS significantly. Lempel and Moran [310] proposed SALSA, a 
stochastic algorithm for link structure analysis. SALSA combines some 
features of both PageRank and HITS to improve the authority and hub 
computation. It casts the problem as two Markov chains, an authority 
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Markov chain and a hub Markov chain. SALSA is less susceptible to spam 
since the coupling between hub and authority scores is much less strict. 

Bharat and Henzinger [52] proposed a simple method to fight two site 
nepotistic links. That means that a set of pages on one host points to a sin-
gle page on a second host. This drives up the hub scores of the pages on 
the first host and the authority score of the page on the second host. A 
similar thing can be done for hubs. These links may be authored by the 
same person and thus are regarded as “nepotistic” links to drive up the 
ranking of the target pages. [52] suggests weighting the links to deal with 
this problem. That is, if there are k edges from documents on a first host to 
a single document on a second host we give each edge an authority 
weight of 1/k. If there are l edges from a single page on a first host to a set 
of pages on a second host, we give each edge a hub weight of 1/l. These 
weights are used in the authority and hub computation. There are much 
more sophisticated spam techniques now involving more than two sites.  

Regarding the topic drifting of HITS, existing fixes are mainly based on 
content similarity comparison during the expansion of the root set. In [88], 
if an expanded page is too different from the pages in the root set in terms 
of content similarity (based on cosine similarity), it is discarded. The re-
maining links are also weighted according to similarity. [88] proposes a 
method that uses the similarity between the anchor text of a link and the 
search topic to weight the link (instead of giving each link 1 as in HITS). 
[84] goes further to segment the page based on the DOM (Document Ob-
ject Model) tree structure to identify the blocks or subtrees that are more 
related to the query topic instead of regarding the whole page as relevant to 
the search query. This is a good way to deal with multi-topic pages, which 
are abundant on the Web. A recent work on this is block-based link analy-
sis [78], which segments each Web page into different blocks. Each block 
is given a different importance value according to its location in the page 
and other information. The importance value is then used to weight the 
links in the HITS (and also PageRank) computation. This will reduce the 
impact of unimportant links, which usually cause topic drifting and may 
even be a link spam.  

7.5 Community Discovery  

Intuitively, a community is simply a group of entities (e.g., people or or-
ganizations) that shares a common interest or is involved in an activity or 
event. In Sect. 7.4.2, we showed that the HITS algorithm can be used to 
find communities. The communities are represented by dense bipartite sub-
graphs. We now describe several other community finding algorithms. 
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Apart from the Web, communities also exist in emails and text documents. 
This section describes two community finding algorithms for the Web, one 
community finding algorithm for emails, and one community finding algo-
rithm for text documents.  

There are many reasons for discovering communities. For example, in 
the context of the Web, Kumar et al. [293] listed three reasons:  

1. Communities provide valuable and possibly the most reliable, timely, 
and up-to-date information resources for a user interested in them.  

2. They represent the sociology of the Web: studying them gives insights 
into the evolution of the Web.  

3. They enable target advertising at a very precise level.  

7.5.1 Problem Definition 

Definition (community): Given a finite set of entities S = {s1, s2, …, sn} 
of the same type, a community is a pair C = (T, G), where T is the 
community theme and G ⊆ S is the set of all entities in S that shares the 
theme T. If si ∈ G, si is said to be a member of the community C.  

Some remarks about this definition are in order: 

• A theme defines a community. That is, given a theme T, the set of 
members of the community is uniquely determined. Thus, two commu-
nities are equal if they have the same theme.  

• A theme can be defined arbitrarily. For example, it can be an event (e.g., 
a sport event or a scandal) or a concept (e.g., Web mining). 

• An entity si in S can be in any number of communities. That is, commu-
nities may overlap, or multiple communities may share members.  

• The entities in S are of the same type. For example, this definition does 
not allow people and organizations to be in the same community.  

• By no means does this definition cover every aspect of communities in 
the real world. For example, it does not consider the temporal dimension 
of communities. Usually a community exists within a specific period of 
time. Similarly, an entity may belong to a community during some time 
periods.  

• This is a conceptual definition. In practice, different community mining 
algorithms have their own operational definitions which usually depend 
on how communities manifest themselves in the given data (which we 
will discuss shortly). Furthermore, the algorithms may not be able to 
discover all the members of a community or its precise theme.   

Communities may also have hierarchical structures.  
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Definition (sub-community, super-community, and sub-theme): A 
community (T, G) may have a set of sub-communities {(T1, G1), …, 
(Tm, Gm)}, where Ti is a sub-theme of T and Gi ⊆ G. (T, G) is also called 
a super-community of (Ti, Gi). In the same way, each sub-community 
(Ti, Gi) can be further decomposed, which gives us a community hier-
archy.  

Community Manifestation in Data: Given a data set, which can be a set 
of Web pages, a collection of emails, or a set of text documents, we want 
to find communities of entities in the data. However, the data itself usually 
does not explicitly give us the themes or the entities (community members) 
associated with the themes. The system needs to discover the hidden com-
munity structures. Thus, the first issue that we need to know is how com-
munities manifest themselves. From such manifested evidences, the system 
can discover possible communities. Different types of data may have dif-
ferent forms of manifestation. We give three examples.  

Web Pages: 

1. Hyperlinks: A group of content creators sharing a common interest is 
usually inter-connected through hyperlinks. That is, members in a com-
munity are more likely to be connected among themselves than outside 
the community.  

2. Content words: Web pages of a community usually contain words that 
are related to the community theme.   

Emails: 

1. Email exchange between entities: Members of a community are more 
likely to communicate with one another.  

2. Content words: Email contents of a community also contain words re-
lated to the theme of the community.   

Text documents: 

1. Co-occurrence of entities: Members of a community are more likely to 
appear together in the same sentence and/or the same document.  

2. Content words: Words in sentences indicate the community theme.    

Clearly, the key form of manifestation of a community is that its members 
are linked in some way. The associated text often contains words that are 
indicative of the community theme.  

Objective of Community Discovery: Given a data set containing entities, 
we want to discover hidden communities of the entities. For each commu-
nity, we want to find the theme and its members. The theme is usually rep-
resented with a set of keywords.  



264      7 Link Analysis 

7.5.2 Bipartite Core Communities 

HITS finds dense bipartite graph communities based on broad topic que-
ries. The question is whether it is possible to find all such communities ef-
ficiently from the crawl of the whole Web without using eigenvector com-
putation which is relatively inefficient. Kumar et al. [293] presented a 
technique for finding bipartite cores, which are defined as follows. 

Recall that the node set of a bipartite graph can be partitioned into two 
subsets, which we denote as set F and set C. A bipartite core is a com-
plete bipartite sub-graph with at least i nodes in F and at least j nodes in C. 
A complete bipartite graph on node sets F and C contains all possible 
edges between the vertices of F and the vertices of C. Note that edges 
within F or within C are allowed here to suit the Web context, which devi-
ate from the traditional definition of a complete bipartite graph. Intuitively, 
the core is a small (i, j)-sized complete bipartite sub-graph of the commu-
nity, which contains some core members of the community but not all. 

The cores that we seek are directed, i.e., there is a set of i pages all of 
which link to a set of j pages, while no assumption is made of links out of 
the latter set of j pages.  Intuitively, the former is the set of pages created 
by members of the community, pointing to what they believe are the most 
valuable pages for that community.  For this reason we will refer to the i 
pages that contain the links as fans, and the j pages that are referenced as 
centers (as in community centers). Fans are like specialized hubs, and cen-
ters are like authorities. Figure 7.11 shows an example of a bipartite core. 

 
Fig. 7.11. A (4, 3) bipartite core 

In Fig. 7.11, each fan page links to every center page. Since there are 
four fans and three centers, this is called a (4, 3) bipartite core. Such a core 
almost certainly represents a Web community, but a community may have 
multiple bipartite cores.  

Given a large number of pages crawled from the Web, which is repre-
sented as a graph, the procedure for finding bipartite cores consists of two 
major steps: pruning and core generation. 

 4 Fans  3 Centers 



7.5 Community Discovery      265 

Step 1: Pruning 

We describe two types of pruning to remove those unqualified pages to be 
fans or centers. There are also other pruning methods given in [293].  

1. Pruning by in-degree: we can delete all pages that are very highly ref-
erenced (linked) on the Web, such as homepages of Web portals (e.g., 
Yahoo!, AOL, etc). These pages are referenced for a variety of reasons, 
having little to do with any single emerging community, and they can be 
safely deleted. That is, we delete pages with the number of in-links great 
than k, which is determined empirically (k = 50 in [293]).  

2. Iterative pruning of fans and centers: If we are interested in finding 
(i, j) cores, clearly any potential fan with an out-degree smaller than j 
can be pruned and the associated edges deleted from the graph. Simi-
larly, any potential center with an in-degree smaller than i can be pruned 
and the corresponding edges deleted from the graph. This process can be 
done iteratively: when a fan gets pruned, some of the centers that it 
points to may have their in-degrees fall below the threshold i and qualify 
for pruning as a result. Similarly, when a center gets pruned, a fan that 
points to it could have its out-degree fall below its threshold of j and 
qualify for pruning. 

Step 2: Generating all (i, j) Cores 

After pruning, the remaining pages are used to discover cores. The method 
works as follows: Fixing j, we start with all (1, j) cores. This is simply the 
set of all vertices with out-degree at least j. We then construct all (2, j) 
cores by checking every fan which also points to any center in a (1, j) core. 
All (3, j) cores can be found in the same fashion by checking every fan 
which points to any center in a (2, j) core, and so on. The idea is similar to 
the Apriori algorithm for association rule mining (see Chap. 2) as every 
proper subset of the fans in any (i, j) core forms a core of smaller size.  

Based on the algorithm, Kumar et al. found a large number of topic co-
herent cores from a crawl of the Web [293]. We note that this algorithm 
only finds the core pages of the communities, not all members (pages). It 
also does not find the themes of the communities or their hierarchical or-
ganizations.  

7.5.3 Maximum Flow Communities 

Bipartite cores are usually very small and do not represent full communi-
ties. In this section, we define and find maximum flow communities based 
on the work of Flake et al. [180]. The algorithm requires the user to give a 



266      7 Link Analysis 

set of seed pages, which are examples of the community that the user 
wishes to find.  

Given a Web link graph G = (V, E), a maximum flow community is de-
fined as a collection C ⊂ V of Web pages such that each member page u ∈ 
C has more hyperlinks (in either direction) within the community C than 
outside of the community V-C. Identifying such a community is intractable 
in the general case because it can be mapped into a family of NP-complete 
graph partition problems. Thus, we need to approximate and recast it into a 
framework with less stringent conditions based on the network flow model 
from operations research, specifically the maximum flow model.  

The maximum flow model can be stated as follows: We are given a 
graph G = (V, E), where each edge (u, v) is thought of as having a positive 
capacity c(u, v) that limits the quantity of a product that may be shipped 
through the edge. In such a situation, it is often desirable to have the 
maximum amount of flow from a starting point s (called the source) and a 
terminal point t (called the sink). Intuitively, the maximum flow of the 
graph is determined by the bottleneck edges. For example, given the graph 
in Fig. 7.12 with the source s and the sink t, if every edge has the unit ca-
pacity, the bottleneck edges are W-X and Y-Z.  

 
Fig. 7.12. A simple flow network.  

The Max Flow-Min Cut theorem of Ford and Fulkerson [181] proves that 
the maximum flow of a network is identical to the minimum cut that sepa-
rates s and t. Many polynomial time algorithms exist for solving the s-t 
maximum flow problem. If Fig. 7.12 is a Web link graph, it is natural to 
cut the edges W-X and Y-Z to produce two Web communities.  

The basic idea of the approach in [180] is as follows: It starts with a set 
S of seed pages, which are example pages of the community that the user 
wishes to find. The system then crawls the Web to find more pages using 
the seed pages. A maximum flow algorithm is then applied to separate the 
community C involving the seed pages and the other pages. These steps 
may need to be repeated in order to find the desired community. Figure 
7.13 gives the algorithm.  

W  X 

Y  Z s t 
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The algorithm Find-Community is the control program. It takes a set S 
of seed Web pages as input, and crawls to a fixed depth including in-links 
as well as out-links (with in-links found by querying a search engine). It 
then applies the procedure Max-Flow-Community to the induced graph G 
from the crawl. After a community C is found, it ranks the pages in the 
community by the number of edges that each has inside of the community. 
Some highest ranked non-seed pages are added to the seed set. This is to 
create a big seed set for the next iteration in order to crawl more pages. 
The algorithm then iterates the procedure. Note that the first iteration may 
only identify a very small community. However, when new seeds are 
added, increasingly larger communities are identified. Heuristics are used 
to decide when to stop. 

The procedure Max-Flow-Community finds the actual community from 
G. Since a Web graph has no source and sink, it first augments the web 

Algorithm Find-Community (S) 
while number of iteration is less than desired do  
 build G = (V, E) by doing a fixed depth crawl starting from S;  
 k = |S|; 
 C = Max-Flow-Community(G, S, k); 
 rank all v ∈ C by the number of edges in C; 
 add the highest ranked non-seed vertices to S 
end-while 
return all v ∈ V still connected to the source s 
 

Procedure Max-Flow-Community(G, S, k) 
create artificial vertices, s and t and add to V;  // V is the vertex set of G.  
for all v ∈ S do 
 add (s, v) to E with c(s, v) = ∞ // E is the edge set of G. 
endfor 
for all (u, v) ∈ E, u ≠ s do   
 c(u, v) = k; 
 if (v, u) ∉ E then  

add (v, u) to E with c(v, u) = k 
endif 

endfor 
for all v ∈ V, v ∉ S ∪ {s, t} do  
 add (v, t) to E with c(v, t) = 1 
endfor 
Max-Flow(G, s, t); 
return all v ∈ V still connected to s.  

Fig. 7.13. The algorithm for mining maximum flow communities 
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graph by adding an artificial source, s, with infinite capacity edges routed 
to all seed vertices in S; making each pre-existing edge bidirectional and 
assigning each edge a constant capacity k. It then adds an artificial sink t 
and routes all vertices except the source, the sink, and the seed vertices to t 
with unit capacity. After augmenting the web graph, a residual flow graph 
is produced by a maximum flow procedure (Max-Flow()). All vertices ac-
cessible from s through non-zero positive edges form the desired result. 
The value k is heuristically chosen to be the size of the set S to ensure that 
after the artificial source and sink are added to the original graph, the same 
cuts will be produced as the original graph (see the proof in [179]). Figure 
7.14 shows the community finding process.  

Finally, we note that this algorithm does not find the theme of the com-
munity or the community hierarchy (i.e., sub-communities and so on).  

 
Fig. 7.14. Schematic representation of the community finding process 

7.5.4 Email Communities Based on Betweenness 

Email has become the predominant means of communication in the infor-
mation age. It has been established as an indicator of collaboration and 
knowledge (or information) exchange. Email exchanges provide plenty of 
data on personal communication for the discovery of shared interests and 
relationships between people, which were hard to discover previously. 

It is fairly straightforward to construct a graph based on email data. 
People are the vertices and the edges are added between people who corre-
sponded through email. Usually, the edge between two people is added if a 
minimum number of messages passed between them. The minimum num-
ber is controlled by a threshold, which can be tuned.  

To analyze an email graph or network, one can make use of all the cen-
trality measures and prestige measures discussed in Sect. 7.1. We now fo-
cus on community finding only.  

S 

Community 
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Cut set

Artificial 
sink  

Outside of the 
community 
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We are interested in people communities, which are subsets of vertices 
that are related. One way to identify communities is by partitioning the 
graph into discrete clusters such that there are few edges lying between the 
clusters. This definition is similar to that of the maximum flow commu-
nity. Betweenness in social networks is a natural measure for identifying 
those edges in between clusters or communities [523]. The idea is that in-
ter-community links, which are few, have high betweenness values, while 
the intra-community edges have low betweenness values. However, the be-
tweenness discussed in Sect. 7.1 is evaluated on each person in the net-
work. Here, we need to evaluate the betweenness of each edge. The idea is 
basically the same and Equation (4) can be used here without normaliza-
tion because we only find communities in a single graph. The betweenness 
of an edge is simply the number of shortest paths that pass it.  

If the graph is not connected, we identify communities from each con-
nected component. Given a connected graph, the method works iteratively 
in two steps (Fig. 7.15):  

repeat 
Compute the betweenness of each edge in the remaining graph; 
Remove the edge with the highest betweenness 

until the graph is suitably partitioned.  

Fig. 7.15. Community finding using the betweenness measure.   

Since the removal of an edge can strongly affect the betweenness of many 
other edges, we need to repeatedly re-compute the betweenness of all 
edges. The idea of the method is very similar to the minimum-cut method 
discussed in Sect. 7.5.3.  

The stopping criteria can be designed according to applications. In gen-
eral, we consider that the smallest community is a triangle. The algorithm 
should stop producing more unconnected components if there is no way to 
generate triangle communities. A component of five or fewer vertices can-
not consist of two viable communities. The smallest such component is 
six, which has two triangles connected by one edge, see Fig. 7.16. If any 
discovered community does not have a triangle, it may not be considered 
as a community. Clearly, other stopping criteria can be used.  

 
Fig. 7.16. The smallest possible graph of two viable communities.  
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7.5.5 Overlapping Communities of Named Entities 

Most community discovery algorithms are based on graph partitioning, 
which means that an entity can belong to only a single community. How-
ever, in real life, a person can be in multiple communities (see the defini-
tion in Sect. 7.5.1). For example, he/she can be in the community of his/her 
family, the community of his/her colleagues and the community of his/her 
friends. A heuristic technique is presented in [325] for finding overlapping 
communities of entities in text documents.   

In the Web or email context, there are explicit links connecting entities 
and forming communities. In free text documents, no explicit links exist. 
Then the question is: what constitutes a link between two entities in text 
documents? As we indicated earlier, one simple technique is to regard two 
entities as being linked if they co-occur in the same sentence. This method 
is reasonable because if two people are mentioned in a sentence there is 
usually a relationship between them. 

The objective is to find entity communities from a text corpus, which 
could be a set of given documents or the returned pages from a search en-
gine using a given entity as the search query. An entity here refers to the 
name of a person or an organization.  

The algorithm in [325] consists of four steps:  

1. Building a link graph: The algorithm first parses each document. For 
each sentence, it identifies named entities contained in the sentence. If a 
sentence has more than one named entities, these entities are pair-wise 
linked. The keywords in the sentence are attached to the linked pairs to 
form their textual contents. All the other sentences are discarded. 

2. Finding all triangles: The algorithm then finds all triangles, which are 
the basic building blocks of communities. A triangle consists of three 
entities bound together. The reason for using triangles is that it has been 
observed by researchers that a community expands predominantly by 
triangles sharing a common edge. 

3. Finding community cores: It next finds community cores. A community 
core is a group of tightly bound triangles, which are relaxed complete 
sub-graphs (or cliques). Intuitively, a core consists of a set of tightly 
connected members of a community.  

4. Clustering around community cores: For those triangles and also entity 
pairs that are not in any core, they are assigned to cores according to 
their textual content similarities with the discovered cores.  

It is clear that in this algorithm a single entity can appear in multiple com-
munities because an entity can appear in multiple triangles. To finish off, 
the algorithm also ranks the entities in each community according to de-
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gree centrality. Keywords associated with the edges of each community 
are also ranked. The top keywords are assumed to represent the theme of 
the community. The technique has been applied to find communities of po-
litical figures and celebrities from Web documents with promising results. 

Bibliographic Notes 

Social network analysis has a relative long history. A large number of in-
teresting problems and algorithms were studied in the past 60 years. The 
book by Wasserman and Faust [540] is an authoritative text of the field. 
Co-citation [494] and bibliographic coupling [275] are from bibliometrics, 
which is a type of research method used in library and information science. 
The book edited by Borgman [58] is a good source of information on both 
the research and applications of bibliometrics. 

The use of social network analysis in the Web context (also called link 
analysis) started with the PageRank algorithm proposed by Brin and Page 
[68] and Page et al. [422], and the HITS algorithm proposed by Kleinberg 
[281]. PageRank is also the algorithm that powers the Google search en-
gine. Due to several weaknesses of HITS, many researchers have tried to 
improve it. Various enhancements were reported by Lempel and Moran 
[310], Bharat and Henzinger [52], Chakrabarti et al. [88], Cai et al. [78], 
etc. The book by Langville and Meyer [304] contains in-depth analyses of 
PageRank, HITS and many enhancements to HITS. Other works related to 
Web link analysis include those in [98, 226, 266, 368] on improving the 
PageRank computation, in [168] on searching workspace Web, in [103, 
182, 183, 416] on the evolution of the Web and the search engine influence 
on the Web, in [140, 142, 410, 516] on other link based models, in [34, 
440, 370, 371] on Web graph and its characteristics, in [37, 51, 235] on 
sampling of Web pages, and in [32, 425, 585] on the temporal dimension 
of Web search.  

On community discovery, HITS can find some communities by comput-
ing non-principal eigenvectors [198, 281]. Kumar et al. [293] proposed the 
algorithm for finding bipartite cores. Flake et al. [179] introduced the 
maximum flow community mining. Ino et al. [249] presented a more strict 
definition of communities. Tyler et al. [523] gave the method for finding 
email communities based on betweenness. The algorithm for finding over-
lapping communities of named entities from texts was given by Li et al. 
[325]. More recent developments on communities and social networks on 
the Web can be found in [16, 21, 137, 158, 200, 518, 519, 561, 618]. 
 



 

 

8 Web Crawling  

Web crawlers, also known as spiders or robots, are programs that auto-
matically download Web pages. Since information on the Web is scattered 
among billions of pages served by millions of servers around the globe, 
users who browse the Web can follow hyperlinks to access information, 
virtually moving from one page to the next. A crawler can visit many sites 
to collect information that can be analyzed and mined in a central location, 
either online (as it is downloaded) or off-line (after it is stored). 

Were the Web a static collection of pages, we would have little long 
term use for crawling. Once all the pages are fetched and saved in a reposi-
tory, we are done. However, the Web is a dynamic entity evolving at rapid 
rates. Hence there is a continuous need for crawlers to help applications 
stay current as pages and links are added, deleted, moved or modified. 

There are many applications for Web crawlers. One is business intelli-
gence, whereby organizations collect information about their competitors 
and potential collaborators. Another use is to monitor Web sites and pages 
of interest, so that a user or community can be notified when new informa-
tion appears in certain places. There are also malicious applications of 
crawlers, for example, that harvest email addresses to be used by spam-
mers or collect personal information to be used in phishing and other iden-
tity theft attacks. The most widespread use of crawlers is, however, in sup-
port of search engines. In fact, crawlers are the main consumers of Internet 
bandwidth. They collect pages for search engines to build their indexes. 
Well known search engines such as Google, Yahoo! and MSN run very ef-
ficient universal crawlers designed to gather all pages irrespective of their 
content. Other crawlers, sometimes called preferential crawlers, are more 
targeted. They attempt to download only pages of certain types or topics.  

This chapter introduces the main concepts, algorithms and data struc-
tures behind Web crawlers. After discussing the implementation issues that 
all crawlers have to address, we describe different types of crawlers: uni-
versal, focused, and topical. We also discuss some of the ethical issues 
around crawlers. Finally, we peek at possible future uses of crawlers in 
support of alternative models where crawling and searching activities are 
distributed among a large community of users connected by a dynamic and 
adaptive peer network.  

By Filippo Menczer 
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8.1 A Basic Crawler Algorithm 

In its simplest form, a crawler starts from a set of seed pages (URLs) and 
then uses the links within them to fetch other pages. The links in these 
pages are, in turn, extracted and the corresponding pages are visited. The 
process repeats until a sufficient number of pages are visited or some other 
objective is achieved. This simple description hides many delicate issues 
related to network connections, spider traps, URL canonicalization, page 
parsing, and crawling ethics. In fact, Google founders Sergey Brin and 
Lawrence Page, in their seminal paper, identified the Web crawler as the 
most sophisticated yet fragile component of a search engine [68]. 

Figure 8.1 shows the flow of a basic sequential crawler. Such a crawler 
fetches one page at a time, making inefficient use of its resources. Later in 
the chapter we discuss how efficiency can be improved by the use of mul-
tiple processes, threads, and asynchronous access to resources. The crawler 
maintains a list of unvisited URLs called the frontier. The list is initialized 
with seed URLs which may be provided by the user or another program. In 
each iteration of its main loop, the crawler picks the next URL from the 
frontier, fetches the page corresponding to the URL through HTTP, parses 
the retrieved page to extract its URLs, adds newly discovered URLs to the 
frontier, and stores the page (or other extracted information, possibly index 
terms) in a local disk repository. The crawling process may be terminated 
when a certain number of pages have been crawled. The crawler may also 
be forced to stop if the frontier becomes empty, although this rarely hap-
pens in practice due to the high average number of links (on the order of 
ten out-links per page across the Web).  

A crawler is, in essence, a graph search algorithm. The Web can be seen 
as a large graph with pages as its nodes and hyperlinks as its edges. A 
crawler starts from a few of the nodes (seeds) and then follows the edges to 
reach other nodes. The process of fetching a page and extracting the links 
within it is analogous to expanding a node in graph search.  

The frontier is the main data structure, which contains the URLs of un-
visited pages. Typical crawlers attempt to store the frontier in the main 
memory for efficiency. Based on the declining price of memory and the 
spread of 64-bit processors, quite a large frontier size is feasible. Yet the 
crawler designer must decide which URLs have low priority and thus get 
discarded when the frontier is filled up. Note that given some maximum 
size, the frontier will fill up quickly due to the high fan-out of pages. Even 
more importantly, the crawler algorithm must specify the order in which 
new URLs are extracted from the frontier to be visited. These mechanisms 
determine the graph search algorithm implemented by the crawler.  
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Fig. 8.1. Flow chart of a basic sequential crawler. The main data operations are 
shown on the left, with dashed arrows. 

8.1.1 Breadth-First Crawlers 

The frontier may be implemented as a first-in-first-out (FIFO) queue, cor-
responding to a breadth-first crawler. The URL to crawl next comes from 
the head of the queue and new URLs are added to the tail of the queue.  
Once the frontier reaches its maximum size, the breadth-first crawler can 
add to the queue only one unvisited URL from each new page crawled. 
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The breadth-first strategy does not imply that pages are visited in “ran-
dom” order. To understand why, we have to consider the highly skewed, 
long-tailed distribution of indegree in the Web graph. Some pages have a 
number of links pointing to them that are orders of magnitude larger than 
the mean. Indeed, the mean indegree is not statistically significant when 
the indegree k is distributed according to a power law Pr(k) ∼ k−γ with ex-
ponent γ < 3 [437]. For the Web graph, this is the case, with γ ≈ 2.1 [69]. 
This means that the fluctuations of indegree are unbounded, i.e., the stan-
dard deviation is bounded only by the finite size of the graph. Intuitively, 
popular pages have so many incoming links that they act like attractors for 
breadth-first crawlers. It is therefore not surprising that the order in which 
pages are visited by a breadth-first crawler is highly correlated with their 
PageRank or indegree values. An important implication of this phenome-
non is an intrinsic bias of search engines to index well connected pages.  

Another reason that breadth-first crawlers are not “random” is that they 
are greatly affected by the choice of seed pages. Topical locality measures 
indicate that pages in the link neighborhood of a seed page are much more 
likely to be related to the seed pages than randomly selected pages.  These 
and other types of bias are important to universal crawlers (Sect. 8.3).  

As mentioned earlier, only unvisited URLs are to be added to the fron-
tier. This requires some data structure to be maintained with visited URLs. 
The crawl history is a time-stamped list of URLs fetched by the crawler 
tracking its path through the Web. A URL is entered into the history only 
after the corresponding page is fetched. This history may be used for post-
crawl analysis and evaluation. For example, we want to see if the most 
relevant or important resources are found early in the crawl process. While 
history may be stored on disk, it is also maintained as an in-memory data 
structure for fast look-up, to check whether a page has been crawled or not. 
This check is required to avoid revisiting pages or wasting space in the 
limited-size frontier. Typically a hash table is appropriate to obtain quick 
URL insertion and look-up times (O(1)). The look-up process assumes that 
one can identify two URLs effectively pointing to the same page. This in-
troduces the need for canonical URLs (see Sect. 8.2).  

Another important detail is the need to prevent duplicate URLs from be-
ing added to the frontier. A separate hash table can be maintained to store 
the frontier URLs for fast look-up to check whether a URL is already in it.  

8.1.2 Preferential Crawlers 

A different crawling strategy is obtained if the frontier is implemented as a 
priority queue rather than a FIFO queue. Typically, preferential crawl-
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ers assign each unvisited link a priority based on an estimate of the value 
of the linked page. The estimate can be based on topological properties 
(e.g., the indegree of the target page), content properties (e.g., the similar-
ity between a user query and the source page), or any other combination of 
measurable features. For example, the goal of a topical crawler is to follow 
edges that are expected to lead to portions of the Web graph that are rele-
vant to a user-selected topic. The choice of seeds is even more important in 
this case than for breadth-first crawlers. We will discuss various preferen-
tial crawling algorithms in Sects. 8.4 and 8.5. For now let us simply as-
sume that some function exists to assign a priority value or score to each 
unvisited URL. If pages are visited in the order specified by the priority 
values in the frontier, then we have a best-first crawler.  

The priority queue may be a dynamic array that is always kept sorted by 
URL scores. At each step, the best URL is picked from the head of the 
queue.  Once the corresponding page is fetched, the URLs extracted from 
it must, in turn, be scored. They are then added to the frontier in such a 
manner that the sorting order of the priority queue is maintained. As for 
breadth-first, best-first crawlers also need to avoid duplicate URLs in the 
frontier. Keeping a separate hash table for look-up is an efficient way to 
achieve this. The time complexity of inserting a URL into the priority 
queue is O(logF), where F is the frontier size (looking up the hash requires 
constant time). To dequeue a URL, it must first be removed from the prior-
ity queue (O(logF)) and then from the hash table (again O(1)). Thus the 
parallel use of the two data structures yields a logarithmic total cost per 
URL. Once the frontier’s maximum size is reached, only the best URLs are 
kept; the frontier must be pruned after each new set of links is added.  

8.2 Implementation Issues 

8.2.1 Fetching 

To fetch pages, a crawler acts as a Web client; it sends an HTTP request to 
the server hosting the page and reads the response. The client needs to 
timeout connections to prevent spending unnecessary time waiting for re-
sponses from slow servers or reading huge pages. In fact, it is typical to re-
strict downloads to only the first 10-100 KB of data for each page. The cli-
ent parses the response headers for status codes and redirections. Redirect 
loops are to be detected and broken by storing URLs from a redirection 
chain in a hash table and halting if the same URL is encountered twice. 
One may also parse and store the last-modified header to determine the age 
of the document, although this information is known to be unreliable. Er-
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ror-checking and exception handling is important during the page fetching 
process since the same code must deal with potentially millions of remote 
servers. In addition, it may be beneficial to collect statistics on timeouts 
and status codes to identify problems or automatically adjust timeout val-
ues. Programming languages such as Java, Python and Perl provide simple 
programmatic interfaces for fetching pages from the Web.  However, one 
must be careful in using high-level interfaces where it may be harder to de-
tect lower-level problems. For example, a robust crawler in Perl should use 
the Socket module to send HTTP requests rather than the higher-level 
LWP library (the World-Wide Web library for Perl). The latter does not al-
low fine control of connection timeouts. 

8.2.2 Parsing 

Once (or while) a page is downloaded, the crawler parses its content, i.e., 
the HTTP payload, and extracts information both to support the crawler’s 
master application (e.g., indexing the page if the crawler supports a search 
engine) and to allow the crawler to keep running (extracting links to be 
added to the frontier). Parsing may imply simple URL extraction from hy-
perlinks, or more involved analysis of the HTML code. The Document Ob-
ject Model (DOM) establishes the structure of an HTML page as a tag tree, 
as illustrated in Fig. 8.2. HTML parsers build the tree in a depth-first man-
ner, as the HTML source code of a page is scanned linearly. 

Unlike program code, which must compile correctly or else will fail 
with a syntax error, correctness of HTML code tends to be laxly enforced 
by browsers. Even when HTML standards call for strict interpretation, de 
facto standards imposed by browser implementations are very forgiving. 
This, together with the huge population of non-expert authors generating 
Web pages, imposes significant complexity on a crawler's HTML parser. 
Many pages are published with missing required tags, tags improperly 
nested, missing close tags, misspelled or missing attribute names and val-
ues, missing quotes around attribute values, unescaped special characters, 
and so on.  As an example, the double quotes character in HTML is re-
served for tag syntax and thus is forbidden in text. The special HTML en-
tity &quot; is to be used in its place. However, only a small number of au-
thors are aware of this, and a large fraction of Web pages contains this 
illegal character. Just like browsers, crawlers must be forgiving in these 
cases; they cannot afford to discard many important pages as a strict parser 
would do. A wise preprocessing step taken by robust crawlers is to apply a 
tool such as tidy (www.w3.org/People/Raggett/tidy) to clean up the HTML 
content prior to parsing. To add to the complexity, there are many coexist-
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ing HTML and XHTML reference versions. However, if the crawler only 
needs to extract links within a page and/or the text in the page, simpler 
parsers may suffice. The HTML parsers available in high-level languages 
such as Java and Perl are becoming increasingly sophisticated and robust. 

 

Fig. 8.2. Illustration of the DOM (or tag) tree built from a simple HTML page. 
Internal nodes (shown as ovals) represent HTML tags, with the <html> tag as the 
root. Leaf nodes (shown as rectangles) correspond to text chunks. 

A growing portion of Web pages are written in formats other than 
HTML. Crawlers supporting large-scale search engines routinely parse and 
index documents in many open and proprietary formats such as plain text, 
PDF, Microsoft Word and Microsoft PowerPoint. Depending on the appli-
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cation of the crawler, this may or may not be required. Some formats pre-
sent particular difficulties as they are written exclusively for human inter-
action and thus are especially unfriendly to crawlers. For instance, some 
commercial sites use graphic animations in Flash; these are difficult for a 
crawler to parse in order to extract links and their textual content. Other 
examples include image maps and pages making heavy use of Javascript 
for interaction. New challenges are going to come as new standards such 
as Scalable Vector Graphics (SVG), Asynchronous Javascript and XML 
(AJAX), and other XML-based languages gain popularity.  

8.2.3 Stopword Removal and Stemming 

When parsing a Web page to extract the content or to score new URLs 
suggested by the page, it is often helpful to remove so-called stopwords, 
i.e., terms such as articles and conjunctions, which are so common that 
they hinder the discrimination of pages on the basis of content.   

Another useful technique is stemming, by which morphological variants 
of terms are conflated into common roots (stems). In a topical crawler 
where a link is scored based on the similarity between its source page and 
the query, stemming both the page and the query helps improve the 
matches between the two sets and the accuracy of the scoring function.  

Both stop-word removal and stemming are standard techniques in in-
formation retrieval, and are discussed in greater detail in Chap. 6. 

8.2.4 Link Extraction and Canonicalization 

HTML parsers provide the functionality to identify tags and associated at-
tribute-value pairs in a given Web page. In order to extract hyperlink 
URLs from a page, we can use a parser to find anchor (<a>) tags and grab 
the values of the associated href attributes. However, the URLs thus ob-
tained need to be further processed. First, filtering may be necessary to ex-
clude certain file types that are not to be crawled. This can be achieved 
with white lists (e.g., only follow links to text/html content pages) or black 
lists (e.g., discard links to PDF files). The identification of a file type may 
rely on file extensions. However, they are often unreliable and sometimes 
missing altogether. We cannot afford to download a document and then 
decide whether we want it or not. A compromise is to send an HTTP 
HEAD request and inspect the content-type response header, which is usu-
ally a more reliable label.  

Another type of filtering has to do with the static or dynamic nature of 
pages. A dynamic page (e.g., generated by a CGI script) may indicate a 
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query interface for a database or some other application in which a crawler 
may not be interested. In the early days of the Web, such pages were few 
and easily recognizable, e.g., by matching URLs against the /cgi-bin/ direc-
tory name for CGI scripts, or against the special characters [?=&] used in 
CGI query strings. However, the use of dynamic content has become much 
more common; it is used in a variety of sites for content that is perfectly 
indexable. Most importantly, its dynamic nature is very difficult to recog-
nize via URL inspection. For these reasons, most crawlers no longer make 
such distinction between static and dynamic content. While a crawler nor-
mally would not create query URLs autonomously (unless it is designed to 
probe the so-called deep or hidden Web, which contain databases with 
query interfaces), it will happily crawl URLs hard-coded in HTML source 
of parsed pages.  In other words, if a URL is found in a Web page, it is fair 
game. There is one important exception to this strategy, the spider trap, 
which is discussed below. 

Before links can be added to the frontier, relative URLs must be con-
verted to absolute URLs. For example, the relative URL news/today.html 
in the page http://www.somehost.com/index.html is to be transformed into 
the absolute form http://www.somehost.com/news/today.html. There are 
various rules to convert relative URLs into absolute ones. A relative URL 
can be expressed as a relative or absolute path relative to the Web server’s 
document root directory. The base URL may be specified by an HTTP 
header or a meta-tag within an HTML page, or not at all–in the latter case 
the directory of the hyperlink’s source page is used as a base URL. 

Converting relative URLs is just one of many steps that make up the 
canonicalization process, i.e., the conversion of a URL into a canonical 
form. The definition of canonical form is somewhat arbitrary, so that dif-
ferent crawlers may specify different rules. For example, one crawler may 
always specify the port number within the URL (e.g.,  
http://www.somehost.com:80/), while another may specify the port number 
only when it is not 80 (the default HTTP port). As long as the canonical 
form is applied consistently by a crawler, such distinctions are inconse-
quential. Some programming languages such as Perl provide modules to 
manage URLs, including methods for absolute/relative conversion and 
canonicalization. However, several canonicalization steps require the ap-
plication of heuristic rules, and off-the-shelf tools typically do not provide 
such functionalities. A crawler may also need to use heuristics to detect 
when two URLs point to the same page in order to minimize the likelihood 
that the same page is fetched multiple times. Table 8.1 lists the steps typi-
cally employed to canonicalize a URL.    
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Table 8.1. Some transformations to convert URLs to canonical forms. Stars indi-
cate heuristic rules, where there is a tradeoff between the risk of altering the se-
mantics of the URL (if a wrong guess is made) and the risk of missing duplicate 
URLs (if no transformation is applied) for the same target 

Description and transformation Example and canonical form 
Default port number  http://cs.indiana.edu:80/ 
Remove  http://cs.indiana.edu/ 
Root directory  http://cs.indiana.edu 
Add trailing slash  http://cs.indiana.edu/ 
Guessed directory*  http://cs.indiana.edu/People 
Add trailing slash  http://cs.indiana.edu/People/ 
Fragment  http://cs.indiana.edu/faq.html#3 
Remove  http://cs.indiana.edu/faq.html 
Current or parent directory  http://cs.indiana.edu/a/./../b/ 
Resolve path  http://cs.indiana.edu/b/ 
Default filename*  http://cs.indiana.edu/index.html 
Remove  http://cs.indiana.edu/ 
Needlessly encoded characters  http://cs.indiana.edu/%7Efil/ 
Decode  http://cs.indiana.edu/~fil/ 
Disallowed characters  http://cs.indiana.edu/My File.htm 
Encode  http://cs.indiana.edu/My%20File.htm 
Mixed/upper-case host names  http://CS.INDIANA.EDU/People/ 
Lower-case  http://cs.indiana.edu/People/ 

8.2.5 Spider Traps 

A crawler must be aware of spider traps. These are Web sites where the 
URLs of dynamically created links are modified based on the sequence of 
actions taken by the browsing user (or crawler). Some e-commerce sites 
such as Amazon.com may use URLs to encode which sequence of products 
each user views. This way, each time a user clicks a link, the server can log 
detailed information on the user's shopping behavior for later analysis. As 
an illustration, consider a dynamic page for product x, whose URL path is 
/x and that contains a link to product y. The URL path for this link would 
be /x/y to indicate that the user is going from page x to page y. Now sup-
pose the page for y has a link back to product x. The dynamically created 
URL path for this link would be /x/y/x, so that the crawler would think this 
is a new page when in fact it is an already visited page with a new URL. 
As a side effect of a spider trap, the server may create an entry in a data-
base every time the user (or crawler) clicks on certain dynamic links. An 
example might be a blog or message board where users can post com-
ments. These situations create sites that appear infinite to a crawler, be-
cause the more links are followed, the more new URLs are created. How-
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ever these new “dummy” links do not lead to existing or new content, but 
simply to dynamically created form pages, or to pages that have already 
been visited. Thus a crawler could go on crawling inside the spider trap 
forever without actually fetching any new content. 

In practice spider traps are not only harmful to the crawler, which 
wastes bandwidth and disk space to download and store duplicate or use-
less data. They may be equally harmful to the server sites. Not only does 
the server waste its bandwidth, the side effect of a crawler caught in a spi-
der trap may also be filling a server-side database with bogus entries. The 
database may eventually become filled to capacity, and the site may be 
disabled as a result. This is a type of denial of service attack carried out 
unwittingly by the crawler. 

In some cases a spider trap needs the client to send a cookie set by the 
server for the dynamic URLs to be generated. So the problem is prevented 
if the crawler avoids accepting or sending any cookies. However, in most 
cases a more proactive approach is necessary to defend a crawler against 
spider traps. Since the dummy URLs often become larger and larger in size 
as the crawler becomes entangled in a spider trap, one common heuristic 
approach to tackle such traps is by limiting the URL sizes to some maxi-
mum number of characters, say 256. If a longer URL is encountered, the 
crawler should simply ignore it. Another way is by limiting the number of 
pages that the crawler requests from a given domain. The code associated 
with the frontier can make sure that every consecutive sequence of, say, 
100 URLs fetched by the crawler contains at most one URL from each 
fully qualified host name. This approach is also germane to the issue of 
crawler etiquette, discussed later. 

8.2.6 Page Repository 

Once a page is fetched, it may be stored/indexed for the master application 
(e.g., a search engine). In its simplest form a page repository may store 
the crawled pages as separate files. In this case each page must map to a 
unique file name. One way to do this is to map each page's URL to a com-
pact string using some hashing function with low probability of collisions, 
e.g., MD5. The resulting hash value is used as a (hopefully) unique file 
name. The shortcoming of this approach is that a large scale crawler would 
incur significant time and disk space overhead from the operating system 
to manage a very large number of small individual files.  

A more efficient solution is to combine many pages into one file. A 
naïve approach is to simply concatenate some number of pages (say 1,000) 
into each file, with some special markup to separate and identify the pages 
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within the file. This requires a separate look-up table to map URLs to file 
names and IDs within each file. A better method is to use a database to 
store the pages, indexed by (canonical) URLs. Since traditional RDBMSs 
impose high overhead, embedded databases such as the open-source 
Berkeley DB are typically preferred for fast access. Many high-level 
languages such as Java and Perl provide simple APIs to manage Berkeley 
DB files, for example as tied associative arrays. This way the storage 
management operations become nearly transparent to the crawler code, 
which can treat the page repository as an in-memory data structure.  

8.2.7 Concurrency 

A crawler consumes three main resources: network, CPU, and disk. Each 
is a bottleneck with limits imposed by bandwidth, CPU speed, and disk 
seek/transfer times. The simple sequential crawler described in Sect. 8.1 
makes a very inefficient use of these resources because at any given time 
two of them are idle while the crawler attends to the third.  

The most straightforward way to speed-up a crawler is through concur-
rent processes or threads. Multiprocessing may be somewhat easier to im-
plement than multithreading depending on the programming language and 
platform, but it may also incur a higher overhead due to the involvement of 
the operating system in the management (creation and destruction) of child 
processes. Whether threads or processes are used, a concurrent crawler 
may follow a standard parallel computing model [292] as illustrated in Fig. 
8.3. Basically each thread or process works as an independent crawler, ex-
cept for the fact that access to the shared data structures (mainly the fron-
tier, and possibly the page repository) must be synchronized. In particular 
a frontier manager is responsible for locking and unlocking the frontier 
data structures so that only one process or thread can write to them at one 
time. Note that both enqueueing and dequeuing are write operations. Addi-
tionally, the frontier manager would maintain and synchronize access to 
other shared data structures such as the crawl history for fast look-up of 
visited URLs.  

It is a bit more complicated for a concurrent crawler to deal with an 
empty frontier than for a sequential crawler. An empty frontier no longer 
implies that the crawler has reached a dead-end, because other processes 
may be fetching pages and adding new URLs in the near future. The proc-
ess or thread manager may deal with such a situation by sending a tempo-
rary sleep signal to processes that report an empty frontier. The process 
manager needs to keep track of the number of sleeping processes; when all 
the processes are asleep, the crawler must halt.  
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Fig. 8.3. Architecture of a concurrent crawler 
 

The concurrent design can easily speed-up a crawler by a factor of 5 or 
10. The concurrent architecture however does not scale up to the perform-
ance needs of a commercial search engine. We discuss in Sect. 8.3 further 
steps that can be taken to achieve more scalable crawlers.  

8.3 Universal Crawlers 

General purpose search engines use Web crawlers to maintain their indices 
[25], amortizing the cost of crawling and indexing over the millions of 
queries received between successive index updates (though indexers are 
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designed for incremental updates [101]. These large-scale universal crawl-
ers differ from the concurrent breadth-first crawlers described above along 
two major dimensions: 

1. Performance: They need to scale up to fetching and processing hun-
dreds of thousands of pages per second. This calls for several architec-
tural improvements.  

2. Policy: They strive to cover as much as possible of the most important 
pages on the Web, while maintaining their index as fresh as possible. 
These goals are, of course, conflicting so that the crawlers must be de-
signed to achieve good tradeoffs between their objectives.  

Next we discuss the main issues in meeting these requirements.  

8.3.1 Scalability 

Figure 8.4 illustrates the architecture of a large-scale crawler, based on the 
accounts in the literature [68, 85, 238]. The most important change from 
the concurrent model discussed earlier is the use of asynchronous sockets 
in place of threads or processes with synchronous sockets. Asynchronous 
sockets are non-blocking, so that a single process or thread can keep hun-
dreds of network connections open simultaneously and make efficient use 
of network bandwidth. Not only does this eliminate the overhead due to 
managing threads or processes, it also makes locking access to shared data 
structures unnecessary. Instead, the sockets are polled to monitor their 
states. When an entire page has been fetched into memory, it is processed 
for link extraction and indexing. This “pull” model eliminates contention 
for resources and the need for locks.  

The frontier manager can improve the efficiency of the crawler by main-
taining several parallel queues, where the URLs in each queue refer to a 
single server. In addition to spreading the load across many servers within 
any short time interval, this approach allows to keep connections with 
servers alive over many page requests, thus minimizing the overhead of 
TCP opening and closing handshakes. 

The crawler needs to resolve host names in URLs to IP addresses. The 
connections to the Domain Name System (DNS) servers for this purpose 
are one of the major bottlenecks of a naïve crawler, which opens a new 
TCP connection to the DNS server for each URL. To address this bottle-
neck, the crawler can take several steps. First, it can use UDP instead of 
TCP as the transport protocol for DNS requests. While UDP does not 
guarantee delivery of packets and a request can occasionally be dropped, 
this is rare. On the other hand, UDP incurs no connection overhead with a 



8.3 Universal Crawlers      287 

 

significant speed-up over TCP. Second, the DNS server should employ a 
large, persistent, and fast (in-memory) cache. Finally, the pre-fetching of 
DNS requests can be carried out when links are extracted from a page. In 
addition to being added to the frontier, the URLs can be scanned for host 
names to be sent to the DNS server. This way, when a URL is later ready 
to be fetched, the host IP address is likely to be found in the DNS cache, 
obviating the need to propagate the request through the DNS tree. 

 
Fig. 8.4. High-level architecture of a scalable universal crawler 
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In addition to making more efficient use of network bandwidth through 
asynchronous sockets, large-scale crawlers can increase network band-
width by using multiple network connections switched to multiple routers, 
thus utilizing the networks of multiple Internet service providers. Simi-
larly, disk I/O throughput can be boosted via a storage area network con-
nected to a storage pool through a fibre channel switch. 

8.3.2 Coverage vs. Freshness vs. Importance 

Given the size of the Web, it is not feasible even for the largest-scale 
crawlers employed by commercial search engines to index all of the con-
tent that could be accessed. Instead, search engines aim to focus on the 
most “important” pages, where importance is assessed based on various 
factors such as link popularity measures (indegree or PageRank) [102, 
234]. At the time of this writing the three major commercial search engines 
report index sizes in the order of 1010 pages, while the indexable Web may 
be at least an order of magnitude larger.  

The simplest strategy to bias the crawler in favor of popular pages is to 
do nothing – given the long-tailed distribution of indegree discussed in 
Sect. 8.1, a simple breadth-first crawling algorithm will tend to fetch the 
pages with the highest PageRank by definition, as confirmed empirically 
[401]. In fact, one would have to apply a reverse bias to obtain a fair sam-
ple of the Web. Suppose that starting with a random Web walk, we wanted 
a random sample of pages drawn with uniform probability distribution 
across all pages. We can write the posterior probability of adding a page p 
to the sample as Pr(accept(p)|crawl(p))⋅Pr(crawl(p)) where the first factor 
is the conditional probability of accepting the page into the sample given 
that it was crawled, and the second factor is the prior probability of crawl-
ing the page in the random walk. We can find the acceptance strategy to 
obtain a uniform sample by setting the product to a constant, yielding 
Pr(accept(p)|crawl(p)) ∼ 1/Pr(crawl(p)). The prior Pr(crawl(p)) is given by 
the PageRank of p, and can be approximated during the random walk by 
the frequency f(p) that the crawler has encountered a link to p. So there-
fore, each visited page p should be accepted with probability proportional 
to 1/f(p). Empirical tests on a simulated Web graph validate that this strat-
egy yields a sample of the graph that is statistically representative of the 
original [235].  

The goal to cover as many pages as possible (among the most important 
ones) is in conflict with the need to maintain a fresh index. Because of the 
highly dynamic nature of the Web, with pages being added, deleted, and 
modified all the time, it is necessary for a crawler to revisit pages already 
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in the index in order to keep the index up-to-date. Many studies have been 
conducted to analyze the dynamics of the Web, i.e., the statistical proper-
ties of the processes leading to change in Web structure and content 66, 
101, 152, 177, 416]. They all indicate that the Web changes at very rapid 
rates. While early studies relied on the values reported by Web servers in 
the last-modified HTTP header, recently there is consensus that this infor-
mation has little reliability. The most recent and exhaustive study at the 
time of this writing [416] reports that while new pages are created at a rate 
of about 8% per week, only about 62% of the content of these pages is 
really new because pages are often copied from existing ones. The link 
structure of the Web is more dynamic, with about 25% new links created 
per week. Once created, pages tend to change little so that most of the 
changes observed in the Web are due to additions and deletions rather than 
modifications. Finally, there is an agreement on the observation that the 
degree of change of a page is a better predictor of future change than the 
frequency of change [177, 416]. This suggests that crawler revisit strate-
gies based on frequency of change [25, 101] may not be the most appropri-
ate for achieving a good tradeoff between coverage and freshness. 

8.4 Focused Crawlers 

Rather than crawling pages from the entire Web, we may want to crawl 
only pages in certain categories. One applications of such a preferential 
crawler would be to maintain a Web taxonomy such as the Yahoo! Direc-
tory (dir.yahoo.com) or the volunteer-based Open Directory Project 
(ODP, dmoz.org). Suppose you are the ODP editor for a certain category; 
you may wish to launch such a crawler from an initial seed set of pages 
relevant to that category, and see if any new pages discovered should be 
added to the directory, either directly under the category in question or one 
of its subcategories. A focused crawler attempts to bias the crawler to-
wards pages in certain categories in which the user is interested. 

Chakrabarti et al. [87] proposed a focused crawler based on a classifier. 
The idea is to first build a text classifier using labeled example pages from, 
say, the ODP. Then the classifier would guide the crawler by preferentially 
selecting from the frontier those pages that appear most likely to belong to 
the categories of interest, according to the classifier's prediction. To train 
the classifier, example pages are drawn from various categories in the tax-
onomy as shown in Fig. 8.5. The classification algorithm used was the na-
ïve Bayesian method (see Chap. 3). For each category c in the taxonomy 
we can build a Bayesian classifier to compute the probability Pr(c|p) that a 
crawled page p belongs to c (by definition, Pr(top|p) = 1 for the top or root 
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category). The user can select a set c* of categories of interest. Each 
crawled page is assigned a relevance score.  

∑ ∈
= * ).|Pr()(

cc
pcpR  (1) 

 

Two strategies were explored. In the “soft” focused strategy, the crawler 
uses the score R(p) of each crawled page p as a priority value for all unvis-
ited URLs extracted from p. The URLs are then added to the frontier, 
which is treated as a priority queue (see Sect. 8.1.2). In the “hard” focused 
strategy, for a crawled page p, the classifier first finds the leaf category 

)(ˆ pc  in the taxonomy most likely to include p: 

ˆ c ( p) = arg max
c: / ∃ c'⊂c

Pr(c | p). (2) 

If an ancestor of )(ˆ pc  is a focus category, i.e., ∃c’: )(ˆ pc ⊂ c’∧ c’∈ c*, 
then the URLs from the crawled page p are added to the frontier. Other-
wise they are discarded. The idea is illustrated in Fig. 8.5 (left). For exam-
ple, imagine a crawler focused on soccer (c' = soccer ∈ c*) visits a page p 
in the FIFA World Cup Germany 2006 site. If the classifier correctly as-
signs p to the leaf category ĉ =Sports/Soccer/Competitions/World_Cup/2006, 

 

Fig. 8.5. Left: A taxonomy supporting a focused crawler. The areas in gray repre-
sent the categories of interest c*. A crawler with hard focus would add to the fron-
tier the links extracted from a page classified in the leaf category 1̂c  because its 
ancestor category c' is of interest to the user, while the links from a page classi-
fied in 2ĉ would be discarded. Right: A context graph with L = 3 layers con-
structed to train a context focused crawler from the target set in layer l  = 0. 
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the links extracted from p are added to the frontier because 2006 is a sub-
category of Sports/Soccer ( ĉ ⊂ soccer). The soft and hard focus strategies 
worked equally well in experiments.  

Another element of the focused crawler is the use of a distiller. The dis-
tiller applies a modified version of the HITS algorithm [282] to find topical 
hubs. These hubs provide links to authoritative sources on a focus cate-
gory. The distiller is activated at various times during the crawl and some 
of the top hubs are added to the frontier.  

Context-Focused Crawlers are another type of focused crawlers. They 
also use naïve Bayesian classifiers as a guide, but in this case the classifi-
ers are trained to estimate the link distance between a crawled page and a 
set of relevant target pages [139]. To see why this might work, imagine 
looking for information on “machine learning.” One might go to the home 
pages of computer science departments and from there to faculty pages, 
which may then lead to relevant pages and papers. A department home 
page, however, may not contain the keywords “machine learning.” A typi-
cal focused or best-first crawler would give such a page a low priority and 
possibly never follow its links. However, if the crawler could estimate that 
pages about machine learning are only two links away from a page con-
taining the keywords “computer science department,” then it would give 
the department home page a higher priority. 

The context-focused crawler is trained using a context graph with L 
layers (Fig. 8.5 right). The seed (target) pages form the layer 0 of the 
graph. The pages corresponding to the in-links to the seed pages are in 
layer 1. The in-links to the layer 1 pages make up the layer 2, and so on.  
The in-links to any page can be obtained by submitting a link: query to a 
search engine. The seed pages in layer 0 (and possibly those in layer 1) are 
then concatenated into a single large document, and the top few terms ac-
cording to the TF-IDF weighting scheme (see Chap. 6) are selected as the 
vocabulary (feature space) to be used for classification. A naïve Bayesian 
classifier is built for each layer in the context graph. A prior probability 
Pr( l ) = 1/L is assigned to each layer. All the pages in a layer are used to 
compute Pr(t| l ), the probability of occurrence of a term t given the layer 
(class) l . At the crawling time, these are used to compute Pr(p| l ) for each 
crawled page p. The posterior probability Pr( l |p) of p belonging to layer l  
can then be computed for each layer from Bayes’ rule. The layer l * with 
highest posterior probability wins: 

).|Pr(maxarg)(* pp ll
l

=  (3) 



292 8 Web Crawling 

 

If Pr( l *|p) is less than a threshold, p is classified into the “other” class, 
which represents pages that do not have a good fit with any of the layers in 
the context graph. If Pr( l *|p) exceeds the threshold, p is classified into l *. 

The set of classifiers corresponding to the context graph provides a 
mechanism to estimate the link distance of a crawled page from a relevant 
page. If the mechanism works, the computer science department page in 
our example will get classified into layer 2. The crawler maintains a sepa-
rate priority queue for each layer, containing the links extracted from vis-
ited pages classified in that layer. Each queue is sorted by the scores 
Pr( l |p). The next URL to crawl is taken from the non-empty queue with 
the smallest l . So the crawler gives precedence to links that appear to be 
closest to relevant targets. It is shown in [139] that the context-focused 
crawler outperforms the standard focused crawler in experiments. 

While the majority of focused crawlers in the literature have employed 
the naïve Bayesian method as the classification algorithm to score unvis-
ited URLs, an extensive study with hundreds of topics has provided strong 
evidence that classifiers based on SVM or neural networks can yield sig-
nificant improvements in the quality of the crawled pages [433]. 

8.5 Topical Crawlers 

For many preferential crawling tasks, labeled (positive and negative) ex-
amples of pages are not available in sufficient numbers to train a focused 
crawler before the crawl starts. Instead, we typically have a small set of 
seed pages and a description of a topic of interest to a user or user commu-
nity. The topic can consist of one or more example pages (possibly the 
seeds) or even a short query. Preferential crawlers that start with only such 
information are often called topical crawlers [85, 102, 377]. They do not 
have text classifiers to guide crawling.  

Even without the luxury of a text classifier, a topical crawler can be 
smart about preferentially exploring regions of the Web that appear rele-
vant to the target topic by comparing features collected from visited pages 
with cues in the topic description. 

To illustrate a topical crawler with its advantages and limitations, let us 
consider the MySpiders applet (myspiders.informatics.indiana.edu). Figure 
8.6 shows a screenshot of this application. The applet is designed to dem-
onstrate two topical crawling algorithms, best-N-first and InfoSpiders, 
both discussed below [431].  

MySpiders is interactive in that a user submits a query just like one 
would do with a search engine, and the results are then shown in a win-



8.5 Topical Crawlers      293 

 

dow. However, unlike a search engine, this application has no index to 
search for results. Instead the Web is crawled in real time. As pages 
deemed relevant are crawled, they are displayed in a list that is kept sorted 
by a user-selected criterion: score or recency. The score is simply the con-
tent (cosine) similarity between a page and the query (see Chap. 6); the re-
cency of a page is estimated by the last-modified header, if returned by the 
server (as noted earlier this is not a very reliable estimate).  

 

Fig. 8.6. Screenshot of the MySpiders applet in action. In this example the user 
has launched a population of crawlers with the query “search censorship in france” 
using the InfoSpiders algorithm. The crawler reports some seed pages obtained 
from a search engine, but also a relevant blog page (bottom left) that was not re-
turned by the search engine. This page was found by one of the agents, called Spi-
der2, crawling autonomously from one of the seeds. We can see that Spider2 
spawned a new agent, Spider13, who started crawling for pages also containing 
the term “italy.” Another agent, Spider5, spawned two agents one of which, Spi-
der11, identified and internalized the relevant term “engine.” 

One of the advantages of topic crawling is that all hits are fresh by defi-
nition. No stale results are returned by the crawler because the pages are 
visited at query time. This makes this type of crawlers suitable for applica-
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tions that look for very recently posted documents, which a search engine 
may not have indexed yet. On the down side, the search is slow compared 
to a traditional search engine because the user has to wait while the crawler 
fetches and analyzes pages. If the user's client machine (where the applet 
runs) has limited bandwidth, e.g., a dial-up Internet connection, the wait is 
likely infeasible. Another disadvantage is that the ranking algorithms can-
not take advantage of global prestige measures, such as PageRank, avail-
able to a traditional search engine.  

Several research issues around topical crawlers have received attention. 
One key question is how to identify the environmental signals to which 
crawlers should attend in order to determine the best links to follow. Rich 
cues such as the markup and lexical (text) signals within Web pages, as 
well as features of the link graph built from pages already seen, are all rea-
sonable sources of evidence to exploit.   

Crawlers can use the evidence available to them in different ways, for 
example more or less greedily. The goals of the application also provide 
crucial context. For example the desired properties of the pages to be 
fetched (similar pages, popular pages, authoritative pages, recent pages, 
and so on) can lead to significant differences in crawler design and imple-
mentation. The task could be constrained by parameters like the maximum 
number of pages to be fetched (long crawls vs. short crawls) or the mem-
ory available. A crawling task can thus be viewed as a constrained multi-
objective search problem. The wide variety of objective functions, coupled 
with the lack of appropriate knowledge about the search space, make such 
a problem challenging.  

In the remainder of this section we briefly discuss the theoretical condi-
tions necessary for topical crawlers to function, and the empirical evidence 
supporting the existence of such conditions. Then we review some of the 
machine learning techniques that have been successfully applied to iden-
tify and exploit useful cues for topical crawlers.   

8.5.1 Topical Locality and Cues 

The central assumption behind topical crawlers is that Web pages contain 
reliable cues about each other’s content. This is a necessary condition for 
designing a crawler that has a better-than-random chance to preferentially 
visit pages relevant with respect to a given topic. Indeed, if no estimates 
could be made about unvisited pages, then all we could do is a random 
walk through the Web graph, or an exhaustive search (using breadth-first 
or depth-first search algorithms). Fortunately, crawling algorithms can use 
cues from words and hyperlinks, associated respectively with a lexical and 
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a link topology. In the former, two pages are close to each other if they 
have similar textual content; in the latter, if there is a short path between 
them (we will see what “short” means).  

Lexical metrics are text similarity measures derived from the vector 
space model (see Chap. 6). The cluster hypothesis behind this model is 
that a document lexically close to a relevant document (with respect to the 
given query) is also relevant with high probability [461]. 

Link metrics typically look at hyperlinks as directed edges in a graph, 
but a path can also be defined in an undirected sense, in which case two 
pages have a short link distance between them if they are co-cited or co-
referenced, even if there is no directed path between them. Links are a very 
rich source of topical information about Web pages.  

From a crawler's perspective, there are two central questions:  

1. link-content conjecture: whether two pages that link to each other are 
more likely to be lexically similar to each other, compared to two ran-
domly selected pages; 

2. link-cluster conjecture: whether two pages that link to each other are 
more likely to be semantically related to each other, compared to two 
randomly selected pages. 

A first answer to the link-content conjecture was obtained by computing 
the cosine similarity between linked and random pairs of pages, showing 
that the similarity is an order of magnitude higher in the former case [123]. 
The same study also showed that the anchor text tends to be a good (simi-
lar) description of the target page.  

The link-content conjecture can be generalized by looking at the decay 
in content similarity as a function of link distance from a source page. This 
decay was measured by launching an exhaustive breadth-first crawl from 
seed sets of 100 topics in the Yahoo! directory [372]. Let us use the cosine 
similarity measure σ(p1, p2) between pages p1 and p2 (see Chap. 6). We can 
measure the link distance δ1(p1, p2) along the shortest directed path from p1 
and p2, revealed by the breadth-first crawl. Both distances δ1(q, p) and 
similarities σ(q, p) were averaged for each topic q over all pages p in the 
crawl set q
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where Nd
q is the size of the cumulative page set Pd

q = {p | δ1(q, p) ≤ d}. 
The crawlers were stopped at depth d = 3, yielding 3000 data points  

 {(p, d): q ∈{1, …, 100}, d ∈{1, 2, 3}}.  

These points were then used for fitting an exponential decay model:  
2

1)1()(
αδασσδσ −

∞∞ −+≈ e  (6) 

where σ∞ is the noise level in similarity, measured empirically by averag-
ing across random pairs of pages. The parameters α1 and α2 are set by fit-
ting the data. This was done for pages in various top-level domains, and 
the resulting similarity decay curves are plotted in Fig. 8.7.  

 

Fig. 8.7. Illustration of the link-content conjecture. The curves plot, for each top-
level domain, the decay in mean cosine similarity between pages as a function of 
their mean directed link distance, obtained by fitting data from 100 exhaustive 
breadth-first crawls starting from the 100 Yahoo! directory topics [372]. 

The curves provide us with a rough estimate of how far in link space one 
can make inferences about lexical content. We see that a weak signal is 
still present three links away from the starting pages for all but the .com 
domain, and even further for the .edu domain. Such heterogeneity is not 
surprising – academic pages are written carefully to convey information 
and proper pointers, while business sites often do not link to related sites 
because of competition. Therefore a topical crawler in the commercial do-
main would have a harder task, other things being equal. A solution may 
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be to use undirected links. More specifically, if a crawler can obtain in-
links to good pages (by querying a search engine), it can use co-citation to 
detect hubs. If a page links to several good pages, it is probably a good hub 
and all its out-links should be given high priority. This strategy, related to 
the so-called sibling locality [3], has been used in focused crawlers [87] 
and in topical crawlers for business intelligence [432]. In addition to co-
citation, one could look at bibliographic coupling: if several good pages 
link to a certain page, that target is likely to be a good authority so it and 
its in-links should be given high priority. Fig. 8.8 illustrates various ways 
in which crawlers can exploit co-citation and bibliographic coupling. 

 

Fig. 8.8. Crawling techniques exploiting co-citation (top) and bibliographic cou-
pling (bottom). Dashed edges represent in-links, which require access to a search 
engine or connectivity server. Page A is a good hub, so it should be given high 
priority; once fetched, page B linked by it can be discovered and placed in the 
frontier with high priority since it is likely to be a good authority. Page C is also a 
good hub, so D should be given high priority. Page E is a good authority, so it 
should be given high priority. Its URL can also be used to discover F, which may 
be a good hub and should be placed in the frontier. G is also a good authority, so 
H should be given high priority and I should be placed in the frontier. 
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The link-cluster conjecture, also known as linkage locality [87], states 
that one can infer the meaning of a page by looking at its neighbors. This is 
actually more important than inferring lexical content, since the latter is 
only relevant insofar as it is correlated with the semantic content of pages. 
The same exhaustive crawl data used to validate the link-content conjec-
ture can also be used to explore the link-cluster conjecture, namely the ex-
tent to which relevance is preserved within link space neighborhoods and 
the decay in expected relevance as one browses away from a relevant page 
[372]. The link-cluster conjecture can be simply formulated in terms of the 
conditional probability that a page p is relevant with respect to some query 
q, given that page r is relevant and that p is within d links from r: 

Rq (d) ≡ Pr(relq (p) | relq (r)∧δ1(r, p) ≤ d] (7) 

where relq() is a binary relevance assessment with respect to q. In other 
words a page has a higher than random probability of being about a certain 
topic if it is in the neighborhood of other pages about that topic. Rq(d) is 
the posterior relevance probability given the evidence of a relevant page 
nearby. The conjecture is then represented by the likelihood ratio λ(q, d) 
between Rq(d) and the prior relevance probability Gq ≡ Pr(relq(p)), also 
known as the generality of the query. If semantic inferences are possible 
within a link radius d, then the following condition must hold: 
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To illustrate the meaning of the link-cluster conjecture, consider a random 
crawler searching for pages about a topic q. Call ηq(t) the probability that 
the crawler hits a relevant page at time t. Solving the recursion 

ηq (t +1) = ηq (t)Rq (1) + (1−ηq (t))Gq  (9) 

for ηq(t+1) = ηq(t) yields the stationary hit rate  
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The link-cluster conjecture is a necessary and sufficient condition for 
such a crawler to have a better than chance hit rate: 

.1)1,(* >⇔> qGqq λη  (11) 

Figure 8.9 plots the mean likelihood ratio λ(q, d) versus the mean link dis-
tance δ(q, d) obtained by fitting an exponential decay function  
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λ(δ) ≈1+ α3e
−α4δ

α5  (12) 

to the same 300 data points {(q, d)}. Note that this three-parameter model 
is more complex than the one used to validate the link-content conjecture, 
because λ(δ = 0) must also be estimated from the data (λ(q, 0) = 1/Gq). 
The fitted curve reveals that being within a radius of three links from a 
relevant page increases the relevance probability by a factor λ(q, d) >>1. 
This is very reassuring for the design of topical crawlers. It also suggests 
that crawlers should attempt to remain within a few links from some rele-
vant source. In this range hyperlinks create detectable signals about lexical 
and semantic content, despite the Web's apparent lack of structure.  

 

Fig. 8.9. Illustration of the link-cluster conjecture. The curve plots the decay in 
mean likelihood ratio as a function of mean directed link distance from a relevant 
page, obtained by fitting data from 100 exhaustive breadth-first crawls starting 
from as many Yahoo! directory topics [372]. 
 

The link-content and link-cluster conjectures can be further developed 
by looking at the correlation between content-based, link-based, and se-
mantic-based similarity measures. Using the ODP as a ground truth, we 
can express the semantic similarity between any two pages in the taxon-
omy [373, 359] and see how it can be approximated by content and link 
similarity measures. For content one can consider for example cosine simi-
larity based on TF or TF-IDF term weights. For link similarity one can 
similarly represent a page as a bag of links (in-links, out-links, or 
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both/undirected) and then apply a Jaccard coefficient or a cosine similar-
ity. Figure 8.10 shows, for various topical domains from the ODP, the cor-
relation between semantic similarity and two representative content and 
link similarity measures. We observe significant heterogeneity in the corre-
lations, suggesting that topical crawlers have an easier job in some topics 
(e.g., “news”) than others (e.g., “games”). Another observation is that in 
some topical domains (e.g., “home”) textual content is a more reliable sig-
nal, while in others (e.g., “computers”) links are more helpful. 

 
Fig. 8.10. Pearson correlation coefficients between the semantic similarity ex-
tracted from ODP [359] and two representative content and link similarity meas-
ures. The correlations are measured using a stratified sample of 150,000 URLs 
from the ODP, for a total of 4 billion pairs [373]. Content similarity is cosine with 
TF weights, and link similarity is the Jaccard coefficient with undirected links. 

8.5.2 Best-First Variations 

The majority of crawling algorithms in the literature are variations of the 
best-first scheme described in Sect. 8.1.2. The difference is in the heuris-
tics that they use to score unvisited URLs. A very simple instance is the 
case where each URL is queued into the frontier with priority given by the 
content similarity between the topic description and the page from which 
the URL was extracted. Content similarity can be measured with the stan-
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dard cosine similarity, using TF or TFIDF term weights (in the latter case 
the crawler must have global or topic-contextual term frequency informa-
tion available). This simple crawler is also known as naïve best-first. 

Many variations of the naïve best-first crawlers are possible. Some give 
more importance to certain HTML markups, such as the title, or to text 
segments marked by special tags, such as headers. Other techniques focus 
on determining the most appropriate textual context to score a link. One al-
ternative to using the entire page or just the anchor text as context, used by 

 

 
Fig. 8.11. Link context from distance-weighted window (top) and from the DOM 
tree (bottom). 
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InfoSpiders [375] and Clever [86], is a weighted window where topic key-
words occurrences near the anchor count more toward the link score than 
those farther away, as shown in Fig. 8.11. Another approach is to consider 
the tag (DOM) tree of the HTML page [85]. The idea is to walk up the tree 
from the link anchor toward the root, stopping at an appropriate aggrega-
tion node. The link context is then obtained by the text in the tag subtree 
rooted at the aggregation node (Fig. 8.11).  

SharkSearch [237] is an improved version of the earlier FishSearch 
crawler [60]. It uses a similarity measure like the one used in the naïve 
best-first crawler as a first step for scoring unvisited URLs. The similarity 
is computed for anchor text, a fixed-width link context, the entire source 
page, and ancestor pages. The ancestors of a URL are the pages that appear 
on the crawl path to the URL. SharkSearch, like its predecessor Fish-
Search, maintains a depth bound. That is, if the crawler finds unimportant 
pages on a crawl path it stops crawling further along that path.  To this 
end, each URL in the frontier is associated with a depth and a potential 
score. The score of an unvisited URL is obtained from a linear combina-
tion of anchor text similarity, window context similarity, and an inherited 
score. The inherited score is the similarity of the source page to the topic, 
unless it is zero, in which case it is inherited from the source's parent (and 
recursively from its ancestors). The implementation of SharkSearch re-
quires to preset three similarity coefficients in addition to the depth bound. 
This crawler does not perform as well as others described below.  

Rather than (or in addition to) improving the way we assign priority 
scores to unvisited URLs, we can also improve on a naïve best-first crawler 
by altering the priority scheme. A classic trade-off in machine learning is 
that between exploration and exploitation of information. A crawler is no 
different: it can greedily pursue the best-looking leads based on noisy qual-
ity estimates, or be more explorative and visit some pages that seem less 
promising, but might lead to better pages. The latter approach is taken in 
many optimization algorithms in order to escape local optima and reach a 
global optimum with some probability. As it turns out, the same strategy is 
also advantageous for topical crawlers. Visiting some URLs with lower 
priority leads to a better overall quality of the crawler pages than strictly 
following the best-first order. This is demonstrated by best-N-first, a 
crawling algorithm that picks N URLs at a time from the frontier (the top N 
by priority score) and fetches them all. Once all N pages are visited, the 
newly extracted URLs are merge-sorted into the priority queue, and the 
cycle is repeated. The best-N-first crawler with N = 256 is a very strong 
competitor, outperforming most of the other topical crawlers in the litera-
ture [434, 377]. Figure 8.12 shows a comparison with two crawlers dis-
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cussed thus far. Note that a concurrent implementation of a best-first 
crawler with N threads or processes is equivalent to a best-N-first crawler.    

8.5.3 Adaptation 

All the crawlers discussed thus far use a static strategy both to evaluate 
unvisited URLs and to manage the frontier. Thus they do not learn from 
experience or adapt to the context of a particular topic in the course of the 
crawl. In this section we describe a number of machine learning techniques 
that have been incorporated into adaptive topical crawlers.  

The intelligent crawler uses a statistical model for learning to assign 
priorities to the URLs in the frontier, considering Bayesian interest factors 
derived from different features [3]. For example, imagine that the crawler 
is supposed to find pages about soccer and that 40% of links with the 
keyword football in the anchor text lead to relevant pages, versus a back-
ground or prior frequency of only 2% of crawled pages being relevant. 
Then the crawler assigns an interest factor  

 
Fig. 8.12. Performance of best-N-first crawler with N = 256 (BFS256) compared 
with a naïve best-first crawler (BFS1) and a breadth-first crawler. Recall refers to 
sets of relevant pages that the crawlers are supposed to discover; averages and er-
ror bars are computed across 100 crawls from as many ODP topics. 
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to the feature “keyword football in anchor.” Recall relsoccer(p) is the binary 
relevance score (0 or 1) of page p to soccer. The interest factors are treated 
as independent sources of evidence, or likelihoods. They are combined by 
a linear combination of log-likelihoods, with user-defined weight parame-
ters. The features employed by the intelligent crawler may be diverse, de-
pending on the particular crawling task. They may include tokens extracted 
from candidate URLs, source page content and links, co-citation (sibling) 
relationships, and/or other characteristics of the visited and unvisited 
URLs. As more evidence is accumulated and stored throughout the crawl, 
the interest factors are recalculated and the priorities updated, so that the 
frontier is always sorted according to the most recent estimates. Thus intel-
ligent crawlers adapt to the content and link structure of the Web 
neighborhoods being explored. 

The original focused crawlers described earlier also use machine learn-
ing, in particular a classifier that guides the crawler. However the classifier 
is trained before the crawl is launched, and no learning occurs during the 
crawl. Therefore we do not consider it an adaptive crawler. However, in a 
later “accelerated” version of the focused crawler [85], an online learning 
apprentice was added to the system; the original (baseline) classifier then 
acts as a critic, providing the apprentice with training examples for learn-
ing to classify outgoing links from the features of the pages from which 
they are extracted. Suppose page p1 is fetched and contains a link to page 
p2. Later, p2 is fetched and the baseline classifier assigns it to a relevant 
class. This information is passed to the apprentice, which uses the labeled 
example (“the link from p1 to p2 is good”) to learn to classify the link to p2 
as good based on the textual features in the context of the anchor within p1. 
Future links with a similar context should be given high priority. Con-
versely, if p2 is deemed irrelevant by the baseline classifier, the apprentice 
learns to predict (“bad link”) when it encounters a link with a similar con-
text in the future. The features used to train the apprentice were textual to-
kens associated with a link context based on the DOM tree, and the learn-
ing algorithm used by the apprentice was a naïve Bayesian classifier. This 
approach led to a significant reduction in the number of irrelevant pages 
fetched by the focused crawler.  

While the accelerated focused crawler is not a topical crawler because it 
still needs labeled examples to train the baseline classifier prior to the 
crawl, the idea of training an apprentice online during the crawl can be ap-
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plied in topical crawlers as well. Indeed this is a type of reinforcement 
learning technique employed in several crawlers, using different features 
and/or different learning algorithms for the apprentice. In reinforcement 
learning [263] we have a network where nodes are states and directed links 
are actions. An action a ∈ A (think “anchor”) moves an agent from a state 
p ∈ P (think “page”) to another state according to a transition function L: P 
× A → P. Thus an adaptive crawler is seen as an agent moving from page 
to page. Actions are rewarded according to a function r: P × A → ℜ. We 
want to learn a policy mapping states to actions, π: P → A, that maximizes 
future reward discounted over time: 
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where we follow action (link) at=π(pt) from state (page) pt at each time 
step t. The parameter γ determines how future rewards are discounted (0 ≤ 
γ < 1). If γ = 0, the reinforcement learning policy is the greedy one em-
ployed by the naïve best-first crawler. To learn an optimal policy, we de-
fine the value of selecting action a from state p, and following the optimal 
policy thereafter: 

)],([),(),( * apLVaprapQ γ+=  (15) 

where V* is the value function of the optimal policy π*(p) = argmaxaQ(p, 
a). The question then becomes how to estimate the function Q, i.e., to as-
sign a value to a link a based on the context information in page p from 
which the link is extracted. However, the actions available to the crawler 
are not limited to the links from the last page visited; any of the actions 
corresponding to the URLs in the frontier are available. Furthermore, there 
is no reason why the Q value of a link should be a function of a particular 
source page; if links to the same target page are extracted from multiple 
source pages, the estimated values of the anchors can be combined, for ex-
ample Q(u) = max{(p, a): L(p, a) = u}Q(p, a). This way Q values can be com-
puted not for links (anchors), but for target pages (URLs); the state and ac-
tion spaces are thus greatly reduced, basically collapsing all visited pages 
into a single degenerate state and all links to their target URLs. The policy 
π reduces to the simple selection of the URL in the frontier with the maxi-
mum Q value.  

One way to calculate Q values is via a naïve Bayesian classifier. This 
method was found to work well compared to a breadth-first crawler for the 
tasks of crawling computer science research papers and company directory 
information [366, 459]. In this case, the classifier was trained off-line 
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rather than online while crawling, using labeled examples as in the focused 
crawler. Training the classifier to predict future reward (γ > 0) was better 
than only using immediate reward (γ = 0). For future reward the authors 
use a heavy discount γ = 0.5, arguing that it is optimal to be greedy in se-
lecting URLs from the frontier, so that one can crawl toward the nearest 
relevant page. This assumes that all relevant targets are within reach. So 
there is no reason to delay reward. However, as discussed earlier, a crawler 
typically deals with noisy data, so the classifier’s Q estimates are not en-
tirely reliable; more importantly, a typical crawler cannot possibly cover 
the entire search space. These factors suggest that it may be advantageous 
to occasionally give up some immediate reward in order to explore other 
directions, potentially leading to pockets or relevant pages unreachable by 
a greedy crawler (see Fig. 8.12). 

Using a previously trained classifier to compute Q values for URLs in 
the frontier means that supervised learning is combined with reinforcement 
learning. As for focused crawlers, labeled examples must be available prior 
to the start of the crawl. This may be possible in tasks such as the collec-
tion of research articles, but is not a realistic assumption for typical topical 
crawlers. An adaptive crawling algorithm that actually uses reinforcement 
learning while crawling online, without any supervised learning, is InfoS-
piders. This crawler employs various machine learning techniques to ex-
ploit various types of Web regularities. InfoSpiders are inspired by artifi-
cial life models in which a population of agents lives, learn, evolve, and 
die in an environment. Individual agents learn during their lifetimes based 
on their experiences, with the environment playing the role of a critic, pro-
viding rewards and penalties for actions. Agents may also reproduce, giv-
ing rise to new agents similar to them, and die. The environment is the 
Web, the actions consist of following links and visiting pages and the text 
and link features of pages are the signals that agents can internalize into 
their learned and evolved behaviors. Feedback from the environment con-
sists of a finite energy resource, necessary for survival. Each action has an 
energy cost, which may be fixed or proportional to, say, the size of a 
fetched page or the latency of a page download [126]. Energy is gained 
from visiting new pages relevant to the query topic. A cache prevents an 
agent from accumulating energy by visiting the same page multiple times. 
In the recent version of InfoSpiders, each agent maintains its own frontier 
of unvisited URLs [377]. The agents can be implemented as concurrent 
processes/threads, with non-contentious access to their local frontiers. Fig. 
8.13 illustrates the representation and flow of an individual agent. 

The adaptive representation of each InfoSpiders agent consists of a list 
of keywords (initialized with the topic description) and a neural net used to 
evaluate new links. Each input unit of the neural net receives a count of the 
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frequency with which the keyword occurs in the vicinity of each link, 
weighted to give more importance to keywords occurring near the anchor 
and maximum for the anchor text (Fig. 8.11). The neural net has a single 
output unit whose activation is used as a Q value (score) for each link u in 
input. The agent’s neural net learns to predict the Q value of the link’s tar-
get URL u given the inputs from the link's source page p. The reward func-
tion r(u) is the cosine similarity between the agent’s terms and the target 
page u. The future discounted optimal value γV*(u) is approximated using 
the highest neural net prediction among the links subsequently extracted 
from u. This procedure is similar to the reinforcement learning algorithm 
described above, except that the neural net replaces the naïve Bayesian 
classifier. The neural net is trained by the back-propagation algorithm 
[469]. This mechanism is called connectionist reinforcement learning 
[335]. While the neural net can in principle model nonlinear relationships 
between term frequencies and pages, in practice we have used a simple 
perceptron whose prediction is a linear combination of the keyword 
weights. Such a learning technique provides each InfoSpiders agent with 
the capability to adapt its own link-following behavior in the course of a 
crawl by associating relevance estimates with particular patterns of key-
word frequencies around links. 

 

Fig. 8.13. A single InfoSpiders agent. The link context is the weighted window as 
shown in Fig. 8.11: for each newly extracted URL and for each term in the agent's 
term list, this produces a weight that is fed into the neural network, whose output 
is stored as the link's priority score in the frontier. 
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The neural net's link scores are combined with estimates based on the 
cosine similarity between the agent's keyword list and the entire source 
page.  A parameter α (0 ≤ α ≤ 1) regulates the relative importance given to 
the estimates based on the neural net versus the source page. Based on the 
combined score σ  the agent uses a stochastic selector to pick one of the 
links in the frontier with probability 
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where u is a URL in the local frontier φ. Parameter β regulates the greedi-
ness of the link selector. Its value can be fixed or evolved with the agent.  

After a new page u has been fetched, the agent receives an energy pay-
off proportional to the difference between the reward r(u) and the cost 
charged for the download. An agent dies when it runs out of energy. The 
energy level is also used to determine whether or not the agent should re-
produce after visiting a page. An agent reproduces when the energy level 
passes a fixed threshold. The reproduction is meant to bias the search to-
ward areas with pages relevant to the topic. Topical locality suggests that if 
an agent visits a few relevant pages in rapid sequence, more relevant pages 
are likely to be nearby (in the frontier). To exploit this, the accumulated 
energy results in a short-term doubling of the frequency with which the 
crawler explores this agent’s frontier. At reproduction, the agent’s energy 
and frontier are split in half with the offspring (new agent or thread). Ac-
cording to ecological theory, this way the agent population is supposed to 
move toward an optimal cover of the Web graph in proportion to the local 
density of resources, or relevant pages. 

In addition to the individual's reinforcement learning and the popula-
tion’s evolutionary bias, InfoSpiders employ a third adaptive mechanism. 
At reproduction, the offspring’s keyword vector is mutated (expanded) by 
adding a new term. The chosen term/keyword is the one that is most fre-
quent in the parent’s last visited page, i.e., the page that triggered the re-
production. This selective query expansion strategy, illustrated in Fig. 
8.6, is designed to allow the population to diversify and expand its focus 
according to each agent’s local context.  An InfoSpiders crawler incorpo-
rating all of these adaptive techniques has been shown to outperform vari-
ous versions of naïve best-first crawlers (Fig. 8.14) when visiting a suffi-
ciently large number of pages (more than 10,000) so that the agents have 
time to adapt [377, 504].  
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Fig. 8.14. Performance plots [377]: average target recall 〈RT(t)〉 (top) and average 
precision 〈PD(t)〉 (similarity to topic description, bottom). The averages are calcu-
lated over 10 ODP topics. After 50,000 pages crawled, one tailed t-tests reveal 
that both BFS256 and InfoSpiders outperform the breadth-first crawler on both 
performance metrics. InfoSpiders outperform BFS256 on recall, while the differ-
ence in precision is not statistically significant. 
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8.6 Evaluation 

Given the goal of building a “good” crawler, a critical question is how to 
evaluate crawlers so that one can reliably compare two crawling algo-
rithms and conclude that one is “better” than the other. Since a crawler is 
usually designed to support some application, e.g., a search engine, it can 
be indirectly evaluated through the application it supports. However, attri-
bution is problematic; if a search engine works better than another (assum-
ing that were easy to determine!), how can we attribute this difference in 
performance to the underlying crawling algorithms as opposed to the rank-
ing or indexing schemes? Thus it is desirable to evaluate crawlers directly. 

Often crawler evaluation has been carried out by comparing a few 
crawling algorithms on a limited number of queries/tasks without consider-
ing the statistical significance. Such anecdotal results, while important, do 
not suffice for thorough performance comparisons. As the Web crawling 
field has matured, a need has emerged for evaluating and comparing dispa-
rate crawling strategies on common tasks through well-defined perform-
ance measures. Let us review the elements of such an evaluation frame-
work, which can be applied to topical as well as focused crawlers.   

A comparison between crawlers must be unbiased and must allow one to 
measure statistically significant differences. This requires a sufficient 
number of crawl runs over different topics, as well as sound methodologies 
that consider the temporal nature of crawler outputs. Significant challenges 
in evaluation include the general unavailability of relevant sets for particu-
lar topics or queries. Unfortunately, meaningful experiments involving real 
users for assessing the relevance of pages as they are crawled are ex-
tremely problematic.  In order to obtain a reasonable notion of crawl effec-
tiveness one would have to recruit a very large number of subjects, each of 
whom would have to judge a very large number of pages. Furthermore, 
crawls against the live Web pose serious time constraints and would be 
overly burdensome to the subjects.  

To circumvent these problems, crawler evaluation typically relies on de-
fining measures for automatically estimating page relevance and quality. 
The crawler literature reveals several performance measures used for these 
purposes. A page may be considered relevant if it contains some or all of 
the keywords in the topic/query. The frequency with which the keywords 
appear on the page may also be considered [102]. While the topic of inter-
est to the user is often expressed as a short query, a longer description may 
be available in some cases. Similarity between the short or long description 
and each crawled page may be used to judge the page's relevance [237, 
376, 504]. The pages used as the crawl's seed URLs may be combined to-
gether into a single document, and the cosine similarity between this 
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document and a crawled page may serve as the page’s relevance score 
[18]. A classifier may be trained to identify relevant pages. The training 
may be done using seed pages or other pre-specified relevant pages as 
positive examples. The trained classifier then provides boolean or continu-
ous relevance scores for each of the crawled pages [87, 139]. Note that if 
the same classifier, or a classifier trained on the same labeled examples, is 
used both to guide a (focused) crawler and to evaluate it, the evaluation is 
not unbiased. Clearly the evaluating classifier would be biased in favor of 
crawled pages. To partially address this issue, an evaluation classifier may 
be trained on a different set than the crawling classifier. Ideally the training 
sets should be disjoint. At a minimum the training set used for evaluation 
must be extended with examples not available to the crawler [433]. An-
other approach is to start N different crawlers from the same seeds and let 
them run until each crawler gathers P pages. All of the N×P pages col-
lected from the crawlers are ranked against the topic query/description us-
ing a retrieval algorithm such as cosine. The rank provided by the retrieval 
system for each page is then used as a relevance score. Finally, one may 
use algorithms, such as PageRank or HITS, that provide authority or popu-
larity estimates for each crawled page. A simpler method would be to use 
just the number of in-links to the crawled page to derive similar informa-
tion [18, 102]. Many variations of link-based methods using topical 
weights may be applied to measure the topical quality of pages [52, 88]. 

Once each page is assessed, a method is needed to summarize the per-
formance of a crawler across a set of crawled pages. Given a particular 
measure of page relevance and/or importance we can summarize the per-
formance of the crawler with metrics that are analogous to the information 
retrieval notions of precision and recall (see Chap. 6). Lacking well-
defined relevant sets, the classic boolean relevance is replaced by one of 
the scores outlined above. A few precision-like measures are found in the 
literature. In case we have boolean relevance scores, we could measure the 
rate at which “good” pages are found; if 100 relevant pages are found in 
the first 500 pages crawled, we have an acquisition rate or harvest rate of 
20% at 500 pages [3]. If the relevance scores are continuous (e.g., from co-
sine similarity or a trained classifier) they can be averaged over the 
crawled pages. The average relevance, as shown in Fig. 8.14, may be com-
puted over the progress of the crawl [376]. Sometimes running averages 
are calculated over a window of a number of pages, e.g., the last 50 pages 
from a current crawl point [87]. Another measure from information re-
trieval that has been applied to crawler evaluation is search length [375], 
defined as the number of pages (or the number of irrelevant pages) crawled 
before a certain percentage of the relevant pages are found. Search length 
is akin to the reciprocal of precision for a preset level of recall.  
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Recall-like measures would require normalization by the number of 
relevant pages. Since this number is unknown for Web crawling tasks, it 
might appear that recall cannot be applied to crawlers. However, even if 
unknown, the size of the relevant set is a constant. Therefore, it can be dis-
regarded as a scaling factor when comparing two crawling algorithms on 
the same topical query. One can simply sum the quality or relevance esti-
mates (obtained by one of the methods outlined above) over the course of a 
crawl, and obtain a total relevance as shown in Fig. 8.14.  

It is possible to design crawling experiments so that a set of relevant tar-
get pages is known by the experimenter. Then precision and recall can be 
calculated from the fraction of these relevant targets that are discovered by 
the crawler, rather than based on relevance estimates. One way to obtain a 
set of relevant pages is from a public directory such as the ODP. This way 
one can leverage the classification already carried out by the volunteer edi-
tors of the directory. The experimenter can select as topics a set of catego-
ries from the ODP, whose distance from the root of the ODP taxonomy can 
be determined so as to obtain topics with generality/specificity appropriate 
for the crawling task [377, 504]. Figure 8.5 (left) illustrates how subtrees 
rooted at a chosen category can be used to harvest a set of relevant target 
pages. If a page is classified in a subtopic of a target topic, it can be con-
sidered relevant with respect to the target topic.  

If a set of known relevant target pages is used to measure the perform-
ance of a topical crawler, these same pages cannot be used as seeds for the 
crawl. Two approaches have been proposed to obtain suitable seed pages. 
One is to perform a back-crawl from the target pages [504]. By submitting 
link: queries to a search engine API, one can obtain a list of pages linking 
to each given target; the process can be repeated from these parent pages to 
find “grandparent” pages, and so on until a desired link distance is reached. 
The greater the link distance, the harder the task is for the crawler to locate 
the relevant targets from these ancestor seed pages. The procedure has the 
desired property that directed paths are guaranteed to exist from any seed 
page to some relevant targets. Given the potentially large fan-in of pages, 
sampling is likely required at each stage of the back-crawl to obtain a suit-
able number of seeds. The process is similar to the construction of a con-
text graph, as shown in Fig. 8.5 (right). A second approach is to split the 
set of known relevant pages into two sets; one set can be used as seeds, the 
other as targets. While there is no guarantee that the targets are reachable 
from the seeds, this approach is significantly simpler because no back-
crawl is necessary. Another advantage is that each of the two relevant sub-
sets can be used in turn as seeds and targets. In this way, one can measure 
the overlap between the pages crawled starting from the two disjoint sets. 
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A large overlap is interpreted as robustness of the crawler in covering 
relevant portions of the Web [87, 85]. 

The use of known relevant pages as proxies for unknown relevant sets 
implies an important assumption, which we can illustrate by the Venn dia-
gram in Fig. 8.15. Here S is a set of crawled pages and T is the set of 
known relevant target pages, a subset of the relevant set R. Let us consider 
the measure of recall. Using T as if it were the relevant set means that we 
are estimating the recall |R ∩ S| / |R| by |T ∩ S| / |T|. This approximation 
only holds if T is a representative, unbiased sample of R independent of the 
crawl process. While the crawler attempts to cover as much as possible of 
R, it should not have any information about how pages in T are sampled 
from R. If T and S are not independent, the measure is biased and unreli-
able. For example if a page had a higher chance of being selected in T be-
cause it was in S, or vice versa, then the recall would be overestimated. 
The same independence assumption holds for precision-like measures, 
where we estimate |R ∩ S| / |S| by |T ∩ S| / |S|. A consequence of the inde-
pendence requirement is that if the ODP is used to obtain T, the experi-
menter must prevent the crawler from accessing the ODP. This would bias 
the results because, once a relevant ODP category page is found, all of the 
relevant target pages can be reached by the crawler in a short breadth-first 
sweep. Preventing access to the ODP may pose a challenge because so 
many ODP mirrors exist on the Web. They may not be known by the ex-
perimenter, and not trivial to detect. 

To summarize, crawler performance measures [504] can be character-
ized along two dimensions: the source of relevance assessments (target 
pages vs. similarity to their descriptions) and the normalization factor (av-

 
Fig. 8.15. Illustration of precision and recall measures based on known relevant 
target pages and underlying independence assumption/requirement. 
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erage relevance, or precision, vs. total relevance, or recall). Using target 
pages as the relevant sets we can define crawler precision and recall as fol-
lows:  
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where St is the set of pages crawled at time t (t can be wall clock time, 
network latency, number of pages visited, number of bytes downloaded, 
and so on). Tθ is the relevant target set, where θ represents the parameters 
used to select the relevant target pages. This could include for example the 
depth of ODP category subtrees used to extract topic-relevant pages. 
Analogously we can define crawler precision and recall based on similarity 
to target descriptions:  
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where Dθ is the textual description of the target pages, selected with pa-
rameters θ, and σ is a text-based similarity function, e.g., cosine similarity 
(see Chap. 6). Figure 8.14 shows two examples of performance plots for 
three different crawlers discussed earlier in this chapter. The two plots de-
pict RT and PD as a function of pages crawled. InfoSpiders and the BFS256 
crawler are found to outperform the breadth-first crawler. InfoSpiders gain 
a slight edge in recall once the agents have had an opportunity to adapt. 
This evaluation involves each of the three crawlers visiting 50,000 pages 
for each of 10 topics, for a total of 1.5 million pages. 

Another set of evaluation criteria can be obtained by scaling or normal-
izing any of the above performance measures by the critical resources used 
by a crawler. This way, one can compare crawling algorithms by way of 
performance/cost analysis. For example, with limited network bandwidth 
one may see latency as a major bottleneck for a crawling task. The time 
spent by a crawler on network I/O can be monitored and applied as a scal-
ing factor to normalize precision or recall. Using such a measure, a crawler 
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designed to preferentially visit short pages, or pages from fast servers 
[126], would outperform one that can locate pages of equal or even better 
quality but less efficiently.  

8.7 Crawler Ethics and Conflicts 

Crawlers, especially when efficient, can put a significant strain on the re-
sources of Web servers, mainly on their network bandwidth. A crawler that 
sends many page requests to a server in rapid succession, say ten or more 
per second, is considered impolite.  The reason is that the server would be 
so busy responding to the crawler that its service to other requests, includ-
ing those from human browsing interactively, would deteriorate. In the ex-
treme case a server inundated with requests from an aggressive crawler 
would become unable to respond to other requests, resulting in an effective 
denial of service attack by the crawler.  

To prevent such incidents, it is essential for a crawler to put in place 
measures to distribute its requests across many servers, and to prevent any 
one server (fully qualified host name) from receiving requests at more than 
some reasonably set maximum rate (say, one request every few seconds). 
In a concurrent crawler, this task can be carried out by the frontier man-
ager, when URLs are dequeued and passed to individual threads or proc-
esses. This practice not only is required by politeness toward servers, but 
also has the additional benefits of limiting the impact of spider traps and 
not overloading the server, which will respond slowly.  

Preventing server overload is just one of a number of policies required 
of ethical Web agents [160]. Such policies are often collectively referred to 
as crawler etiquette. Another requirement is to disclose the nature of the 
crawler using the User-Agent HTTP header. The value of this header 
should include not only a name and version number of the crawler, but also 
a pointer to where Web administrators may find information about the 
crawler. Often a Web site is created for this purpose and its URL is in-
cluded in the User-Agent field. Another piece of useful information is the 
email contact to be specified in the From header.  

Finally, crawler etiquette requires compliance with the Robot Exclusion 
Protocol. This is a de facto standard providing a way for Web server ad-
ministrators to communicate which files may not be accessed by a crawler. 
This is accomplished via an optional file named robots.txt in the root direc-
tory of the Web server (e.g., http://www.somehost.com/robots.txt).  The file 
provides access policies for different crawlers, identified by the User-agent 
field. For any user-agent value (or the default “*”) a number of Disallow 
entries identify directory subtrees to be avoided. Compliant crawlers must 
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fetch and parse a server's robots.txt file before sending requests to that 
server. For example, the following policy in robots.txt: 
     User-agent: * 
     Disallow: / 

directs any crawler to stay away from the entire server. Some high-level 
languages such as Perl provide modules to parse robots.txt files. It is wise 
for a crawler to cache the access policies of recently visited servers, so that 
the robots.txt file need not be fetched and parsed every time a request is 
sent to the same server. Additionally, Web authors can indicate if a page 
may or may not be indexed, cached, or mined by a crawler using a special 
HTML meta-tag. Crawlers need to fetch a page in order to parse this tag, 
therefore this approach is not widely used. More details on the robot exclu-
sion protocols can be found at http://www.robotstxt.org/wc/robots.html.   

When discussing the interactions between information providers and 
search engines or other applications that rely on Web crawlers, confusion 
sometime arises between the ethical, technical, and legal ramifications of 
the Robot Exclusion Protocol. Compliance with the protocol is an ethical 
issue, and non-compliant crawlers can justifiably be shunned by the Web 
community. However, compliance is voluntary, and a robots.txt file cannot 
enforce it. Servers can, however, block access to a client based on its IP 
address. Thus it is likely that a crawler which does not comply with the 
Exclusion Protocol and does not follow proper etiquette will be quickly 
blocked by many servers. Crawlers may disguise themselves as browsers 
by sending a browser's identifying string in the User-Agent header. This 
way a server administrator may not immediately detect lack of compliance 
with the Exclusion Protocol, but an aggressive request profile is likely to 
reveal the true nature of the crawler. To avoid detection, some mischievous 
crawlers send requests at low and randomized rates. While such behaviors 
may be reprehensible, they are not illegal – at least not at the time of this 
writing. Nonetheless, there have been cases of businesses bringing lawsuits 
against search organizations for not complying with the Robot Exclusion 
Protocol. In a recent lawsuit involving the Internet Archive's WayBack 
Machine (www.archive.org), a plaintiff not only attributed legal weight to 
the Exclusion Protocol, but also expected that a newly added robots.txt 
policy should have retroactive value! 

Deception does not occur only by crawlers against servers. Some servers 
also attempt to deceive crawlers. For example, Web administrators may at-
tempt to improve the ranking of their pages in a search engine by provid-
ing different content depending on whether a request originates from a 
browser or a search engine crawler, as determined by inspecting the re-
quest's User-Agent header. This technique, called cloaking, is frowned 
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upon by search engines, which remove sites from their indices when such 
abuses are detected. For more information about Web spam, see Chap. 6. 

One of the most serious challenges for crawlers originates from the ris-
ing popularity of pay-per-click advertising. If a crawler is not to follow ad-
vertising links, it needs to have a robust detection algorithm to discriminate 
ads from other links. A bad crawler may also pretend to be a genuine user 
who clicks on the advertising links in order to collect more money from 
merchants for the hosts of advertising links.  

The above examples suggest a view of the Web as a new playground for 
artificial intelligence (AI). Crawlers need to become increasingly sophisti-
cated to prevent insidious forms of spam from polluting and exploiting the 
Web environment. Malicious crawlers are also becoming smarter in their 
efforts, not only to spam but also to steal personal information and in gen-
eral to deceive people and crawlers for illicit gains. One chapter of this 
arms race has been the development of CAPTCHAs [14], graphics-based 
inverse Turing tests automatically generated by server sites to keep out 
malicious crawlers. Maybe a stronger AI will be a positive outcome of 
crawler evolution; maybe a less usable Web will be a hefty price to pay. 

Interestingly, the gap between humans and crawlers may be narrowing 
from both sides. While crawlers become smarter, some humans are 
dumbing down their content to make it more accessible to crawlers. For 
example some online news providers use simpler titles than can be easily 
classified and interpreted by a crawler as opposed or in addition to witty ti-
tles that can only be understood by humans. 

Another gap that is getting narrower is the distinction between browsers 
and crawlers, with a growing gray area between the two. A business may 
wish to disallow crawlers from its site if it provides a service by which it 
wants to entice human users to visit the site, say to make a profit via ads on 
the site. A competitor crawling the information and mirroring it on its own 
site, with different ads, is a clear violator not only of the Robot Exclusion 
Protocol but also possibly of copyright law. What about an individual user 
who wants to access the information but automatically hide the ads? There 
are many browser extensions that allow users to perform all kinds of tasks 
that deviate from the classic browsing activity, including hiding ads, alter-
ing the appearance and content of pages, adding and deleting links, adding 
functionality to pages, pre-fetching pages, and so on. Such extensions have 
some of the functionalities of crawlers. Should they identify themselves 
through the User-Agent header as distinct from the browser with which 
they are integrated? Should a server be allowed to exclude them? And 
should they comply with such exclusion policies? These too are questions 
about ethical crawler behaviors that remain open for the moment. 
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8.8 Some New Developments 

The typical use of (universal) crawlers thus far has been for creating and 
maintaining indexes for general purpose search engines. However a more 
diverse use of (topical) crawlers is emerging both for client and server 
based applications. Topical crawlers are becoming important tools to sup-
port applications such as specialized Web portals (a.k.a. “vertical” search 
engines), live crawling, and competitive intelligence.  

Another characteristic of the way in which crawlers have been used by 
search engines up to now is the one-directional relationship between users, 
search engines, and crawlers. Users are consumers of information provided 
by search engines, search engines are consumers of information provided 
by crawlers, and crawlers are consumers of information provided by users 
(authors). This one-directional loop does not allow, for example, informa-
tion to flow from a search engine (say, the queries submitted by users) to a 
crawler. It is likely that commercial search engines will soon leverage the 
huge amounts of data collected from their users to focus their crawlers on 
the topics most important to the searching public. To investigate this idea 
in the context of a vertical search engine, a system was built in which the 
crawler and the search engine engage in a symbiotic relationship [430]. 
The crawler feeds the search engine which in turn helps the crawler. It was 
found that such a symbiosis can help the system learn about a community's 
interests and serve such a community with better focus. 

As discussed in Sect. 8.3, universal crawlers have to somehow focus on 
the most “important” pages given the impossibility to cover the entire Web 
and keep a fresh index of it. This has led to the use of global prestige 
measures such as PageRank to bias universal crawlers, either explicitly 
[102, 234] or implicitly through the long-tailed structure of the Web graph 
[401]. An important problem with these approaches is that the focus is dic-
tated by popularity among “average” users and disregards the heterogene-
ity of user interests. A page about a mathematical theorem may appear 
quite uninteresting to the average user, if one compares it to a page about a 
pop star using indegree or PageRank as a popularity measure. Yet the math 
page may be highly relevant and important to a small community of users 
(mathematicians). Future crawlers will have to learn to discriminate be-
tween low-quality pages and high-quality pages that are relevant to very 
small communities.  

Social networks have recently received much attention among Web us-
ers as vehicles to capture commonalities of interests and to share relevant 
information.  We are witnessing an explosion of social and collaborative 
engines in which user recommendations, opinions, and annotations are ag-
gregated and shared. Mechanisms include tagging (e.g., del.icio.us and 
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flickr.com), ratings (e.g., stumbleupon.com), voting (e.g., digg.com), and 
hierarchical similarity (GiveALink.org) [363]. One key advantage of social 
systems is that they empower humans rather than depending on crawlers to 
discover relevant resources. Further, the aggregation of user recommenda-
tions gives rise to a natural notion of trust. Crawlers could be designed to 
expand the utility of information collected through social systems. For ex-
ample it would be straightforward to obtain seed URLs relevant to specific 
communities of all sizes. Crawlers would then explore the Web for other 
resources in the neighborhood of these seed pages, exploiting topical local-
ity to locate and index other pages relevant to those communities.  

Social networks can emerge not only by mining a central repository of 
user-provided resources, but also by connecting hosts associated with indi-
vidual users or communities scattered across the Internet. Imagine a user 
creating its own micro-search engine by employing a personalized topical 
crawler, seeded for example with a set of bookmarked pages. Desktop 
search applications make it easy to also share certain local files, if so de-
sired. Can federations of such micro-engine agents emerge on the basis of 
mutual interests? Peer-to-peer (P2P) networks are beginning to be seen as 
robust architectures ideal for brokering among individual needs and cater-
ing to communities [354].  

Adaptive peer-based search systems driven by simple distributed adap-
tive query routing algorithms can spontaneously organize into networks 
with efficient communication and with emerging clusters capturing seman-
tic locality. Specifically, in a P2P search application called 6Search (6S), 
each peer crawls the Web in a focused way, guided by its user’s informa-
tion context. Each peer submits and responds to queries to/from its 
neighbors. This search process has no centralized control.  Peers depend on 
local adaptive routing algorithms to dynamically change the topology of 
the peer network and search for the best neighbors to answer their queries. 
Machine learning techniques are being explored to improve local adaptive 
routing. Validation of the 6S framework and network via simulations with 
70−500 model users based on actual Web crawls has yielded encouraging 
preliminary results. The network topology rapidly converges from a ran-
dom network to a small-world network, with clusters emerging to match 
user communities with shared interests [15]. Additionally the quality of the 
results is significantly better than obtained by centralized search engines 
built with equivalent resources, and comparable with the results from 
much larger search engines such as Google [553, 554].  

The integration of effective personalized/topical crawlers with adaptive 
query routing algorithms is the key to the success of peer-based social 
search systems. Many synergies may be exploited in this integration by 
leveraging contextual information about the local peer that is readily avail-
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able to the crawler, as well as information about the peer's neighbors that 
can be mined through the stream of queries and results routed through the 
local peer. An open-source prototype of 6S enabling sharing of bookmarks, 
one-click crawling, and distributed collaborative search is available 
(http://homer.informatics.indiana.edu/~nan/6S/). If successful, this kind of 
application could create a new paradigm for crawling and searching where 
universal crawlers and search engines are complemented with swarms of 
personal crawlers and micro-engines tuned to the specialized information 
needs of individual users and dynamic self-organized social networks.  

Bibliographic Notes 

General ideas and techniques about crawling can be found in [68, 85, 263], 
but little is known about implementation details of commercial crawlers. 
Focused crawling discussed in this chapter is based on [87, 85, 139]. Lite-
rature on topical crawling algorithms is extensive [e.g., 3, 60, 102, 126, 
237, 366, 369, 375, 377, 432, 434, 459]. Topical crawlers have been used 
for building focused repositories, automating resource discovery, and sup-
porting software agents. For example, topical crawlers are used to collect 
papers for building scientific literature digital libraries such as CiteSeer 
and Google Scholar [308, 366, 550]. Applications of topical crawlers to 
business and competitive intelligence are discussed in [432], and biomedi-
cal applications in [503]. Controversial applications to harvest personal in-
formation for spam and phishing purposes are illustrated in [251].  

On best-first crawlers, various methods have been used to determine an 
appropriate textual context in which to evaluate and score unvisited links. 
Using the anchor text is one strategy [123]. Another strategy is to use win-
dows of a fixed size, e.g., 50 words around the anchor, in place of/in addi-
tion to the anchor text [237]. The weighted window used by InfoSpiders 
[375] yields a weight for each link, which is then fed to a neural network to 
score each link. In the tag (DOM) tree approach [85], using the parent 
node of the anchor as aggregation node worked well in a business intelli-
gence crawling task [432]. There is a tradeoff analogous to that between 
precision and recall when we consider the optimal size of a link context: 
small contexts (e.g., anchor text) have the highest average similarities to 
the target page, but also highest chance to miss important cues about the 
target. Larger contexts (e.g., parent or grand-parent aggregator node) have 
lower average similarities to the target, but lower chance to miss all the 
keywords in the target. This suggests a greedy optimization scheme: climb 
the DOM tree from the anchor until sufficient terms are present in the link 
context [429]. This approach outperformed both the fixed-window method 
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Early versions of InfoSpiders were described in [369, 374, 375, 376]. 
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topical crawlers such as the itsy bitsy spider [96]. Another adaptive mecha-
nism for topical crawlers inspired by natural processes is ant colony opti-
mization [194]. The idea is that a population of agents leaves a trail of 
pheromone along the paths that lead to relevant pages, gradually biasing 
the crawl toward promising portions of the Web graph. A more extensive 
review of adaptive topical crawling algorithms can be found in [380].  



 

9 Structured Data Extraction: Wrapper 
Generation                  

Web information extraction is the problem of extracting target information 
items from Web pages. There are two general problems: extracting infor-
mation from natural language text and extracting structured data from Web 
pages. This chapter focuses on extracting structured data. A program for 
extracting such data is usually called a wrapper. Extracting information 
from text is studied mainly in the natural language processing community.  

Structured data on the Web are typically data records retrieved from un-
derlying databases and displayed in Web pages following some fixed tem-
plates. In this chapter, we still call them data records. Extracting such 
data records is useful because it enables us to obtain and integrate data 
from multiple sources (Web sites and pages) to provide value-added ser-
vices, e.g., customizable Web information gathering, comparative shop-
ping, meta-search, etc. With more and more companies and organizations 
disseminating information on the Web, the ability to extract such data from 
Web pages is becoming increasingly important. At the time of writing this 
book, there are several companies working on extracting products sold 
online, product reviews, job postings, research publications, forum discus-
sions, statistics data tables, news articles, search results, etc.  

Researchers and Internet companies started to work on the extraction 
problem from the middle of 1990s. There are three main approaches:  

1. Manual approach: By observing a Web page and its source code, the 
human programmer finds some patterns and then writes a program to 
extract the target data. To make the process simpler for programmers, 
several pattern specification languages and user interfaces have been 
built. However, this approach is not scalable to a large number of sites.  

2. Wrapper induction: This is the supervised learning approach, and is 
semi-automatic. The work started around 1995-1996. In this approach, a 
set of extraction rules is learned from a collection of manually labeled 
pages or data records. The rules are then employed to extract target data 
items from other similarly formatted pages.  

3. Automatic extraction: This is the unsupervised approach started 
around 1998. Given a single or multiple pages, it automatically finds 



324      9 Structured Data Extraction: Wrapper Generation 

patterns or grammars from them for data extraction. Since this approach 
eliminates the manual labeling effort, it can scale up data extraction to a 
huge number of sites and pages.  

The first approach will not be discussed further. This chapter focuses on 
the last two approaches. Sects. 9.2 and 9.3 study supervised wrapper learn-
ing, and the rest of the chapter studies automatic extraction.  

9.1 Preliminaries 

To start our discussion, let us see some real pages that contain structured 
data that we want to extract. We then develop a Web data model and a 
HTML mark-up encoding scheme for the data model. Data extraction is 
simply the reverse engineering task. That is, given the HTML mark-up en-
coded data (i.e., Web pages), the extraction system recovers the original 
data model and extracts data from the encoded data records.    

9.1.1 Two Types of Data Rich Pages 

There are mainly two types of data rich pages. Data in such pages are usu-
ally retrieved from underlying databases and displayed on the Web follow-
ing some fixed templates. This task is often done by computer programs.  
1. List pages: Each of such pages contains several lists of objects. Figure 

9.1 shows such a page, which has two lists of products. From a layout 
point of view, we see two data regions (one horizontal and one verti-
cal). Within each region, the data records are formatted using the same 
template. The templates used in the two regions are different. 

2. Detail pages: Such a page focuses on a single object. For example, in 
Fig. 9.2, the page focuses on the product “iPod Video 30GB, Black”. 
That is, it contains all the details of the product, name, image, price and 
other purchasing information, product description, customer rating, etc.  

Note that when we say that a page focuses on a particular object (or lists of 
objects), we do not mean that the page contains no other information. In 
fact, it almost certainly contains other information. For example, in the 
page for “iPod Video 30GB, Black” (Fig. 9.2), there are some related prod-
ucts on the right-hand side, company information at the top, and copyright 
notices, terms and conditions, privacy statements at the bottom, etc. They 
are not shown in Fig. 9.2 as we want the main part of the product clearly 
eligible. For list pages, it is often easy to use some heuristics to identify the 
main data regions, but for detail pages, it is harder.  
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Fig. 9.1. A segment of a list page with two data regions 

 
Fig. 9.2. A segment of a detail page 
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In Fig. 9.1, the description of each product is called a data record. No-
tice that the data records in this page are all flat with no nesting. Figure 
9.3(A) contains some nested data records, which makes the problem more 
interesting and also harder. The first product, “Cabinet Organizers by 
Copco,” has two sizes (9-in. and 12-in.) with different prices. These two 
organizers are not at the same level as “Cabinet Organizers by Copco”.  

Our objective: We want to extract the data and produce the data table 
given in Fig. 9.3(B). “image 1” and “Cabinet Organizers by Copco” are re-
peated for the first two rows due to the nesting.  

9.1.2 Data Model 

We now describe a data model commonly used for structured data on the 
Web. In the next sub-section, we present a HTML mark-up encoding of the 
model and the data, which helps extraction.  

Most Web data can be modeled as nested relations, which are typed 
objects allowing nested sets and tuples. The types are defined as follows:  

 

(A) An example of a nested data record 

image 1 Cabinet Organizers by Copco 9-in. Round Turntable: White ***** $4.95 
image 1 Cabinet Organizers by Copco 12-in. Round Turntable: White ***** $7.95 
image 2 Cabinet Organizers 14.75x9

  
Cabinet Organizer (Non-

skid): White 
***** $7.95 

image 3 Cabinet Organizers 22x6 Cookware Lid Rack **** $19.95 

(B) Extraction results 

Fig. 9.3. An example input page and output data table 
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• There is a set of basic types, B = {B1, B2, …, Bk}. Each Bi is an atomic 
type, and its domain, denoted by dom(Bi), is a set of constants;  

• If T1, T2, …, Tn are basic or set types, then [T1, T2, …, Tn] is a tuple type 
with the domain dom([T1, T2, …, Tn]) = {[v1, v2, …, vn] | vi ∈ dom(Ti)}; 

• If T is a tuple type, then {T} is a set type with the domain dom({T}) be-
ing the power set of dom(T).  

A basic type Bi is analogous to the type of an attribute in relational data-
bases, e.g., string and int. In the context of the Web, Bi is usually a text 
string, image-file, etc. The example in Fig. 9.4 shows a nested tuple type 
product, with attributes  

• name (of type string),  
• image (of type image-file), and  
• differentSizes (a set type), consisting of a set of tuples with attributes: 
• size (of type string), and  
• price (of type string).  

  product  [ name:  string; 
  image:  image-file;  
  differentSizes:  { [ size:  string; 
    price:  string; ] } ] 

Fig. 9.4. An example nested type 

We can also define flat tuple and set types: 

• If T1, T2, …, Tn are basic types, then [T1, T2, …, Tn] is a flat tuple type;  
• If T is a flat tuple type, then {T} is a flat set type.  

Classic flat relations are of flat set types. Nested relations are of arbi-
trary set types. Types can be represented as trees.  

• A basic type Bi is a leaf tree or node; 
• A tuple type [T1, T2, …, Tn] is a tree rooted at a tuple node with n sub-

trees, one for each Ti; 
• A set type {T} is a tree rooted at a set node with one sub-tree.  

An instance of a type T is simply an element of dom(T). Clearly, in-
stances can be represented as trees as well: 

• An instance (constant) of a basic type is a leaf tree; 
• A tuple instance [v1, v2, …, vn] forms a tree rooted at a tuple node with n 

children or sub-trees representing attribute values v1, v2, …, vn; 
• A set instance {e1, e2, …, en} forms a set node with n children or sub-

trees representing the set elements e1, e2, …, and en.  
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An instance of a tuple type (also known as a tuple instance) is usually 
called a data record in the data extraction research. An instance of a set 
type (also known as a set instance) is usually called a list as in an actual 
Web page the data records in the set are presented in a particular order. An 
instance of a flat tuple type is called a flat data record (no nested lists), 
and an instance of a flat set type is called a list of flat data records.  

We note that attribute names are not included in the type tree. We next 
introduce a labeling of a type tree, which is defined recursively:  

• If a set node is labeled ϕ, then its child is labeled ϕ.0, a tuple node;  
• If a tuple node is labeled ϕ, then its n children are labeled ϕ.1, …, ϕ.n.  

We can think of labels as abstract names for types or attributes. For exam-
ple, in Fig. 9.4 the top level tuple type is “product”, its three children are 
attributes: product.name, product.image, and product.differentSizes. ϕ.0 
labels a tuple node without a name of two attributes, “size” and “price”.  

9.1.3 HTML Mark-Up Encoding of Data Instances 

In a Web page, the data is encoded or formatted with HTML mark-up tags. 
This sub-section discusses the encoding of data instances in the above ab-
stract data model using HTML tags.  

Web pages are written in HTML consisting of plain texts, tags and links 
to image, audio and video files, and other pages. Most HTML tags work in 
pairs. Each pair consists of an open tag and a close tag indicated by < > 
and </> respectively. Within each corresponding tag-pair, there can be 
other pairs of tags, resulting in nested structures. Thus, HTML tags can 
naturally encode nested data. We note the following:  

1. There are no designated tags for each type as HTML was not designed 
as a data encoding language. Any HTML tag can be used for any type.  

2. For a tuple type, values (data items) of different attributes are usually 
encoded differently to distinguish them and to highlight important items.  

3. A tuple may be partitioned into several groups or sub-tuples. Each group 
covers a disjoint subset of attributes and may be encoded differently.   

Based on these characteristics of the HTML language, the HTML mark-up 
encoding of instances is defined recursively below. We encode based on 
the type tree, where each node of the tree is associated with an encoding 
function, which will encode (or mark-up) all the instances of the type in 
the same way. We will use the tuple type and its attributes explicitly be-
cause values of different attributes in the tuple type are typically encoded 
differently. We use T.i to represent a value instance of the tuple type T and 
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attribute i. We use enc to denote an abstract encoding function.  
• For a leaf node of a basic type labeled ϕ, an instance c is encoded with 
 enc(φ:c) = OPEN-TAGS c CLOSE-TAGS 

 where OPEN-TAGS is a sequence of open HTML tags, and  CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number 
of tags is greater than or equal to 0.  

• For a tuple node labeled ϕ of n children or attributes, [ϕ.1, …, ϕ.n], the 
attributes are first partitioned into h (≥ 1) groups <ϕ.1, …, ϕ.e>, 
<ϕ.(e+1),…, ϕ.g> … <ϕ.(k+1), …, ϕ.n> and an instance [v1, …, vn] of 
the tuple node is encoded with 

  enc(ϕ:[v1, …, vn]) = OPEN-TAGS1 enc(v1) … enc(ve) CLOSE-TAGS1  
 OPEN-TAGS2 enc(ve+1)…enc(vg) CLOSE-TAGS2 
   … 
 OPEN-TAGSh enc(vk+1)…enc(vn) CLOSE-TAGSh 

 where OPEN-TAGSi is a sequence of open HTML tags, and  CLOSE-
TAGSi is the sequence of corresponding close tags. The number of tags 
is greater than or equal to 0.   

• For a set node labeled ϕ, an non-empty set instance {e1, e2, …, en} is en-
coded with 

  enc(ϕ:{e1, …, en})  = OPEN-TAGS enc(ej1)…enc(ejn) CLOSE-TAGS, 

  where OPEN-TAGS is a sequence of open HTML tags, and  CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number 
of tags is greater than or equal to 0.  The set elements are ordered based 
on an ordering function <. With ordering, a set instance is called a list. 
An empty set instance is encoded with OPEN-TAGS CLOSE-TAGS. 

By no means does this mark-up encoding cover all cases in Web pages. In 
fact, each group of a tuple type can be further divided. Anyway, you get 
the idea. We should also note that in an actual Web page the encoding is 
usually done not only by HTML tags, but also by words and punctuation 
marks. For example, in Fig. 9.5, if we are interested in extracting the ad-
dresses and the area codes, the punctuation marks are useful.  

 
Fig. 9.5. Words and punctuation marks are also used in data encoding 
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9.2  Wrapper Induction 

We are now ready to study the first approach to data extraction, namely 
wrapper induction, which is based on supervised learning. A wrapper in-
duction system learns data extraction rules from a set of labeled training 
examples. Labeling is usually done manually, which simply involves 
marking the data items in the training pages/examples that the user wants 
to extract. The learned rules are then applied to extract target data from 
other pages with the same mark-up encoding or the same template.  

The algorithm discussed in this section is based on the Stalker system 
[399]. Related work includes WIEN [296], Softmealy [244], WL2 [108], 
the system in [250], etc. The next section describes a different learning ap-
proach, which is based on the IDE system given in [599].  

Stalker models the Web data as nested relations. Let us model the res-
taurant page in Fig. 9.5. It has four addresses in four different cities. The 
type tree of the data is given in Fig. 9.6 (the country code is omitted). For 
each type, we also added an intuitive label. The wrapper uses a tree struc-
ture based on this to facilitate extraction rule learning and data extraction. 

Fig. 9.6. Type tree of the restaurant page in Fig. 9.5 

Below, we first introduce the data extraction process, and then describe 
the learning algorithm for generating extraction rules.  

9.2.1 Extraction from a Page 

A Web page can be seen as a sequence of tokens S (e.g., words, numbers 
and HTML tags). The extraction is done using a tree structure called the 
EC tree (embedded catalog tree), which models the data embedding in a 
HTML page. The EC tree is based on the type tree above. The root of the 
tree is the document containing the whole token sequence S of the page, 
and the content of each child node is a subsequence of the sequence of its 
parent node. To extract a node of interest, the wrapper uses the EC descrip-
tion of the page and a set of extraction rules. Figure 9.7 shows the EC tree 
of the page in Fig. 9.5. Note that we use LIST here because the set of ad-

String: Name 

String:  
Street 

String:  
City 

Set: Addresses 

Integer: 
Area-Code

String:  
Phone-No. 

Tuple: Restaurant  

Tuple: Address 
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dresses are already ordered in a page. For an extraction task, the EC tree 
for a data source is specified by the user (not discovered by the system). 

Fig. 9.7. The EC tree of the HTML page in Fig. 9.5 

For each node in the tree, the wrapper identifies or extracts the content 
of the node from its parent, which contains the sequence of tokens of all its 
children. Each extraction is done using two rules, the start rule and the 
end rule. The start rule identifies the beginning of the node and the end 
rule identifies the end of the node. This strategy is applicable to both leaf 
nodes (which represent data items) and list nodes. For a list node, list it-
eration rules are needed to break the list into individual data records (tu-
ple instances). To extract items from the data records, data extraction rules 
are applied to each record. All the rules are learned during wrapper induc-
tion, which will be discussed in Sect. 9.2.2. Given the EC tree and the 
rules, any node can be extracted by following the tree path P from the root 
to the node by extracting each node in P from its parent. 

The extraction rules are based on the idea of landmarks. Each landmark 
is a sequence of consecutive tokens and is used to locate the beginning or 
the end of a target item. Let us use the example in Fig. 9.5 to introduce ex-
traction rules and the extraction process based on the EC tree (Fig. 9.7). 
Figure 9.8 shows the HTML source code of the page in Fig. 9.5. 

1: <p> Restaurant Name: <b>Good Noodles</b><br><br>  
2: <li> 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987</li> 
3: <li> 25 Oak, <i>Forest</i>, Phone (800) 234-7903 </li> 
4: <li> 324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023 </li> 
5: <li> 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 </li>  </p> 

Fig. 9.8. The HTML source of the page in Fig. 9.5 

Let us try to extract the restaurant name “Good Noodles”. The following 
rule can be used to identify the beginning of the name: 

R1:  SkipTo(<b>) 

This rule means that the system should start from the beginning of the page 
and skip all the tokens until it sees the first <b> tag. <b> is a landmark. 

Name 

Street City 

LIST (Addresses)

Area-Code Phone-No. 

Address 

Page 
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Obviously, SkipTo(:) and SkipTo(<i>) will not work. According to the EC 
tree in Fig. 9.7, R1 is applied to the parent of node name, which is the root 
node. The root node contains the token sequence of the whole page.  

Similarly, to identify the end of the restaurant name, we can use: 

R2:  SkipTo(</b>)  

R2 is applied from the end of the page toward the beginning. R1 is called 
the start rule and R2 is called the end rule.  

Note that a rule may not be unique. For example, we can also use the 
following rules (and many more) to identify the beginning of the name: 

R3:  SkiptTo(Name _Punctuation_  _HtmlTag_) 
or R4:  SkiptTo(Name) SkipTo(<b>) 

R3 means that we skip everything till the word “Name” followed by a 
punctuation symbol and then a HTML tag. In this case, “Name 
_Punctuation_ _HtmlTag_” together is a landmark. _Punctuation_ and 
_HtmlTag_ are called wildcards. A wildcard represents a class of tokens. 
For example, _HtmlTag_ represents any HTML tag, i.e., any HTML tag 
matches the wildcard _HtmlTag_. R4 means that we skip everything till 
the word “Name” and then again skip everything till the tag <b>. Since 
wrapper induction algorithms find simple rules first, R1 will be produced.  

Now, suppose that we also want to extract each area code. The wrapper 
needs to perform the following steps:  

1. Identify the entire list of addresses. We can use the start rule 
SkipTo(<br><br>), and the end rule SkipTo(</p>).  

2. Iterate through the list (lines 2-5 in Fig. 9.8) to break it into four indi-
vidual records. To identify the beginning of each address, the wrapper 
can start from the first token of the parent and repeatedly apply the start 
rule SkipTo(<li>) to the content of the list. Each successive identifica-
tion of the beginning of an address starts from where the previous one 
ends. Similarly, to identify the end of each address, it starts from the last 
token of its parent and repeatedly apply the end rule SkipTo(</li>).  

Once each address record is identified or extracted, we can extract the area 
code in it. Due to variations in the format of area codes (some are in italic 
and some are not), we need to use disjunctions. In this case, the disjunctive 
start and the end rules are respectively R5 and R6:  

R5:  either  SkipTo( ( )  R6: either  SkipTo( ) )  
 or  SkipTo(-<i>)   or  SkipTo(</i>) 

In a disjunctive rule, the disjuncts are applied sequentially until a disjunct 
can identify the target node.  
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Finally, we summarize the data extraction features of Stalker.  

1. Extraction is done hierarchically based on the EC tree, which enables 
extraction of items at any level of the hierarchy.  

2. The extraction of each node is independent of its siblings. No contextual 
or ordering information of siblings is used in extraction or rule learning.  

3. Each extraction is done using two rules, the start rule and the end rule. 
Each rule consists of an ordered list of disjuncts (could be one).  

9.2.2 Learning Extraction Rules  

We now present the wrapper learning algorithm for generating extraction 
rules. The basic idea is as follows: To generate the start rule for a node in 
the EC tree, some prefix tokens or their wildcards of the node are identified 
as the landmarks that can uniquely identify the beginning of the node. To 
generate the end rule for a node, some suffix tokens or their wildcards of 
the node are identified as the landmarks. The rule generation process for 
the start rule and the end rule is basically the same. Their applications are 
also similar except that to apply a start rule the system starts by consuming 
the first token in the sequence of the parent and goes towards the last to-
ken, while for an end rule the system starts from the last token in the se-
quence of the parent and goes towards the first. Without loss of generality, 
in this section, we will discuss only the generation of start rules.  

For rule learning, the user first marks or labels the target items that need 
to be extracted in a few training examples. For instance, we have the ex-
amples in Fig. 9.8, which are addresses from the page in Fig. 9.5. Suppose 
we want to generate rules to extract the area code from each address. The 
area codes are labeled (marked) as in Fig. 9.9. A graphic user interface can 
make the labeling process very easy.  

Given a set of labeled training examples E, the learning algorithm 
should generate extraction rules that extract all the target items (also called 
positive items) without extracting any other items (called negative items).  

Learning is done based on the machine learning method, sequential 
covering (see Sect. 3.4.1). The algorithm is given in Fig. 9.10. In each it-
eration, the algorithm LearnRule() (Fig. 9.10) generates a perfect dis-

E1:  205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987 
E2:  25 Oak, <i>Forest</i>, Phone (800) 234-7903 
E3:  324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023 
E4:  700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 

Fig. 9.9. Training examples: four addresses with labeled area codes 
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junct that covers as many positive items as possible and does not cover 
any negative item in E (Examples). Then, all the examples whose positive 
items are covered by the rule are removed. The next iteration starts. The 
input to LearnRule() is E. Once all the positive items are covered, the rule 
is returned (line 6), which consists of an ordered list of learned disjuncts.  

The function LearnDisjunct() performs the actual generation of perfect 
disjuncts (Fig. 9.11). It works as follows: It first chooses a Seed example 
(line 1), which is the shortest example. In the case of Fig. 9.9, it is E2. It 
then generates the initial candidate disjuncts. Let us explain using a generic 
Seed, which can be represented as follows:  

t1 t2 … tk <target item> tk+1 tk+2 … tn, 

where ti is a token and <target item> is a labeled target item. We call t1 t2 
… tk the prefix sequence of the target item, and tk+1tk+2…tn the suffix se-
quence of the target item. The initial candidate disjuncts for the start rule 
are tk, and its matching wildcards. Let us use seven wildcards, _Numeric_, 
_AlphaNum_, _Alphabetic_, _Capitalized_, _AllCaps_, _HtmlTag_, and 
_Punctuation_. Their meanings are self-explanatory. For the example E2 
of Fig. 9.9, the following candidate disjuncts are generated: 

D1: SkipTo( ( ) 
D2: SkipTo(_Punctuation_) 

In line 4 of LearnDisjunct(), the function BestDisjunct() selects the best 
disjunct using a set of heuristics given in Fig. 9.13.  

In this case, D1 is selected as the best disjunct. D1 is a perfect disjunct, 
i.e., it only covers positive items in E2 and E4 but not any negative items 
in E. D1 is returned from LearnDisjunct(), which also ends the first itera-
tion of LearnRule(). E2 and E4 are removed (line 4) of Fig. 9.10. The next 
iteration of LearnRule() is left with E1 and E3. LearnDisjunct() will select 
E1 as Seed as it is shorter. Two candidates are then generated:  

D3: SkipTo( <i> ) 
D4: SkipTo( _HtmlTag_ ) 

Both these two candidates match early in the uncovered examples, E1 and 
E3. Thus, they cannot uniquely locate the positive items. Even worse, they 
can match to negative items in the two already covered examples, E2 and 
E4. Refinement is thus needed, which aims to specialize a disjunct by add-
ing more terminals (a token or one of its matching wildcards) to it. We 
hope the refined version will be able to uniquely identify the positive items 
in some examples without matching any negative item in any example in 
E. Two refinement strategies are used: 
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Algorithm LearnRule(Examples) // Examples: training examples 
1 Rule ← ∅  // Rule: the returned rule 
2 while Examples ≠ ∅ do 
3 Disjunct ← LearnDisjunct(Examples); 
4 remove all examples in Examples covered by Disjunct; 
5 add Disjunct to Rule 
6 return Rule 

Fig. 9.10. The main learning algorithm − based on sequential covering 

Function LearnDisjunct(Examples) 
1  let Seed ∈ Examples be the shortest example; 
2  Candidates ← GetInitialCandidates(Seed); 
3  while Candidates ≠ ∅ do 
4  D ← BestDisjunct(Candidates); 
5  if D is a perfect disjunct then 
6 return D 
7 Candidates ← Candidates ∪ Refine(D, Seed); 
8  remove D from Candidates; 
9  return D 

Fig. 9.11. Learning disjuncts 

Function Refine(D, Seed) 
1  D is a consecutive landmarks (l0, l1, …, ln); // li is in fact SkipTo(li) 
2 TopologyRefs ← LandmarkRefs ← ∅; 
3 for i = 1 to n do  // t0 or t1 below may be null 
4 for each sequence s = t0 li t1 before the target item in Seed do    
5 LandmarkRefs ← LandmarkRefs ∪ {(l0, …, li−1, t0 li, …, ln)} ∪  
  {(l0, …, li−1, x li, …, ln) | x is a wildcard that matches t0} 
  ∪  {(l0, …, li t1, li+1, …, ln)} ∪ 
  {(l0, …, li x, li+1, …, ln) | x is a wildcard that matches t1} 
6 for each token t between li−1 and li before the target item in Seed do 
7 ToplogyRefs ← TopologyRefs ∪ {(l0, …, li, t, li+1, …, ln)} ∪ 
  {(l0, …, li, x, li+1, …, ln)} | x is a wildcard that matches t} 
8 return TopologyRefs ∪ LandmarkRefs 

Fig. 9.12. Refining a disjunct to generate more specialized candidates 

BestDisjunct () prefer candidates that have: 
- more correct matches 
- accepts fewer false positives 
- fewer wildcards 
- longer end-landmarks 

Fig. 9.13. Choosing the best disjunct 
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1. Landmark refinement (lines 4-5 in Fig. 9.12): Increase the size of a 
landmark li by concatenating a terminal (a token t0 or t1, and its matching 
wildcards) at the beginning or at the end of li. If t0 or t1 does not exist, it 
will not be considered. We note that each landmark li in the algorithm in 
Fig. 9.12 actually represents the SkipTo(li). 

2. Topology refinement (lines 6-7 in Fig. 9.12): Increase the number of 
landmarks by adding 1-terminal landmarks, i.e., t and its matching wild-
cards. Note that l0 is not a landmark, which is used to simplify the algo-
rithm presentation. It represents the beginning of the Seed example.   

Let us go back to our running example. D3 is selected as the best disjunct 
(line 4 of Fig. 9.11). Clearly, D3 is not a perfect disjunct. Then, refinement 
is carried out. Landmark refinement produces the following candidates:  

D5:  SkipTo( - <i>) 
D6:  SkipTo( _Punctuation_ <i>) 

Topology refinement produces the 15 candidates in Fig. 9.14. We can 
already see that D5, D10, D12, D13, D14, D15, D18 and D21 match cor-
rectly with E1 and E3 and fail to match on E2 and E4. Using the heuristics 
in Fig. 9.13, D5 is selected as the final solution as it has longest last land-
mark (- <i>). D5 is then returned by LearnDisjunct(). It is possible that no 
perfect disjunct can be found after all possible refinements have been tried. 
In this case, an imperfect best disjunct will be returned (line 9 in Fig. 9.11).   

Since all the examples are covered, LearnRule() ends and returns the 
disjunctive (start) rule “either D1 or D5”, i.e.,  

R7:  either  SkipTo( ( )  
 or  SkipTo(- <i>) 

In summary, we note the following:  

1. The algorithm presented in this section is by no mean the only possible 
algorithm. Many variations are possible. Of course, there are also many 
other entirely different algorithms for wrapper induction. 

D7:  SkipTo(205) SkipTo(<i>) D15: SkipTo(_Numeric_) SkipTo(<i>) 
D8: SkipTo(Willow) SkipTo(<i>) D16: SkipTo(_Alphabetic_) SkipTo(<i>) 
D9:  SkipTo(,) SkipTo(<i>)  D17: SkipTo(_Punctuation_) SkipTo(<i>) 
D10: SkipTo(<i>) SkipTo(<i>) D18: SkipTo(_HtmlTag_) SkipTo(<i>) 
D11: SkipTo(Glen) SkipTo(<i>) D19: SkipTo(_Capitalized_) SkipTo(<i>) 
D12: SkipTo(1) SkipTo(<i>) D20: SkipTo(_AlphaNum_) SkipTo(<i>) 
D13: SkipTo(-) SkipTo(<i>) D21: SkipTo(</i>) SkipTo(<i>) 
D14: SkipTo(Phone) SkipTo(<i>)  

Fig. 9.14. All 15 topology refinements of D3 
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2. In our discussion above, we used only the SkipTo() function in extrac-
tion rules. However, in some situations it may not be sufficiently ex-
pressive. Therefore, other functions may be added. For example, Stalker 
also has the SkipUntil() function. Its argument is a part of the target item 
to be extracted, and is not consumed when the rule is applied. That is, 
the rule stops right before its occurrence.  

9.2.3 Identifying Informative Examples 

One of the important issues in wrapper learning is the manual labeling of 
training examples. To ensure accurate learning, a large number of training 
examples are needed. To manually label them is labor intensive and time 
consuming. The question is: is it possible to automatically select (unla-
belled) examples that are informative for the user to label? Clearly, exam-
ples of the same format are of limited use. Examples that represent excep-
tions are informative as they are different from already labeled examples. 
Active learning is an approach that helps identify informative unlabeled 
examples automatically. Given a set of unlabeled examples U, the ap-
proach works as follows in the wrapper induction context:  

1. Randomly select a small subset L of unlabeled examples from U  
2. Manually label the examples in L, and U = U − L; 
3. Learn a wrapper W based on the labeled set L; 
4. Apply W to U to find a set of informative examples L;  
5. Stop if L = ∅, otherwise go to step 2.   

The key is to find informative examples in step 4. In [400], Muslea et al. 
proposed a method, called co-testing, to identify informative examples.  

The idea of co-testing is simple. It exploits the fact that there are often 
multiple ways of extracting the same item. Thus, the system can learn dif-
ferent rules, forward and backward rules, to locate the same item. Let us 
use learning of start rules as an example. The rules learned in Sect. 9.2.2 
are called forward rules because they consume tokens from the beginning 
of the example to the end. In a similar way, we can also learn backward 
rules that consume tokens from the end of the example to the beginning.  

Given an unlabeled example, both the forward rule and backward rule 
are applied. If the two rules disagree on the beginning of a target item in 
the example, this example is given to the user to label. The intuition behind 
is simple. When the two rules agree, the extraction is very likely to be cor-
rect. When the two rules do not agree on the example, one of them must be 
wrong. By giving the user the example to label, we obtain a labeled infor-
mative training example.  
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9.2.4 Wrapper Maintenance 

Once a wrapper is generated, it is applied to other Web pages that contain 
similar data and are formatted in the same ways as the training examples. 
This introduces new problems.  

1. If the site changes, does the wrapper know the change? This is called the 
wrapper verification problem.  

2. If the change is correctly detected, how to automatically repair the 
wrapper? This is called the wrapper repair problem.  

One way to deal with both problems is to learn the characteristic patterns 
of the target items, which are then used to monitor the extraction to check 
whether the extracted items are correct. If they are incorrect, the same pat-
terns can be used to locate the correct items assuming that the page 
changes are minor formatting changes. This is called re-labeling. After re-
labeling, re-learning is performed to produce a new wrapper. These two 
tasks are very difficult because contextual and/or semantic information is 
often needed to detect changes and to find the new locations of the target 
items. Wrapper maintenance is still an active research area.  

9.3. Instance-Based Wrapper Learning 

The wrapper induction method discussed in the previous section requires a 
set of labeled examples to learn extraction rules. Active learning may be 
applied to identify informative examples for labeling to reduce the manual 
labeling effort. In this section, we introduce an instance-based learning ap-
proach to wrapper building, which does not learn extraction rules. Instead, 
it extracts target items in a new instance/page by comparing their prefix 
and suffix token strings with those of the corresponding items in the la-
beled examples. At the beginning, the user needs to label only a single ex-
ample, which is then used to identify target items from unlabeled exam-
ples. If some item in an unlabeled example cannot be identified, it is sent 
for labeling, which is active learning but with no additional mechanism. 
Thus, in this approach the user labels only a minimum number of training 
examples. The method described here is based on the IDE algorithm in 
[599], which is given in Fig. 9.15. It consists of three steps:  

1. A random example p from a set of unlabeled training examples S is se-
lected for labeling (line 1). The examples here can be a set of detail 
pages or a set of data records identified from list pages. We will see in 
Sect. 9.8 that data records in list pages can be identified automatically.  
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2. The user labels/marks the target items in the selected example p (line 2). 
The system also stores a sequence of k consecutive tokens right before 
each labeled item (called the prefix string of the item) and a sequence of 
k consecutive tokens right after the labeled item (called the suffix string 
of the item). The prefix and suffix strings of all target items form a tem-
plate. Storing the prefix and suffix strings is to avoid keeping the whole 
page in memory. The value of k does not affect the extraction result. If it 
is too small, the algorithm can always get more tokens from the original 
page. In practice, we can give k a large number, say 30, so that the sys-
tem does not have to refer back to the original page during extraction. 
The variable Templates keeps all templates (line 3). 

3. The algorithm then starts to extract items from unlabeled examples (line 
4–9) using the function extract() (line 5). For each unlabeled example d, 
it compares the stored prefix and suffix strings of each target item with 
the token string of d to identify its corresponding item. If some item 
from d cannot be identified, d is passed to the user for labeling (line 6) 
(which is active learning), i.e., d is an informative example.  

Let us use an example to show what a template looks like. For example, in 
the page of Fig. 9.1, we are interested in extracting three items from each 
product, namely, name, image, and price. The template (Tj) for a labeled 
example j is represented with:  

 Tj = 〈patname, patimage, patprice〉 

Each pati in Tj consists of a prefix string and a suffix string of the item i. 
For example, if the product image is embedded in the following source:  

 … <table><tr><td> <img> </td><td></td> … 

then we have (we use k = 3 and regard each HTML tag as a token) 
patimg = (img, prefix:〈<table><tr><td>〉, suffix:〈</td><td></td>〉). 

Algorithm IDE(S) // S is the set of unlabeled examples. 
1. p ← randomSelect(S);  // Randomly select a page p from S  
2. Tp ← labeling(p);  // the user labels the page p 
3. Templates ← 〈Tp〉;   // initialization 
4. for each remaining unlabeled example d in S do 
5. if ¬(extract(Templates, d)) then  
6. Td ← labeling(d); 
7. insert Td into Templates  
8. end-if 
9. end-for 

Fig. 9.15. The IDE algorithm 
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Extract(Templates, d) function: For each unlabeled example d, extract() 
tries to use each saved template T (∈ Templates) to match with the token 
string of d to identify every target item in d. If a sequence of prefix (and 
respectively suffix) tokens of a target item g in T matches a sequence of 
prefix (and suffix) tokens of an item f in d that uniquely identifies f in d, f 
is regarded as g’s corresponding item in d. By “uniquely identifies”, we 
mean that only item f in d matches g based on their prefix and suffix 
strings. An example is given below.  

After item f, which corresponds to item g in T, is identified and ex-
tracted from d, we use the token strings of d before f and after f to find the 
remaining target items using the same template T. This process continues 
until all the corresponding items of those items in T are identified from d. 
If the corresponding item of an item in T cannot be uniquely identified 
from d, then the extraction using T fails on d. The next template in Tem-
plates is tried. If every template in Templates fails on d, d is sent to the 
user for labeling (line 6 of Fig. 9.15). The algorithm is fairly straightfor-
ward, and thus is omitted. See [599] for more details, which also discusses 
how to deal with some additional issues, e.g., missing items in a page.  

Fig. 9.16 gives an example to show how a target item is uniquely identi-
fied. Assume that 5 tokens <table><tr><td><i><b> are saved in the prefix 
string of item price from a labeled example. Given an unlabeled example, 
after scanning through its token string, we obtain the match situation in 
Fig. 9.16. That is, we find 4 <b>’s, three <i><b> together, and only one 
<td><i><b> together, which can match some prefix tokens of price. These 
are shown in four rows below the saved prefix string. The number within 
each “( )” is the sequence id of the token (the tag) in the unlabeled exam-
ple. “−” means no match. The HTML source is given in the box of Fig. 
9.16 with sequence id’s attached. We observe that the beginning of price is 

prefix: <table> <tr>  <td>  <i>  <b>     price 
    − <b>(10) 
  − <i>(17) <b>(18) 
  − <td>(23) <i>(24) <b>(25) 
  − <i>(67) <b>(68) 

  1 3 4 
 

 

 

 

Fig. 9.16. The price is found uniquely.  

…<td> <font> <b>……<td> <font> <i> <b> … 
 8  9  10  15 16  17  18 

… <tr> <td> <i> <b> $25.00 …... 
 22  23  24 25 

... <br> <font> <i> <b> 
 65  66 67  68 

HTML 
source of the 
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uniquely identified because the sequence of prefix tokens of price, 
<td><i><b>, has only one match. Note that we do not need to use all the 
saved tokens in the prefix string of price. This technique is thus called suf-
ficient match. We see that <b> is not unique because there are 4 <b>’s. 
<i><b> is not unique because there are 3 matches.  

Once the beginning of item price is found, the algorithm tried to locate 
the ending of item price in the same way by comparing suffix strings in the 
opposite direction. After item price is identified and extracted, the algo-
rithm goes to identify other items if they are not extracted.  

The final set of templates and the extract() function together form a 
wrapper, which can be used to extract target items from future examples.  

Apart from performing active learning automatically, there are two other 
interesting features about IDE. Firstly, there is no pre-specified sequence 
of items to be extracted. For example, the order of items in the HTML 
source may be: name, price, and image. If at the beginning we can identify 
item price uniquely in the unlabeled example, we can then start from price 
and search forward to find item image and search backward to find item 
name. The final extraction sequence of items may be price, image and 
name. Secondly, the method exploits local contexts in extraction. It may 
be the case that from the whole page/data record we are unable to identify 
a particular item. However, within a local area, it is easy to identify the 
item. For instance, in the above example, after identifying item price, we 
only need to search for item image in the rest of the input. Even a similar 
item appears before price, it will not be considered. Evaluation results in 
[599] show that this simple technique works very well.  

9.4  Automatic Wrapper Generation: Problems 

Wrapper generation using supervised learning has two main shortcomings: 

1. It is not suitable for a large number of sites due to the manual labeling 
effort. For example, if a shopping site wants to extract all the products 
sold on the Web, manual labeling becomes almost an impossible task.  

2. Wrapper maintenance is very costly. The Web is a dynamic environ-
ment. Sites change constantly. Since wrapper learning systems mainly 
rely on HTML formatting tags, if a site changes its formatting templates, 
the existing wrapper for the site will become invalid. As we discussed 
earlier, automatic verification and repair are still difficult. Doing them 
manually is very costly if the number of sites involved is large.  

Due to these problems, automatic (or unsupervised) extraction has been 
studied by researchers. Automatic extraction is possible because data re-
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cords (tuple instances) in a Web site are usually encoded using a very 
small number of fixed templates. It is possible to find these templates by 
mining repeated patterns in multiple data records. The rest of the chapter 
focuses on automatic extraction.  

Note that in general we use the term “templates” to refer to hidden tem-
plates employed by Web page designers. We use the term “patterns” to re-
fer to regular structures that the system has discovered. 

9.4.1 Two Extraction Problems  

In Sects. 9.1.2 and 9.1.3, we described an abstract model of structured data 
on the Web (i.e., nested relations), and a HTML mark-up encoding of the 
data model respectively. The general goal of data extraction is to recover 
the hidden schema from the HTML mark-up encoded data. In the rest of 
the chapter, we focus on two problems, which are really quite similar.  

Problem 1: Extraction Based on a Single List Page 

Input: A single HTML string S, which contains k non-overlapping sub-
strings s1, s2, …, sk with each si encoding an instance of a set type. That 
is, each si contains a collection Wi of mi (≥ 2) non-overlapping sub-
substrings encoding mi instances of a tuple type.  

Output: k tuple types σ1, σ2, …, σk, and k collections C1, C2, …, Ck of in-
stances of the tuple types such that for each collection Ci there is a 
HTML encoding function enci such that enci: Ci → Wi is a bijection.  

We use the example in Fig. 9.1 to explain. The input string S is the full 
Web page (only part of it is shown in Fig. 9.1). In this page, there are two 
substrings s1 and s2 that encode two set instances, i.e., the two sets of data 
records. s1 consists of four encodings (displayed horizontally) enc1(I1), 
enc1(I2), enc1(I3), enc1(I4) of four product instances I1, I2, I3, I4 of a tuple 
type σ1, according to some mark-up encoding function enc1. Similarly, s2 
consists of encodings of some other products (displayed vertically). One 
important note is that S often contains some other information (not shown 
in Fig. 9.1) apart from the encoded data. An algorithm needs to work on 
the string S to find each substring and construct the tuple type by generat-
ing a pattern from each substring representing the mark-up encoding func-
tion enci.  

The pattern may be represented as a regular expression. Data extrac-
tion can be done using the regular expression or the original pattern as we 
will see in Sect. 9.11.1.  
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Problem 2: Extraction Based on Multiple Pages  

Input: A collection W of k HTML strings, which encodes k instances of 
the same type.  

Output: A type σ, and a collection C of instances of type σ, such that 
there is a HTML encoding enc such that enc: C → W is a bijection.  

The input consists of a collection of k encodings enc(I1), enc(I2), …, enc(Ik) 
of instances I1, I2, …, Ik of a nested type σ, according to some mark-up en-
coding function enc. An algorithm works on the encoded instances and 
constructs the type by generating a pattern (the encoding function enc), 
which again may be represented as a regular expression and used to extract 
data from other pages. Note that, for this problem, the input may be a set of 
detail pages (of a tuple type) or list pages (of a set type).  

The next few sections describe several techniques to solve the two prob-
lems. As we will see in Sect. 9.10, most techniques for solving problem 1 
can also be used for solving problem 2.  

9.4.2 Patterns as Regular Expressions 

A regular expression can be naturally used to model the HTML encoded 
version of a nested type. Given an alphabet of symbols Σ and a special to-
ken “#text” that is not in Σ, a regular expression over Σ is a string over Σ 
∪ {#text, *, ?, |, (, )} defined as follows: 

• The empty string ε and all elements of Σ ∪ {#text} are regular expres-
sions.  

• If A and B are regular expressions, then AB, (A|B) and (A)? are regular 
expressions, where (A|B) stands for A or B and (A)? stands for (A|ε).  

• If A is a regular expression, (A)* is a regular expression, where (A)* 
stands for ε or A or AA or ...  

We also use (A)+ as a shortcut for A(A)*, which can be used to model the 
set type of a list of tuples. (A)? indicates that A is optional. (A|B) represents 
a disjunction. If a regular expression does not include (A|B), it is called a 
union-free regular expression. Regular expressions are often employed 
to represent extraction patterns (or encoding functions). However, extrac-
tion patterns do not have to be regular expressions, as we will see later.  

Given a regular expression, a nondeterministic finite-state automaton 
can be constructed and employed to match its occurrences in string se-
quences representing Web pages. In the process, data items can be ex-
tracted, which are text strings represented by #text. 
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9.5 String Matching and Tree Matching 

As we can see from both problems in Sect. 9.4.1, the key is to find the en-
coding template from a collection of encoded instances of the same type. A 
natural way to do this is to detect repeated patterns from HTML encoding 
strings. String matching and tree matching are obvious techniques for 
the task. Tree matching is useful because HTML encoding strings also 
form nested structures due to their nested HTML tags. Such nested struc-
tures can be modeled as trees, commonly known as DOM (tag) trees. 
DOM stands for Document Object Model (http://www.w3.org/DOM/). Be-
low we describe some string matching and tree matching algorithms. 

9.5.1 String Edit Distance 

String edit distance (also known as Levenshtein distance) is perhaps the 
most widely used string matching/comparison technique. The edit distance 
of two strings, s1 and s2, is defined as the minimum number of point muta-
tions required to change s1 into s2, where a point mutation is one of: (1) 
change a character, (2) insert a character, and (3) delete a character.  

Assume we are given two strings s1 and s2. The following recurrence re-
lations define the edit distance, d(s1, s2), of two strings s1 and s2:  

d(ε, ε) = 0  // ε represents an empty string 
d(s, ε) = d(ε, s) = |s|    // |s| is the length of string s 
d(s1–+c1, s2–+c2) = min(d(s1–, s2–) + p(c1, c2), d(s1–+c1, s2–) + 1, 

            d(s1–, s2–+c2) + 1), 

where c1 and c2 are the last characters of s1 (= s1–+c1) and s2 (= s2–+c2) re-
spectively, and p(c1, c2) = 0 if c1 = c2; p(c1, c2) = 1, otherwise. 

The first two rules are obvious. Let us examine the last one. Since nei-
ther string is empty, each has a last character, c1 and c2 respectively. c1 and 
c2 have to be explained in an edit of s1–+c1 into s2–+c2. If c1 = c2, they match 
with no penalty, i.e., p(c1, c2) = 0, and the overall edit distance is d(s1–, s2–). 
If c1 ≠ c2, then c1 could be changed into c2, giving p(c1, c2) = 1 and an 
overall cost d(s1–, s2–)+1. Another possibility is to edit s1–+c1 into s2– and 
then insert c2, giving d(s1–+c1, s2–)+1. The last possibility is to delete c1 and 
edit s1– into s2–+c2, giving d(s1–, s2–+c2)+1. There are no other alternatives. 
We take the least expensive, i.e., min. of these alternatives.  

From the relations, we can see that d(s1, s2) depends only on d(s1′, s2′) 
where s1′ is a shorter string than s1, or s2′ is a shorter string than s2, or both. 
Thus, the dynamic programming technique can be applied to compute 
the edit distance of two strings. 
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We can use a two-dimensional matrix, m[0..|s1|, 0..|s2|], to hold the edit 
distances. The low right corner cell m(|s1|, |s2|) will furnish the required 
value of the edit distance d(s1, s2). We have 

m[0, 0] = 0 
m[i, 0] = i,  i =1, 2, ..., |s1| 
m[0, j] = j,  j =1, 2, ..., |s2| 
m[i, j] = min(m[i−1, j−1] + p(s1[i], s2[j]), m[i−1, j] + 1, m[i, j−1] + 1 ), 

 where i = 1, 2, ..., |s1|, j = 1, 2, ..., |s2|, and p(s1[i], s2[j]) = 0 if 
s1[i] = s2[j]; p(s1[i], s2[j]) = 1, otherwise.  

Once the edit distance computation is completed, we can find the align-
ment of characters that give the final distance. For this, we need to record 
which case in the above recursive rule minimizes the distance, and then 
trace back the path that corresponds to the best alignment. Note that, in 
many cases, the minimal choice is not unique, and different paths could 
have been drawn, which indicate alternative optimal alignments.  

Example 1: We want to compute the edit distance and find the alignment 
of the following two strings: 

s1:  X G Y X Y X Y X 
s2:  X Y X Y X Y T X 

The edit distance matrix is given in Fig. 9.17. The final edit distance value 
is 2, which is the value in the bottom right corner cell. Figure 9.17 also 
shows the trace back path. Notice that a diagonal line means match or 
change, a vertical line means insertion, and a horizontal line means dele-
tion. Thus, the final alignment of our two strings is:  

s1:  X G Y X Y X Y − X 
s2:  X − Y X Y X Y T X 

 
Fig. 9.17. The edit distance matrix and back trace path 

 s1 X G Y X Y X Y X 
s2 0 1 2 3 4 5 6 7 8 
X 1 0 1 2 3 4 5 6 7 
Y 2 1 1 1 2 3 4 5 6 
X 3 2 2 2 1 2 3 4 5 
Y 4 3 3 2 2 1 2 3 4 
X 5 4 4 3 2 2 1 2 3 
Y 6 5 5 4 3 2 2 1 2 
T 7 6 6 5 4 3 3 2 2 
X 8 7 7 6 5 4 3 3 2 
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The time-complexity of the algorithm is O(|s1||s2|) (to fill the matrix). 
The space complexity is also O(|s1||s2|). Back trace takes O(|s1|+|s2|) time.  

The normalized edit distance ND(s1, s2) is defined as the edit distance 
divided by the mean length of the two strings: 
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Another commonly used denominator is max(|s1|, |s2|).  
Finally, in data extraction, “change a character” may be undesirable 

(which represents a disjunction in regular expressions). A large distance 
may be used to disallow it. We will discuss this issue again in Sect. 9.11.2.  

9.5.2 Tree Matching 

Like string edit distance, tree edit distance between two trees A and B (la-
beled ordered rooted trees) is the cost associated with the minimum set of 
operations needed to transform A into B. In the classic formulation, the set 
of operations used to define tree edit distance includes, node removal, node 
insertion, and node replacement. A cost is assigned to each operation. 
Solving the tree edit distance problem is to find a minimum-cost mapping 
between two trees. The concept of mapping is formally defined as: 

Let X be a tree and let X[i] be the ith node of tree X in a preorder walk of 
the tree. A mapping M between a tree A of size n1 and a tree B of size n2 is 
a set of ordered pairs (i, j), one from each tree, satisfying the following 
conditions for all (i1, j1), (i2, j2) ∈ M:  

(1) i1 = i2 iff j1 = j2; 
(2) A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2]; 
(3) A[i1] is an ancestor of A[i2] iff B[j1] is an ancestor of B[j2]. 

Intuitively, the definition requires that each node appears no more than 
once in a mapping and the order among siblings and the hierarchical rela-
tion among nodes are preserved. Figure 9.18 shows a mapping example. 

Several algorithms have been proposed to address the problem of find-
ing the minimum set of operations (i.e., the one with the minimum cost) to 
transform one tree into another. All the formulations have complexities 
above quadratic. In [509], a solution based on dynamic programming is 
presented with the complexity of O(n1n2h1h2), where n1 and n2 are the sizes 
of the trees and h1 and h2 are the heights of the trees. In [95, 532], two im-
proved algorithms are presented, and in [605], it is shown that if the trees 
are not ordered, the problem is NP-complete. 
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Fig. 9.18. A general tree mapping example 

In the above general setting, mapping can cross levels, e.g., node a in 
tree A and node a in tree B (Fig. 9.18). Replacements are also allowed, 
e.g., node b in A and node h in B. We now define a restricted tree mapping 
[572], called simple tree matching (STM), in which no node replacement 
and no level crossing are allowed. In STM, the aim is to find the maximum 
matching between two trees (not the edit distance of two trees). This re-
stricted model has been found quite effective for Web data extraction.  

Let A and B be two trees, and i ∈ A and j ∈ B be two nodes in A and B 
respectively. A matching between two trees is defined to be a mapping M 
such that, for every pair (i, j) ∈ M where i and j are non-root nodes, (par-
ent(i), parent(j)) ∈ M. A maximum matching is a matching with the 
maximum number of pairs.  

Let A = RA:〈A1, …, Ak〉 and B = RB:〈B1,…, Bn〉 be two trees, where RA and 
RB are the roots of A and B, and Ai and Bj are the ith and jth first-level sub-
trees of A and B respectively. Let W(A, B) be the number of pairs in the 
maximum matching of trees A and B. If RA and RB contain identical sym-
bols, the maximum matching between A and B (i.e., W(A, B)) is m(〈A1, …, 
Ak〉, 〈B1, …, Bn〉) + 1, where m(〈A1, …, Ak〉, 〈B1, …, Bn〉) is the number of 
pairs in the maximum matching of 〈A1, …, Ak〉 and 〈B1, …, Bn〉. If RA ≠ RB, 
W(A, B)) = 0. Formally, W(A, B) is defined as follows:  
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m(〈〉, 〈〉) = 0 // 〈〉 represents an empty sub-tree list.  
m(s, 〈〉) = m(〈〉, s) = 0 // s matches any non-empty sub-tree list 
m(〈A1, …, Ak〉, 〈B1, …, Bn〉) = max(m(〈A1, …, Ak-1〉, 〈B1, …, Bn-1〉) + W(Ak, Bn),  

  m(〈A1, …, Ak〉, 〈B1, …, Bn-1〉),  
  m(〈A1, …, Ak-1〉, 〈B1, …, Bn〉)).  

This definition of m is similar to that of the string edit distance except 
that here we compute the maximum matching rather than the distance and 
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that W(Ak, Bn) needs to be computed recursively since Ak and Bn are sub-
trees. Clearly, the dynamic programming technique is again applicable.    

We now give an algorithm for simple tree matching (STM), which com-
putes W(A, B). The algorithm is also called STM (Fig. 9.19). STM is a top-
down algorithm. It evaluates the similarity by producing the maximum 
matching through dynamic programming. The algorithm has the complex-
ity of O(n1n2), where n1 and n2 are the sizes of trees A and B respectively.  

In line 1, the roots of A and B are compared first. If the roots contain 
distinct symbols, then the two trees do not match at all. If the roots contain 
identical symbols, then the algorithm recursively finds the maximum 
matching between first-level sub-trees of A and B and save it in a W matrix 
(line 8). Based on the W matrix, a dynamic programming scheme is ap-
plied to find the number of pairs in a maximum matching between two 
trees A and B. We use an example (Fig. 9.20) to explain the algorithm.  

To find the maximum matching between trees A and B, their roots (N1 
and N15) are compared first. Since N1 and N15 contain identical symbols, 
m1,15[4, 2]+1 is returned as the maximum matching value between trees A 
and B (line 11). The m1,15 matrix is computed based on the W1,15 matrix. 
Each entry in W1,15, e.g., W1,15[i, j], is the maximum matching between the 
ith and jth first-level sub-trees of A and B, which is computed recursively 
based on its m matrix. For example, W1,15[4, 2] is computed recursively by 
building the matrices (E)-(H). All the relevant cells are shaded. The zero 
column and row in m matrices are initializations. Note that we use sub-
scripts for both m and W to indicate the nodes that they are working on.  

Algorithm: STM(A, B) 
1. if the roots of the two trees A and B contain distinct symbols then 
2. return (0) 
3. else  k ← the number of first-level sub-trees of A; 
4. n ← the number of first-level sub-trees of B; 
5. Initialization:  m[i, 0] ← 0 for i = 0, …, k; 
  m[0, j] ← 0 for j = 0, …, n; 
6. for i = 1 to k do 
7. for j = 1 to n do  
8. m[i, j] ← max(m[i, j−1], m[i−1, j], m[i−1, j−1]+W[i, j]),  
 where W[i, j] ← STM(Ai, Bj) 
9. end-for 
10. end-for 
11. return (m[k, n]+1) 
12. end-if 

Fig. 9.19. The simple tree matching (STM) algorithm 
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Fig. 9.20. (A) Tree A; (B) Tree B; (C) m matrix for the first level sub-trees of N1 
and N15; (D) W matrix for the first level sub-trees of N1 and N15; (E)-(H) m ma-
trixes and W matrixes for the lower level sub-trees. 

The normalized simple tree matching NSTM(A, B) is obtained by di-
viding the matching score by the mean number of nodes in the two trees: 
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We may also use max(nodes(A), nodes(B)) as the denominator. nodes(X) 
denotes the number of nodes in tree X.  

Similar to string edit distance, after matching computation, we can trace 
back in the m matrices to find the aligned nodes from the two trees.  
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9.6 Multiple Alignment  

In order to find repeated patterns from HTML strings based on string edit 
distance or tree matching, we need alignments of strings and trees. We 
have discussed how to obtain the alignment of two strings or trees. How-
ever, a Web page usually contains more than two data records, thus more 
than two strings or trees need to be aligned. Producing a global alignment 
of all the strings or trees is crucial. The task is called multiple alignment.  

In [82], Carrillo and Lipman proposed an optimal multiple alignment 
based on multidimensional dynamic programming. However, its time 
complexity is exponential, and is thus not suitable for practical use. Many 
heuristic methods exist. We describe two of them: the center star method 
and the partial tree alignment method in [600].  

9.6.1 Center Star Method 

This is a classic technique [213]. It is commonly used for multiple string 
alignments, but can be adopted for trees. The method is applied to data ex-
traction based on alignments of HTML strings in [91]. Let the set of strings 
to be aligned be S. In the method, a string sc that minimizes  

∑ ∈Ss ic
i

ssd ),(  (3) 

is first selected as the center string. d(sc, si) is the distance of two strings. 
The algorithm then iteratively computes the alignment of rest of the strings 
with sc. Spaces are added when needed. The algorithm is in Fig. 9.21.  

CenterStar(S) 
1. choose the center star sc using Equation (3); 
2.  initialize the multiple sequence alignment M that contains only sc; 
4. for each s in S-{sc} do 
5.  let c* be the aligned version of sc in M; 
6.  let s′ and c*′ be the optimally aligned strings of s and c*; 
7.  add aligned strings s′ and c*′ into the multiple alignment M; 
8.  add spaces to each string in M, except, s′ and c*′, at locations where new 

spaces are added to c* 
9.  endfor  
10.  return multiple string alignment M 

Fig. 9.21. The center star algorithm 

Example 2: We have three strings, i.e., S = {ABC, XBC, XAB}. ABC is 
selected as the center string sc. Let us align the other strings with ABC. 
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Iteration 1:  Align c* (= sc) with s =XBC: 
  c*′ :  A B C 
    | | 
 s′ :  X B C 
 Update M:  A B C →  A B C 
      X B C 
Iteration 2:  Align c* with s = XAB: 
  c*′ :  − A B C 
  | | 
 s′ : X A B − 
 Update M:  A B C →  − A B C 
  X B C   − X B C 
      X A B − 

Assume there are k strings in S and all strings have length n, finding the 
center takes O(k2n2) time and the iterative pair-wise alignment takes O(kn2) 
time. Thus, the overall time complexity is O(k2n2).  

For our data extraction task, this method has two shortcomings:  
1. the algorithm runs slowly for pages containing many data records and/or 

data records containing many tags (i.e., long strings) because finding the 
center string needs O(k2n2) time. 

2. if the center string (or tree) does not have a particular data item, other 
data records that contain the same data item may not be aligned prop-
erly. For example, the letter X’s in the last two strings (in bold) are not 
aligned in the final result, but they should.  

Let us discuss the second point further. As we mentioned in Sect. 9.5.1, 
giving the cost of 1 for “changing a letter” in edit distance is problematic 
(e.g., A and X in the first and second strings in the final result) because of 
optional data items in data records. The problem can be partially dealt with 
by disallowing “changing a letter” (e.g., giving it a very large cost). How-
ever, this introduces another problem. For example, if we align only ABC 
and XBC, it is not clear which of the following alignment is better. 
 (1)  A – B C (2)  – A B C 
  – X  B C   X – B C 

If we also consider the string XAB, then (2) is better. However, the cen-
ter star method does not have this global view. The partial tree alignment 
algorithm described below deals with both problems nicely.  

9.6.2 Partial Tree Alignment 

This method is proposed in [600] for multiple tree alignment in the context 
of data extraction. It can also be used for aligning multiple strings. For 
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simplicity, we describe the method in the context of trees. The main idea is 
as follows: The algorithm aligns multiple trees by progressively growing a 
seed tree. The seed tree, denoted by Ts, is initially picked to be the tree 
with the maximum number of data fields, which is similar to the center 
string but without the O(k2n2) pair-wise tree matching to choose it. The 
reason for choosing this seed tree is clear as it is more likely for this tree to 
have a good alignment with data fields in other data records. Then, for 
each Ti (i ≠ s), the algorithm finds for each node in Ti a matching node in 
Ts. If no match can be found for a node vi, then the algorithm attempts to 
expand the seed tree by inserting vi into Ts. The expanded seed tree Ts is 
then used in subsequent matching. The insertion is done only if a position 
for vi can be uniquely determined in Ts. Otherwise, it is left unmatched. 
Thus the alignment is partial. It represents a least commitment ap-
proach. Early uncertain commitments can result in undesirable effects for 
later matches. Note that although the method was designed originally for 
aligning multiple trees, it can also be adapted for aligning multiple strings. 

Partial Alignment of Two Trees 

Before presenting the full algorithm for aligning multiple trees, let us first 
look at the partial alignment of two trees. As indicated above, after Ts and 
Ti are matched, some nodes in Ti can be aligned with their corresponding 
nodes of Ts because they match one another. For those nodes in Ti that are 
not matched, we want to insert them into Ts as they may contain optional 
data items. There are two possible situations when inserting a new node vi 
from Ti into Ts, depending on whether a location in Ts can be uniquely de-
termined to insert vi. Instead of considering a single node vi, we can con-
sider each set of unmatched consecutive sibling nodes vj…vm from Ti to-
gether. Without loss of generality, we assume that the parent of vj…vm has 
a match in Ts and we want to insert vj…vm into Ts under the same parent 
node. We only insert vj…vm into Ts if a position for inserting vj…vm can be 
uniquely determined in Ts. Otherwise, they will not be inserted into Ts and 
left unaligned. The location for inserting vj…vm can be uniquely decided: 

1. If vj…vm have two neighboring siblings in Ti, one on the right and one 
on the left, that are matched with two consecutive siblings in Ts. Figure 
9.22(A) shows such a situation, which gives one part of Ts and one part 
of Ti. We can see that node c in Ti can be inserted into Ts between node 
b and node e in Ts because node b and node e in Ts and Ti match. The 
new (extended) Ts is also shown in Fig. 9.22(A). We note that nodes a, 
b, c and e may also have their own children. We did not draw them to 
save space. This applies to all the cases below. 
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2. If vj…vm has only one left neighboring sibling x in Ti and x matches the 
right most node x in Ts, then vj…vm can be inserted after node x in Ts. 
Figure 9.22(B) illustrates this case. 

3. If vj…vm has only one right neighboring sibling x in Ti and it matches 
the left most node x in Ts, then vj…vm can be inserted before node x in 
Ts. This case is similar to the second case above.  

Otherwise, we cannot uniquely decide a location for unmatched nodes in Ti 
to be inserted into Ts. This is shown in Fig. 9.22(C). The unmatched node x 
in Ti could be inserted into Ts in two positions, between nodes a and b, or 
between node b and e in Ts. In this situation, we will not insert it into Ts. 

 

Fig. 9.22. Expand the seed: (A) and (B) unique insertion; (C) insertion ambiguity 

Partial Alignment of Multiple Trees  

Figure 9.23 gives the full algorithm for multiple tree alignment based on 
partial alignment of two trees. S is the set of input trees. We use a simple 
example in Fig. 9.24 to explain the algorithm. S has three example trees. 

Lines 1–2 (Fig. 9.23) find the tree with the most data items. It is used as 
the seed tree Ts. In Fig. 9.24, the seed tree is the first tree (we omitted 
many nodes on the left of T1). Line 3 initializes R, which is used to store 
those trees that are not completely aligned with Ts in each iteration. Line 4 
starts the while loop to align every other tree against Ts. Line 5 picks the 
next unaligned tree, and line 6 does the tree matching. Line 7 finds all the 
matched pairs by tracing the matrix results of line 6. This function is simi-
lar to aligning two strings using edit distance. In Fig. 9.24, Ts and T2 pro-
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duce one match, node b. Nodes w, c, k and g are not matched to Ts. Lines 8 
and 9 attempt to insert the unmatched nodes into Ts. This is the partial tree 
alignment discussed above. In Fig. 9.24, none of the nodes w, c, k and g in 
T2 can be inserted into Ts because no unique location can be found. Thus, it 
will not pass the if-statement (InsertIntoSeed() returns false in line 9 of 
Fig. 9.23). Lines 13–14 inserts T2 into R, which is a list of trees that need 
to be re-matched since some data items are not aligned and not inserted 
into Ts. In Fig. 9.24, when matching T3 with Ts in the next iteration, all 
unmatched nodes c, h and k can be inserted into Ts (line 9). Since there are 
some insertions, we re-match those trees in R. Line 10 and line 11 put the 
trees in R into S and reinitializes R. T3 will not be inserted into R (line 13). 

In Fig. 9.24, T2 is the only tree in R, which will be matched to the new 
Ts in the next round. Now, every node in T2 can be matched or inserted, 
and the process completes. Line 18 of Fig. 9.23 outputs the data items from 
each tree according to the alignment produced. Note that if there are still 
un-matched nodes with data after the algorithm completes (e.g., R ≠ ∅), 
each un-matched data will occupy a single column by itself. Table 1 shows 
the data table for the trees in Fig. 9.24. We use “1” to indicate a data item. 

The complexity of the algorithm is O(k2n2), where k is the number of 
trees in S and n is the size of each tree (we assume that all the trees are of 
similar size). However, as reported in [600], in practice, the algorithm al-
most always goes through S only once (i.e., R = ∅).  

Algorithm PartialTreeAlignment(S) 
1. Sort trees in S in descending order of the number of unaligned data items; 
2. Ts ← the first tree (which is the largest) and delete it from S; 
3. R ← ∅; 
4. while (S ≠ ∅) do  
5.  Ti ← select and delete next tree from S;  // follow the sorted order 
6.      STM(Ts, Ti); // tree matching 
7.  AlignTrees(Ts, Ti);      // based on the result from line 6 
8.  if Ti is not completely aligned with Ts then 
9.  if InsertIntoSeed(Ts, Ti) then // True: some insertions are done 
10.  S ← S ∪ R; 
11.  R ← ∅ 
12  endif; 
13.  if there are still unaligned items in Ti that are not inserted into Ts then 
14.  R ← R ∪ {Ti}  
15.  endif; 
16.  endif; 
17. endwhile; 
18. Output data fields from each Ti to a data table based on the alignment results.  

Fig. 9.23. The partial tree alignment algorithm 
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Fig. 9.24. Iterative tree alignment with two iterations 

Table 1. Final data table (“1” indicates a data item) 

 … x b w c d h k g 
T1 … 1 1   1    
T2   1 1 1   1 1 
T3   1  1 1 1 1  

In fact, to make the algorithm complete, a recursive call should be added 
after line 17 in Fig. 9.23 to handle the case when R ≠ ∅, i.e., to further 
align only those trees in R. The following three lines can be added:  

18.   if R ≠ ∅ then 
19.   PartialTreeAlignment(R) 
20.  endif 

This takes care of the situation where some items are not aligned and 
not inserted. However, it is shown in [600] that this part is usually not 
needed for data extraction.  

We make two remarks about this complete algorithm. First, the 
recursion will terminate even if no alignment and/or no insertion is made 
to the seed tree because the seed tree is deleted in each recursion and thus 
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R becomes smaller and smaller. Second, the algorithm can found multiple 
templates in the data. The seed tree from each recursion represents a dif-
ferent template.  

9.7 Building DOM Trees 

DOM (Document Object Model) tree building from input pages is a neces-
sary step for many data extraction algorithms. We describe two methods 
for building DOM trees, which are also commonly called tag trees (we 
will use them interchangeably in this chapter).  

Using Tags Alone: Most HTML tags work in pairs. Each pair consists of 
an open tag and a close tag (indicated by < > and </> respectively). Within 
each corresponding tag-pair, there can be other pairs of tags, resulting in a 
nested structure. Building a DOM tree from a page using its HTML code is 
thus natural. In the tree, each pair of tags is a node, and the nested pairs of 
tags within it are the children of the node. Two tasks need to be performed: 

1. HTML code cleaning: Some tags do not require close tags (e.g., <li>, 
<hr> and <p>) although they have close tags. Hence, additional close 
tags should be inserted to ensure all tags are balanced. Ill-formatted tags 
also need to be fixed. Such error tags are usually close tags that cross 
different nested blocks, e.g., <tr> … <td> … </tr> … </td>, which can 
be hard to fix if multiple levels of nesting exist. There are open source 
programs that can be used to clean up HTML pages. One popular pro-
gram is called tidy (available at http://tidy.sourceforge. net/).  

2. Tree building: We can follow the nested blocks of the HTML tags in the 
page to build the DOM tree. It is fairly straightforward. We will not dis-
cuss it further.  

This method works for most pages. However, for some ill-formatted tags, 
even the tidy program cannot fix. Then, the constructed DOM trees may be 
wrong, which makes it difficult for subsequent data extraction.  

Using Tags and Visual Cues: Instead of analyzing the HTML code to 
fix errors, rendering or visual information (i.e., the locations on the screen 
at which tags are rendered) can be used to infer the structural relationship 
among tags and to construct a DOM tree. This method leads to more robust 
tree construction due to the high error tolerance of the rendering engines of 
Web browsers (e.g., Internet Explorer). As long as the browser is able to 
render a page correctly, its tag tree can be built correctly. 

In a Web browser, each HTML element (consisting of an open tag, 
optional attributes, optional embedded HTML content, and a close tag that 
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may be omitted) is rendered as a rectangle. The visual information can be 
obtained after the HTML code is rendered by a Web browser. A DOM tree 
can then be constructed based on the nested rectangles (resulted from 
nested tags). The details are as follows:  

1. Find the four boundaries of the rectangle of each HTML element by 
calling the rendering engine of a browser, e.g., Internet Explorer.  

2. Follow the sequence of open tags and perform containment checks to 
build the tree. Containment check means checking if one rectangle is 
contained in another.  

Let us use an example to illustrate the process. Assume we have the 
HTML code on the left of Fig. 9.25. However, there are three errors in the 
code. The close tag </td> for line 3 is put after the open tag for line 4. 
Also, the close tags </tr> in line 5 and </td> in line 7 are missing. How-
ever, this HTML segment can be rendered correctly in a browser, with the 
boundary coordinates for each HTML element shown in the middle of Fig. 
9.25. Using this visual information, it is easy to build the tree on the right.  

 
Fig. 9.25. A HTML code segment, boundary coordinates and the resulting tree 

9.8 Extraction Based on a Single List Page: Flat Data 
Records 

We are now ready to perform the data extraction task. In this and the next 
sections, we study the first extraction problem in Sect. 9.4.1, i.e., extrac-
tion based on a single list page. This section focuses on a simpler case, i.e., 
a list (a data region) containing only flat data records (no nesting). We as-
sume that the DOM tree has been built for the page. In Sect. 9.10, we will 
study the second extraction problem based on multiple input pages. The 
techniques studied in this section are based on the work in [341, 600]. 
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Given a list page containing multiple lists and each list contains multiple 
data records (at least two), the following tasks are performed: 

1. Identify each list (also called a data region), i.e., mine all data regions,  
2. Segment data records in each list or data region, and 
3. Align data items in the data records to produce a data table for each data 

region and also a regular expression pattern. 

9.8.1 Two Observations about Data Records 

Data records in each list (or data region) are encoded using the same 
HTML mark-up encoding. Finding the data records and its hidden schema 
means to find repeated patterns and align them. String or tree match-
ing/comparison are natural techniques. The problem, however, is the effi-
ciency because a data record can start from anywhere in a page and has 
any length. It is prohibitive to try all possibilities. If all data records have 
exactly the same tag string, then the problem is easier. However, in prac-
tice, a set of data records typically does not have exactly the same tag 
string or data items due to missing or optional items (see Fig. 9.26). The 
two important observations below help to solve the problem, which are 
based on the DOM tree structure [341].   

Observation 1: A group of data records that contains descriptions of a set 
of similar objects is typically presented in a contiguous region of a page 
and is formatted using similar HTML tags. Such a region represents a 
list or a data region. For example, in Fig. 9.26 two books are presented 
in one contiguous region.  

Observation 2: A list of data records in a region is formed by some child 
sub-trees of the same parent node. It is unlikely that a data record starts 
in the middle of a child sub-tree and ends in the middle of another child 
sub-tree. Instead, it starts from the beginning of a child sub-tree and ends 
at the end of the same or a later child sub-tree.  

For example, Fig. 9.27 shows the DOM tree of the page in Fig. 9.26 
(with some parts omitted). In this tree, each data record is wrapped in 
five TR nodes with their sub-trees under the same parent TBODY. The 
two data records are in the two dash-lined boxes. It is unlikely that a data 
record starts from TD* and ends at TD# (Fig. 9.27).  

The second observation makes it possible to design an efficient algo-
rithm to identify data records because it limits the tags from which a data 
record may start and end in a DOM tree.  
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Fig. 9.27. The DOM tree of the page segment in Fig. 9.26 

9.8.2 Mining Data Regions  

This first step mines every data region in a Web page that contains a list of 
data records (a set instance). Finding data regions (or individual data re-
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cords in them) directly is, however, hard. We first mine generalized nodes 
(defined below). A sequence of adjacent generalized nodes forms a data 
region. From each data region, we identify the actual data records (dis-
cussed in Sect. 9.8.3). Below, we define generalized nodes and data re-
gions using the DOM (tag) tree:  

Definition: A generalized node (a node combination) of length r consists 
of r (r ≥ 1) nodes in the DOM tree with the following two properties:  

     (1)  the nodes all have the same parent; 
     (2)  the nodes are adjacent. 

We introduce the generalized node to capture the situation that a data 
record is contained in several sibling HTML tag nodes rather than one. For 
example, in Fig. 9.27, we see that each notebook is contained in five table 
rows (or five TR nodes). We call each node in the HTML tag tree a tag 
node to distinguish it from a generalized node.  

Definition: A data region is a collection of two or more generalized nodes 
with the following properties: 
(1)  the generalized nodes all have the same parent; 
(2)  the generalized nodes all have the same length; 
(3)  the generalized nodes are all adjacent; 
(4)  the similarity between adjacent generalized nodes is greater than a 

fixed threshold. 

For example, in Fig. 9.27, we can form two generalized nodes. The first 
one consists of the first five children TR nodes of TBODY, and the second 
one consists of the next five children TR nodes of TBODY. We should 
note that although the generalized nodes in a data region have the same 
length (the same number of children nodes of a parent node in the tag tree), 
their lower level nodes in their sub-trees can be quite different. Thus, they 
can capture a wide variety of regularly structured objects. We also note 
that a generalized node may not represent a final data record (see Sect. 
9.8.3), but will be used to find the final data records. 

To further explain different kinds of generalized nodes and data regions, 
we make use of an artificial DOM/tag tree in Fig. 9.28. For notational con-
venience, we do not use actual HTML tag names but ID numbers to denote 
tag nodes in a tree. The shaded areas are generalized nodes. Nodes 5 and 6 
are generalized nodes of length 1 and they together define the data region 
labeled 1 if the similarity condition (4) is satisfied. Nodes 8, 9 and 10 are 
also generalized nodes of length 1 and they together define the data region 
labeled 2 if the similarity condition (4) is satisfied. The pairs of nodes (14, 
15), (16, 17) and (18, 19) are generalized nodes of length 2. They together 
define the data region labeled 3 if the similarity condition (4) is satisfied. It 
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should be emphasized that a data region includes the sub-trees of the com-
ponent nodes, not just the component nodes alone.  

 
Fig. 9.28. An illustration of generalized nodes and data regions 

Comparing Generalized Nodes 

In order to find each data region in a Web page, the mining algorithm 
needs to find the following: (1) Where does the first generalized node of a 
data region start? For example, in Region 2 of Fig. 9.28, it starts at node 8. 
(2) How many tag nodes or components does a generalized node in each 
data region have? For example, in Region 2 of Fig. 9.28, each generalized 
node has one tag node (or one component).  

Let the maximum number of tag nodes that a generalized node can have 
be K, which is normally a small number (< 10). In order to answer (1), we 
can try to find a data region starting from each node sequentially. To an-
swer (2), we can try one node, two node combination, …, K node combi-
nation. That is, we start from each node and perform all 1-node 
comparisons, all 2-node comparisons, and so on (see the example below). 
We then use the comparison results to identify each data region.  

The number of comparisons is actually not very large because: 

• Due to the two observations in Sect. 9.8.1, we only need to perform 
comparisons among the children nodes of a parent node. For example, in 
Fig. 9.28, we do not compare node 8 with node 13.  

• Some comparisons done for earlier nodes are the same as for later nodes 
(see the example below).  

We use Fig. 9.29 to illustrate the comparison. There are 10 nodes below 
the parent node p. We start from each node and perform string (or tree) 
comparison of all possible combinations of component nodes. Let the 
maximum number of components that a generalized node can have be 3.  
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Fig. 9.29. Combination and comparison 

Start from node 1: We compute the following string or tree comparisons.  

• (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10) 
• (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10) 
• (1-2-3, 4-5-6), (4-5-6, 7-8-9). 
(1, 2) means that the tag string of node 1 is compared with the tag string 
of node 2. The tag string of a node includes all the tags of the sub-tree of 
the node. (1-2, 3-4) means that the combined tag string of nodes 1 and 2 
is compared with the combined tag string of nodes 3 and 4.  

Start from node 2: We only compute: 

• (2-3, 4-5), (4-5, 6-7), (6-7, 8-9) 
• (2-3-4, 5-6-7), (5-6-7, 8-9-10). 

We do not need to do 1-node comparisons because they have been done 
when we started from node 1 above.  

Start from node 3: We only need to compute: 

• (3-4-5, 6-7-8). 

Again, we do not need to do 1-node comparisons. Also, 2-node compari-
sons are not necessary as they were done when we started at node 1. 

We do not need to start from any other node after node 3 because all the 
computations have been done.  

The Overall Algorithm 

The overall algorithm (called MDR) is given in Fig. 9.30. It traverses the 
tag tree from the root downward in a depth-first fashion (lines 5 and 6). 
Node is any tree node. K is the maximum number of tag nodes in a gener-
alized node (10 is sufficient). τ is the similarity threshold. The node com-
parison can be done either using string edit distance or tree matching (e.g., 
STM). The similarity threshold can be set empirically.  

Line 1 says that the algorithm will not search for data regions if the 
depth of the sub-tree at Node is 2 or 1 as it is unlikely that a data region is 
formed with only a single level of tag(s).  

2 1 3 4 6 5 7 8 9 10 

p 



9.8 Extraction Based on a Single List Page: Flat Data Records      363 

At each internal node, the function CombComp() (line 2) performs 
string (tree) comparisons of various combinations of the children sub-trees, 
which have been discussed above. The function IdenDRs() (line 3) uses the 
comparison results to find similar children node combinations (using the 
similarity threshold τ) to obtain generalized nodes and data regions (Da-
taRegions) under Node (i.e., among the children of Node). That is, it de-
cides which combinations represent generalized nodes and where the be-
ginning and end are for each data region. DataRegions consists of a set of 
data regions, and each data region contains a list of tag nodes organized as 
generalized nodes of the region. IdenDRs() is discussed further below. 
Line 4 says that if some nodes are not covered by discovered data regions, 
the algorithm will go down the tree further from these nodes to see 
whether they contain data regions (lines 5 and 6).  

We note that a generalized node may not be a data record, but may con-
tain more than one data record. Figure 9.31 illustrates the point. This data 
region has eight data records. Each row has two. However, each row will 
be reported as a generalized node because rows 1−4 are similar. We will 
explain how to find data records from each generalized node shortly.  

 
Fig. 9.31. A possible configuration of data records 

 Algorithm MDR(Node, K, τ)  
 1 if TreeDepth(Node) >= 3 then  
 2  CombComp(Node.Children, K); 
 3  DataRegions ← IdenDRs(Node, K, τ);  
 4     if (UncoveredNodes ← Node.Children − UDR∈DataRegionsDR) ≠ ∅ then  
 5           for each ChildNode ∈ UncoveredNodes do 
 6  DataRegions ← DataRegions ∪ MDR(ChildNode, K, τ);  
 7     return DataRegions 
 8 else return ∅ 

Fig. 9.30. The MDR algorithm 
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Let us come back to the function IdenDRs(), which is not hard to design 
and it is omitted. Interested readers can refer to [341]. We only describe 
two issues that the function needs to consider.  

1. It is clear from Fig. 9.28 that there may be several data regions under a 
single parent node Node. Generalized nodes in different data regions 
may have different number of tag node components.    

2. A property about similar strings (or trees) is that if a set of strings 
(trees), s1, s2, s3, …., sn, is similar to one another, then a combination of 
any number of them is also similar to another combination of them of 
the same number. IdenDRs should only report generalized nodes of the 
smallest length that cover a data region. For Fig. 9.31, it only reports 
each row as a generalized node rather than a combination of two rows 
(rows 1-2, and rows 3-4). 

The computation of the algorithm is dominated by string (or tree) com-
parison. Assume that the total number of nodes in the tag tree is N, the 
number of comparisons is in the order of O(NK2). Since K is normally very 
small, the computation requirement of the algorithm is low. Visual infor-
mation (see Sect. 9.8.5) and simple heuristics can be applied to reduce the 
number of string (tree) comparisons substantially.  

9.8.3 Identifying Data Records in Data Regions 

As we have discussed above, a generalized node may consist of multiple 
data records. Figure 9.31 shows an example, where each row is a general-
ized node that contains two data records. To find data records from each 
generalized node in a data region, the following observation is useful:  

• If a generalized node contains two or more data records, these data re-
cords must be similar in terms of their tag strings.  

This is clear because we assume that a data region contains descriptions of 
similar data records. Identifying data records from each generalized node 
in a data region is relatively easy because they are nodes (together with 
their sub-trees) at the same level as the generalized node, or nodes at a 
lower level of the DOM/tag tree. This can be done in two steps: 

1. Produce one rooted tree for each generalized node: An artificial root 
node is created first, and all the components (which are sub-trees) of the 
generalized node are then put as its children. 

2. Call the MDR algorithm using the tree built in step 1: Due to the obser-
vation above, this step will find the data records if exist. Otherwise, the 
generalized node is a data record. Two issues needs to be considered.  



9.8 Extraction Based on a Single List Page: Flat Data Records      365 

• The discovered data records should covered all the data items in the 
original generalized node. 

• Each data record should not be too small, e.g., a single number or a 
piece of text, which is likely to be an entry in a spreadsheet table.  

Further details can be found in [341, 601], where handling non-
contiguous data records is also discussed. For example, two books are de-
scribed in two table rows. One row lists the names of the two books in two 
cells, and the next row lists the other pieces of information about the books 
also in two cells. This results in the following sequence in the HTML code: 
name 1, name 2, description 1, description 2.  

9.8.4 Data Item Alignment and Extraction 

Once data records in each data region are discovered, they are aligned to 
produce an extraction pattern that can be used to extract data from the cur-
rent page and also other pages that use the same encoding template. We 
use the partial tree alignment algorithm to perform the task in two steps:  
1. Produce a rooted tree for each data record: An artificial root node is cre-

ated first. The sub-trees of the data record are then put as its children.  
2. Align the resulting trees: The trees of all the data records in each data 

region are aligned using the partial tree alignment method in Sect. 9.6.2. 
After alignments are done, the final seed tree can be used as the extrac-
tion pattern, or be turned into a regular expression.  

Conflict Resolution: In tree matching and alignment, it is possible that 
multiple matches can give the same maximum score, but only one match is 
correct. Then, we need to decide which one. For example, in Fig. 9.32, 
node c in tree A can match either the first or the last node c in tree B.   

 

Fig. 9.32. Two trees with more than one possible match: which is correct? 

To deal with this problem, we can use data content similarity. Data 
items that share some common substrings are more likely to match. In 
many cases, a data item contains both the attribute name and the attribute 
value. For example, “shopping in 24 hours” and “shopping within a week”.  
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The data content similarity can in fact be considered in the simple tree 
matching (STM) algorithm in Fig. 9.19 with minor changes to line 1 and 
line 11. Data contents (data items) should be included as leaves of the 
DOM trees. When data items are matched, their match score is computed. 
In [601], the longest common subsequence (LCS) is used, but cosine 
similarity should work too. Let q be the number of words in the LCS of the 
two data items, and m be the maximal number of words contained in them. 
Their matching score is computed with q/m.  

9.8.5 Making Use of Visual Information 

It is quite clear that many visual features that are designed to help people 
locate and understand information in a Web page can help data extraction. 
We have already shown that visual cues can be used to construct DOM 
trees. In fact, they can be exploited everywhere. Here are some examples:  

• Reduce the number of string or tree comparisons. If two sub-trees are 
visual too different, they do not need to be compared.  

• Confirm the boundary of data records using the space gap between data 
records. It is usually the case that gaps between data records are larger 
than gaps between items within a data record.  

• Determine item alignment. Visual alignment (left, right or center) of 
items can help determine whether two data items should match. Relative 
positions of the data items in each data record are very helpful too.  

• Identify data records based on their contour shapes. This method was 
exploited to segment data records from search engine results [612].  

9.8.6 Some Other Techniques  

Both string comparison and tree comparison based methods have been 
used to solve the data extraction problem. The task described in Sect. 9.8.2 
can be done either based on strings or trees. A pure string based method 
called was proposed in [91]. It finds patterns from the HTML tag string, 
and then uses the patterns to extract data. The center star method is used to 
align multiple strings. A more sophisticated string based method, which 
also deals with nested records, was proposed in [530]. The main problem 
with string based methods is that they can find many patterns and it is hard 
to determine which one is correct. Some patterns may cross boundaries of 
data records. In [91], the user needs to choose the right pattern for extrac-
tion. In [530], multiple pages containing similar data records and other 
methods are used to choose the right pattern. This problem is not a major 
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issue for tree based methods because of tree structures, which eliminate 
most alternatives. The observations made in Sect. 9.8.1 were also very 
helpful. In [312], a method based on constraints and the EM algorithm is 
proposed, which needs to use some information from detail pages to seg-
ment data records. Note that a data record usually (not always) has a link 
to its detail page, which contains the detail description of the object (e.g., a 
product) represented by the data record.  

Visual information is extensively used in [612] to segment snippets 
(data records) of returned pages from search engines. It uses the contour 
shape on the left of each snippet, distance from the left boundary of the 
page, and also the type of each line in a snippet (e.g., text line, link line, 
empty line, etc.) to determine the similarity of candidate data records.  

9.9 Extraction Based on a Single List Page: Nested Data 
Records 

The problem with the method in Sect. 9.8 is that it is not suitable for nested 
data records, i.e., data records containing nested lists. Since the number of 
elements in a list of each data record can be different, using a fixed thresh-
old to determine the similarity of data records will not work.  

The problem, however, can be dealt with as follows. Instead of travers-
ing the DOM tree top down, we can traverse it post-order. This ensures 
that nested lists at lower levels are found first based on repeated patterns 
before going to higher levels. When a nested list is found, its records are 
collapsed to produce a single pattern which replaces the list of data re-
cords. When comparisons are made at a higher level, the algorithm only 
sees the pattern. Thus it is treated as a flat data record. This solves the 
fixed threshold problem above. We introduce an algorithm below, which is 
based on the NET system in [351]. A running example is also given to il-
lustrate the process.  

The NET algorithm is given in Fig. 9.33. It is basically a post-order tree 
traversal algorithm. The observations in Sect. 9.8.1 are still applicable 
here. The function TraverseAndMatch() performs the post-order traversal. 
During the process, each nested list is collapsed. The function PutDataIn-
Tables() (line 3) outputs the extracted data to the user in relational tables (a 
page may have multiple data regions, and data in each region are put in a 
separate table). Line 3 can be easily done if the function TraverseAnd-
Match() saves the nodes whose children form data records.  

Line 1 of TraverseAndMatch() says that the algorithm will not search 
for data records if the depth of the sub-tree from Node is 2 or 1 as it is 
unlikely that a data record is formed with only a single level of tag(s). This 
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parameter can be changed. The Match() function performs tree matching 
on child sub-trees of Node and pattern generation. τ is the threshold for a 
match of two trees that are considered sufficiently similar.  

Match(): The Match() function is given in Fig. 9.34. Figure 9.35 shows a 
running example. In this figure, Ni represents an internal node, and tj 
represents a terminal (leaf) node with a data item. We use the same shape 
or shading to indicate matching nodes. We explain the algorithm below.  

Given the input node Node, line 1 obtains all its children to be matched. 
In our example, Children of p are t1, N1, N2, N3, N4, t2, N5, N6, N7, N8, 
and N9 (with their sub-trees). Lines 2–4 set every pair of child nodes to be 
matched. The matching is done by TreeMatch(), which uses algorithm 

Algorithm NET(Root, τ)   
1 TraverseAndMatch(Root, τ);  
2 for each top level node Node whose children have aligned data records do 
3 PutDataInTables(Node); 
4 endfor  
 
Function TraverseAndMatch (Node, τ) 
1 if Depth(Node) ≥ 3 then 
2 for each Child ∈ Node.Children do 
3 TraverseAndMatch(Child, τ); 
4 endfor 
5 Match(Node, τ);  
6 endif 

Fig. 9.33. The NET algorithm 

Function Match(Node, τ) 
1 Children ← Node.Children;  
2 while Children ≠ ∅ do 
3 ChildFirst ← select and remove the first child from Children; 
4 for each ChildR in Children do 
5 if TreeMatch(ChildFirst, ChildR) > τ  then 
6 AlignAndLink();  
7  Children ← Children – {ChildR} 
8 endfor  
9 if some alignments (or links) have been made with ChildFirst then 
10  GenNodePattern(ChildFirst) 
11 endwhile 
12 If consecutive child nodes in Children are aligned then 
13 GenRecordPattern(Node) 

Fig. 9.34. The Match function 
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STM() in Fig. 9.19. AlignAndLink() (line 6) aligns and links all matched 
data items (leaf nodes) in ChildFirst and ChildR. The links are directional, 
i.e., from earlier data items to later (matched) data items. If ChildR 
matches ChildFirst, ChildR is removed from Chirdren so that it will not be 
matched again later (line 7). For our example, after lines 4−11, the result-
ing matches and links (dashed lines) are given in Fig. 9.35. Assume they 
all satisfy the match condition in line 5.  

In lines 9−10, if some alignments (or links) have been made, the Gen-
NodePattern() function generates a node pattern for all the nodes (includ-
ing their sub-trees) that match ChildFirst. This function first gets the set of 
matched nodes ChildR’s, and then calls PartialTreeAlignment() in Fig. 
9.23 to produce a pattern which is the final seed tree. Note that Partial-
TreeAlignment() can be simplified here because most alignments have 
been done. Only insertions and matching of unaligned items are needed. A 
node pattern can also be represented as a regular expression.  

In lines 12−13, it collapses the sub-trees to produce a global pattern for 
the data records (which are still unknown). Notice that lines 9−10 already 
produced the pattern for each child sub-tree. The GenRecordPattern() func-
tion simply produces a regular expression pattern for the list of data re-
cords. This is essentially a grammar induction problem [243].  

Grammar induction in our context is to infer a regular expression given 
a finite set of positive and negative example strings. However, we only 
have a single positive example (a list of hidden data records). Fortunately, 
structured data in Web pages are usually highly regular which enables heu-
ristic methods to generate “simple” regular expressions. Here, we intro-
duce such a simple method, which depends on three assumptions:  

1. The nodes in the first data record at each level must be complete, e.g., in 
Fig. 9.35, nodes t1, N1 and N2 must all be present.  

t1 

 p 

 N3 N4 

t6 t7 t8 

 N1 t2 

t3 t4 

N5 

t9 t10

N7 N6 

t12 t13t11

N8 N9 

t14 t15 t16 

N2 

t5 

Fig. 9.35. A running example: All matched items are linked 
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2. The first node of every data record at each level must be present, e.g., at 
the level of t1 and t2, they both must be present, and at the next level, 
N1, N3, N5, N7 and N8 must be present. Note that the level here is in 
the hierarchical data organizational sense (not the HTML code sense).  

3. Nodes within a single flat data record (no nesting) do not match one an-
other, e.g., N1 and N3 do not appear in the same data record. 

The GenRecordPattern() function is given in Fig. 9.36. It generates a 
regular expression pattern.  

Function GenRecordPattern(Node) 
1 String ← Assign a distinctive symbol to each set of matched children of Node;  
2 Initilize a data structure for NFA N = (Q, Σ, δ, q0, F), where Q is the set of 

states, Σ is the symbol set containing all symbols appeared in String, δ is the 
transition relation that is a partial function from Q × (Σ ∪ {ε}) to Q, and F is 
the set of accept states, Q ← {q0} (q0 is the start state), δ ← ∅ and F ← ∅;  

3 qc ← q0; // qc is the current state 
4 for each symbol s in String in sequence do  
5 if ∃ a transition δ(qc, s) = qn then  
6 qc ← qn  // transit to the next state; 
7 else if ∃ δ(qi, s) = qj, where qi, qj ∈ Q then  // s appeared before 
8 if ∃ δ(qf, ε) = qi, where δ(qi, s) = qj and f ≥ c then 
9 TransitTo(qc, qf) 
10 else  TransitTo(qc, qi)  
11 qc ← qj 
12 else  create a new state qc+1 and a transition δ(qc, s) = qc+1,  
  i.e., δ ← δ  ∪ {((qc, ε), qc+1)} 
13 Q ← Q ∪ {qc+1};  
14  qc ← qc+1 
15 if s is the last symbol in String then  
16 Assign the state with the largest subscript the accept state qr, F = {qr};  
17 TransitTo(qc, qr); 
18 endfor 
19 generate a regular expression based on the NFA N; 
20 Substitute all the node patterns into the regular expression. 

Function TransitTo(qc, qs) 
1      while qc ≠ qs do  
2              if ∃ δ(qc, ε) = qk and k>c then  
3                 qc ← qk 

4              else  create a transition δ(qc, ε) = qc+1, i.e., δ ← δ  ∪ {((qc, ε), qc+1)}; 
5                      qc ← qc+1 
6      endwhile 

Fig. 9.36. Generating regular expressions 
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Line 1 in Fig. 9.36 simply produces a string for generating a regular ex-
pression. For our example, we obtain the following:  

   t1 N1 N2 N3 N4 t2 N5 N6 N7 N8 N9 
 String: a b c b c a b c b b c 

Lines 2−3 initialize a NFA (non-deterministic finite automaton). Lines 
4−18 traverses String from left to right to construct the NFA. For our ex-
ample, we obtain the final NFA in Fig. 9.37.  

 
Fig. 9.37. The generated NFA and its regular expression 

Line 19 produces a regular expression from the NFA, which is shown in 
Fig. 9.37 on the right.  

Line 20 produces the final pattern (Fig. 9.38) by substituting the node 
patterns into the regular expression. Here, we use node t1 as the pattern 
(the seed tree) for nodes t1 and t2, the N1 sub-tree as the pattern for all the 
linked sub-trees rooted at N1, N3, N5, N7 and N8. The N2 sub-tree is the 
pattern of the sub-trees rooted at N2, N4, N6 and N9.  

 
Fig. 9.38. The regular expression produced from Fig. 9.35 

Some additional notes about the algorithm are in order: 

• Each child node here represents a sub-tree (e.g., N1, N2, etc). Assump-
tion 1 does not require lower level nodes of each sub-tree in the first 
data record to be complete (no missing items). We will see an example 
in Fig. 9.40 and Fig. 9.41.  

• Regular expressions produced by the algorithm do not allow disjunc-
tions (i.e., A|B) except (A|ε), which means that A is optional. Such regu-
lar expresses are called union-free regular expressions. However, dis-
junctions are possible at lower level matches of the sub-trees. We will 
discuss the issue of disjunction again in Sect. 9.11.2. 

• Function GenRecordPattern() in Fig. 9.37 assumes that under Node 
there is only one data region, which may not be true. The algorithm can 
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be easily extended to take care of multiple data regions under Node. In 
fact, the NET() algorithm here is a simplified version to present the 
main ideas. For practical use, it can be significantly enhanced to remove 
most assumptions if not all.   

Finally, the function PutDataInTables() (line 3 of NET() in Fig. 9.33) 
simply outputs data items in a table, which is straightforward after the data 
record patterns are found. For the example in Fig. 9.35, the following data 
table is produced (only terminal nodes contain data):   

  
Fig. 9.39. The output data table for the example in Fig. 9.35 

 

Fig. 9.42. The output data table for the example in Fig. 9.40 

Let us use a smaller but more complete example (Fig. 9.40) to show that 
generating a pattern of a lower level list makes it possible for a higher level 
matching. At the level of N4−N5 (which has the parent N2), t3−t5 and 
t4−t6 are matched (assume they satisfy the match condition, line 5 of Fig. 
9.34). They are aligned and linked (dash lines). N4 and N5 are data records 
at this level (nested in N2 in this case), in which t7 is optional. N4 and N5 
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Fig. 9.40. Aligned data nodes are linked 
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are then collapsed to produce a pattern data record using GenNodePattern() 
first and then GenRecordPattern(), which does not do anything in this case. 
t7 is marked with a “?”, indicating that it is optional. The pattern data re-
cord is N5 (selected based on the PartialTreeAlignment() function). The 
sub-tree at N4 is then omitted in Fig. 9.41. N5 is marked with a “+” indi-
cating that there is one or more such data records and that the sub-tree of 
N5 is the pattern. We can see in Fig. 9.41 that the sub-trees rooted at N2 
and N3 can now match. The final output data table is given in Fig. 9.42.  

9.10 Extraction Based on Multiple Pages 

We now discuss the second extraction problem described in Sect. 9.4.1. 
Given multiple pages with the same encoding template, the system finds 
patterns from them to be used to extract data from other similar pages. The 
collection of input pages can be a set of list pages or detail pages. Below, 
we first see how the techniques described so far can be applied in this set-
ting, and then describe a technique specifically designed for this setting. 

9.10.1 Using Techniques in Previous Sections 

We discuss extraction of list pages and detail pages separately. 

Given a Set of List Pages 

Since the techniques described in previous sections are for a single list 
page, they can obviously be applied to multiple list pages. The pattern dis-
covered from a single page can be used to extract data from the rest of the 
pages. Multiple list pages may also help improve the extraction. For exam-
ple, patterns from all input pages may be found separately and merged to 
produce a single refined pattern. This can deal with the problem that a sin-
gle page may not contain the complete information.  

Given a Set of Detail Pages 

In some applications, one needs to extract data from detail pages as they 
contain more information. For example, in a list page, the information on 
each product is usually quite brief, e.g., containing only the name, image, 
and price. However, if an application also needs the product description 
and customer reviews, one has to extract them from detail pages.  

For extraction from detail pages, we can treat each page as a data record 
and apply the algorithms described in Sect. 9.8 and/or Sect. 9.9. For in-
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stance, to apply the NET algorithm, we can simply construct a rooted tree 
as input to NET as follows: (1) create an artificial root node, and (2) make 
the DOM tree of each page as a child sub-tree of the artificial root.  

9.10.2 RoadRunner Algorithm 

We now describe the RoadRunner algorithm [117], which is designed spe-
cifically for problem 2. Given a set of pages, each containing one or more 
data records (i.e., the pages can be list pages or detail pages), the algorithm 
compares the pages to find similarities and differences, and in the process 
generating a union-free regular expression (i.e., a regular expression 
without disjunctions) extractor/wrapper. The approach works as follows: 

• To start, it takes a random page as the regular expression wrapper W. 
• The wrapper W is then refined by matching it sequentially with the 

HTML code of each remaining page pi. It generalizes W by solving 
mismatches between the wrapper W and the page pi. A mismatch occurs 
when some token in pi does not match the grammar of the wrapper.  

There are two types of mismatches:  

1. Text string mismatches: They indicate data fields or items.  
2. Tag mismatches: They indicate  
• optional items, or 
• iterators (a list of repeated patterns): 

In this case, a mismatch occurs at the beginning of a repeated pattern 
and the end of a list. The system finds the last token of the mismatch 
position and identifies some candidate repeated patterns from the 
wrapper and the page pi by searching forward. It then compares the 
candidates with the upward portion of the page pi to confirm. 

The algorithm is best explained with an example, which is given in Fig. 
9.43. In this figure, page 1 on the left (in HTML code) is the initial wrap-
per. Page 2 on the right is a new page to be matched with page 1.  

Let us look at some matches and mismatches. Lines 1−3 of both pages 
are the same and thus match. Lines 4 of both pages are text strings and are 
different. They are thus data items to be extracted. We go down further. 
Lines 6 of the pages do not match. Line 6 of page 1 matches line 7 of page 
2. Thus, <IMG src=…/> is likely to be optional. Line 11 of page 1 and line 
12 of page 2 give another mismatch. Since they are text strings, they are 
thus data items to be extracted. Line 17 of page 1 and line 18 of page 2 are 
also data items. Another mismatch occurs at line 19 of page 1 and line 20 
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of page 2. Further analysis will find that we have a list here. The final re-
fined regular expression wrapper is given at the bottom of Fig. 9.43.  

 

Fig. 9.43. A wrapper generation example  

The match algorithm is exponential in the input string length as it has to 
explore all possibilities. A set of heuristics is introduced to lower the com-
plexity by limiting the space to explore and to backtrack. In [26], a more 
efficient method is given based on sophisticated tag path analysis. 

9.11 Some Other Issues  

We now briefly discuss a few other issues that are important to automatic 
extraction techniques.  

9.11.1  Extraction from Other Pages 

Once the encoding template pattern is found, it can be used to extract data 
from other pages that contain data encoded in the same way. There are 
three ways to perform the extraction:  

- Wrapper (initially Page 1): - Sample (page 2) 

1:  <HTML> parsing 1: <HTML> 
2: Books of: 2: Books of: 
3: <B> 3: <B> 
4:  Paul Smith string mismatch 4:  Mike Jones 
5: </B>  5: </B> 
6: <UL> tag mismatch (?) 6: <IMG src=…/> 
  7: <UL> 
7: <LI> 8: <LI> 
8-10: <I>Title:</I> 9-11:  <I>Title:</I> 
11:  Web Mining string mismatch (#text) 12: Databases 
12: </LI> 13: </LI> 
13: <LI> 14: <LI> 
14-16:  <I>Title:</I> 15-17: <I>Title:</I> 
17:  Data Mining string mismatch (#text) 18: HTML Premier  
18: </LI> 19: </LI> 
19: </UL> tag mismatch (+) 20: <LI> 
20: </HTML>  21-23: <I>Title:</I> 
  terminal tag search and 24:  Javascript 
  square matching 25: </LI> 
  26: </UL> 
- Wrapper after solving mismatches: 27: </HTML> 

 <HTML>Books of:<B>#text</B>  
 (<IMG src=…/>)? 
 <UL> 
 (<LI><I>Title:</I>#text</LI>)+ 
 </UL><HTML> 
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• Finite-state machines: An encoding template pattern is usually repre-
sented as a regular expression. A nondeterministic finite-state automa-
ton can be constructed to match occurrences of the pattern in the input 
string representing a Web page. In the process, data items are extracted.   

• Pattern matching: It is also possible to directly match the string or tree 
pattern against the input to extract data. This approach is more flexible 
than finite-state machines because pattern matching allows partial 
matching. For example, in the page where the pattern is discovered, an 
optional item does not occur, but it occurs in some other pages. Pattern 
matching can deal with this easily. In the process, the pattern can be en-
hanced as well by inserting the new optional item in it.  

• Extracting each page independently: The above two approaches can be 
problematic if the Web site use many different templates to encode its 
data. If we start to extract after only finding one pattern, then the data 
encoded using other templates will not be extracted. One solution to this 
is to find patterns from each page and extract the page using only the 
discovered patterns from the page. However, handling each page indi-
vidually is inefficient.  

Detecting new templates: To detect new templates without sacrificing ef-
ficiency of mining extraction patterns from each page, a pre-screening 
strategy may be applied. In most applications, the user is interested in only 
a particular kind of data, e.g., products, research publications, or job post-
ings. It is usually possible to design some simple and efficient heuristics to 
check whether a page contains such data. If so, a full blown extraction is 
performed using already generated patterns. If no data is extracted from the 
page, it is an indication that the page is encoded with a different template. 
A new mining process can be initiated to discover the new template.  

9.11.2 Disjunction or Optional 

In automatic extraction, it can be difficult to recognize disjunctions. For 
example, for the three digital cameras in Fig. 9.44, it is easy to know that 
“On Sale” is an optional item. However, for the prices (including “Out of 
stock”), it is hard to decide whether they are optional items or disjuncts of 
a disjunction. The HTML codes for the three fields are given below,  

(1)  <b> $250.00 </b> 
(2)  <b><i> $300.00 </i></b> 
(3)  <i> Out of stock </i>. 

If they are treated as optional items, they are put in three different col-
umns in the output table, but if they are disjuncts, they are put in the same 
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column. In this example, it is easy for a human user to see that they are dis-
juncts, i.e., (<b> #text </b>) | (<b><i> #text </i></b>) | (<i> #text</i>).  

 
Fig. 9.44. Disjuncts or optional items  

There are two main pieces of information that can be used to determine 
whether they are optional or disjuncts:  

1. Visual information: If they are in the same relative location with respect 
to their objects, then they are more likely to be disjuncts. In the above 
example, the three items are all at the same relative location.  

2. Data type information: If the data items are of the same type, they are 
more likely to be disjuncts. “$250.00” and “$300.00” are of the same 
type, but “Out of stock” is not.  

In many cases, it can be hard to decide. Fortunately, disjunctive cases 
are rare on the Web. Even if an extraction system does not deal with dis-
junction, it does not cause a major problem. For example, if “Out of stock” 
is identified as optional, it is probably acceptable.  

9.11.3 A Set Type or a Tuple Type 

Sometimes it can also be difficult to determine whether a list is a tuple type 
or a set type. For example, if all the lists of a set type have the same num-
ber of elements, it is hard to know if they are in fact attributes of a tuple. 
For instance, the following are three colors of a jacket with different 
prices. Clearly, they represent a set instance with a list of three tuples:  

<tr><td><b>Blue:<b></td> <td> $5.00 </td></tr> 
<tr><td><b>Yellow:<b></td> <td> $6.50 </td></tr>  
<tr><td><b>Pink:<b></td> <td> $10.99 </td></tr>. 

However, the following specifications of a particular product are obviously 
the attributes of the product. Without knowing the semantics of the en-
coded data, it is difficult to know that the above three are a set instance and 
the following two are attributes of a tuple: 

<tr><td><b>weight:<b></td> <td> 30 kg </td></tr>  
<tr><td><b>height:<b></td> <td> 5 m </td></tr>. 

(1) (2) (3)

Digital camera 4mp 

  $250.00 

Digital camera 5mp 

$300.00
On Sale 

Digital camera 3mp 

Out of stock 
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If multiple lists of the same type are available, we may have some addi-
tional information to make the decision. For instance, one pair of shoes has 
three colors, and another has four colors. We can be fairly confident that 
different sets of colors represent set instances (or lists). In the second ex-
ample, if all products have both height and width, it is more likely that they 
are attributes. However, these heuristics do not always hold. In some cases, 
it is hard to decide without understanding of the data semantics.  

9.11.4 Labeling and Integration 

Once the data is extracted from a page/site and put in tables, it is desirable 
to label each column (assigning an attribute name to it). Some preliminary 
studies have been reported in [27, 530]. However, the problem is still very 
much open. Furthermore, the extracted data from multiple sites may need 
to be integrated. There are two main integration problems. The first one is 
schema matching, which matches columns of data tables. The second one 
is data value/instance match. For example, in one site, Coca Cola is 
called “Coke”, but in another site it is called “Coca Cola”. The problem is: 
how does the system know that they are the same semantically? In Chap. 
10, we will study some data integration techniques.  

9.11.5 Domain Specific Extraction 

In most applications, the user is only interested in some specific data ob-
jects, e.g., products sold online, and for each object, only some specific 
items are needed, e.g., product name, image, and price. Domain specific 
information can be exploited to simplify and also to speed up the extrac-
tion dramatically. Such information can be utilized in at least two ways.  

1. Quickly identify pages that may contain required data. For example, it is 
fairly easy to design some domain heuristics to determine whether a 
page contains a list of products (a list page). One heuristic is to detect 
repeated images and repeated prices in some fixed order and interval. 
Such heuristics are usually very efficient to execute and can be used to 
filter out those pages that are unlikely to contain required data. The ex-
traction algorithm, which is slower, will only run on those pages that are 
very likely to contain target data.  

2. Identifying target items in a data record. Based on the characteristics of 
target items, it may be easy to identify and label the target items. For 
example, it is often easy to find product names and product images 
based on simple heuristics. If heuristics are not reliable, machine learn-
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ing methods may be applied to learn models to identify target items. For 
example, in [620], an extended conditional random fields method is 
used to learn an extraction model, which is then used to extract target 
items from new data records.  

9.12 Discussion 

Finally, we discuss the main advantages and disadvantages of wrapper in-
duction and automatic data extraction. The key advantage of wrapper in-
duction is that it extracts only the data that the user is interested in. Due to 
manual labeling, there is no schema matching problem. However, data 
value or instance matching is still needed. The main disadvantages are that 
it is not scalable to a large number of sites due to significant manual ef-
forts, and that maintenance is very costly if sites change frequently.  

The main advantages of automatic extraction are that it is scalable to a 
huge number of sites, and that there is little maintenance cost. The main 
disadvantage is that it can extract a large amount of unwanted data because 
the system does not know what is interesting to the user. Also, in some ap-
plications, the extracted data from multiple sites need integration, i.e., their 
schemas as well as values need to be matched, which are difficult tasks. 
However, if the application domain is narrow, domain heuristics may be 
sufficient to filter out unwanted data and to perform the integration tasks. 

In terms of extraction accuracy, it is reasonable to assume that wrapper 
induction is more accurate than automatic extraction, although there is no 
reported large scale study comparing the two approaches.  

Bibliographic Notes 

Web data extraction techniques can be classified into three main catego-
ries: (1) wrapper programming languages and visual platforms, (2) wrap-
per induction, and (3) automatic data extraction. The first approach pro-
vides some specialized pattern specification languages and visual 
platforms to help the user construct extraction programs. Systems that fol-
low this approach include WICCAP [613], Wargo [457], Lixto [41], etc.  

The second approach is wrapper induction, which uses supervised learn-
ing to learn data extraction rules from a set of manually labeled positive 
and negative examples. A theoretical work on wrapper learning based on 
the PAC learning framework was done by Kushmerick [295]. Example 
wrapper induction systems include WIEN [296], Softmealy [244], Stalker 
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[399], WL2 [108], Thresher [241], IDE [599], [250], etc. Most existing 
systems are based on inductive learning from a set of labeled examples. 
IDE [599] employs a simple instance-based learning technique, which per-
forms active learning at the same time so that the user only needs to label a 
very small number of pages. Related ideas are also used in [90] and [241]. 
Most existing wrapper induction systems built wrappers based on similar 
pages from the same site. Zhu et al. [620, 621] reported a system that 
learns from labeled pages from multiple sites in a specific domain. The re-
sulting wrapper can be used to extract data from other sites. This avoids 
the labor intensive work of building a wrapper for each site.  

The third approach is automatic extraction. In [163], Embley et al. stud-
ied the automatic identification of data record boundaries given a list page. 
The technique uses a set of heuristic rules and domain ontologies. In [75], 
Buttler et al. proposed additional heuristics to perform the task without us-
ing domain ontologies. The MDR algorithm discussed in this chapter was 
proposed by Liu et al. [341]. It uses string edit distance in pattern finding 
(incidentally, Lloyd Allison has a great page on string edit distance). An 
algorithm based on the visual information was given by Zhao et al. [612] 
for extracting search engine results. These systems, however, do not align 
or extract data items from data records. Chang et al. [91] reported a semi-
automatic system called IEPAD to find extraction patterns from a list page 
to extract data items. The DeLa system by Wang et al. [530] works in the 
same framework. The DEPTA system by Zhai and Liu [600] works in a 
different way. It first segments data records, and then aligns and extracts 
data items in the data records using the partial tree alignment algorithm. 
Both DEPTA and IEPAD do not deal with nested data records, which are 
dealt with in NET [351] and DeLa [530]. 

The RoadRunner system, which needs multiple pages as input, was pro-
posed by Crescenzi et al. [117]. Its theoretical foundation was given by 
Grumbach and Mecca [210]. Sects. 9.1 and 9.4 of this chapter are influ-
enced by this paper. The work of RoadRunner was improved by Arasu and 
Garcia-Molina in their EXALG system [26]. Both systems need multiple 
input pages with a common schema/template and assume that these pages 
are given. The pages can be either detail pages or list pages. The method 
proposed in [312] works in a similar setting.  



10 Information Integration 

In Chap. 9, we studied data extraction from Web pages. The extracted data 
is put in tables. For an application, it is, however, often not sufficient to ex-
tract data from only a single site. Instead, data from a large number of sites 
are gathered in order to provide value-added services. In such cases, ex-
traction is only part of the story. The other part is the integration of the ex-
tracted data to produce a consistent and coherent database because differ-
ent sites typically use different data formats. Intuitively, integration means 
to match columns in different data tables that contain the same type of in-
formation (e.g., product names) and to match values that are semantically 
identical but represented differently in different Web sites (e.g., “Coke” 
and “Coca Cola”). Unfortunately, limited integration research has been 
done so far in this specific context. Much of the Web information integra-
tion research has been focused on the integration of Web query interfaces. 
This chapter will have several sections on their integration. However, 
many ideas developed are also applicable to the integration of the extracted 
data because the problems are similar.  

Web query interfaces are used to formulate queries to retrieve needed 
data from Web databases (called the deep Web). Figure 10.1 shows two 
query interfaces from two travel sites, expedia.com and vacation.com. The 
user who wants to buy an air ticket typically tries many sites to find the 
cheapest ticket. Given a large number of alternative sites, he/she has to ac-
cess each individually in order to find the best price, which is tedious. To 
reduce the manual effort, we can construct a global query interface that 
allows uniform access to disparate relevant sources. The user can then fill 
in his/her requirements in this single global interface and all the underlying 
sources (or databases) will be automatically filled and searched. The re-
trieved results from multiple sources also need to be integrated. Both inte-
gration problems, i.e., integration of query interfaces and integration of re-
turned results, are very challenging due to the heterogeneity of Web sites.  

Clearly, integration is not peculiar only to the Web. It was, in fact, first 
studied in the context of relational databases and data warehouse. Hence, 
this chapter first introduces most integration related concepts using tradi-
tional data models (e.g., relational) and then shows how the concepts are 
tailored to Web applications and how Web specific problems are handled.  
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Fig. 10.1. Two examples of Web query interfaces 

10.1 Introduction to Schema Matching  

Information/data integration has been studied in the database community 
since the early 1980s [40, 146, 455]. The fundamental problem is schema 
matching, which takes two (or more) database schemas to produce a map-
ping between elements (or attributes) of the two (or more) schemas that 
correspond semantically to each other. The objective is to merge the sche-
mas into a single global schema. This problem arises in building a global 
database that comprises several distinct but related databases. One applica-
tion scenario in a company is that each department has its database about 
customers and products that are related to the operations of the department. 
Each database is typically designed independently and possibly by differ-
ent people to optimize database operations required by the functions of the 
department. This results in different database schemas in different depart-
ments. However, to consolidate the data about customers or company op-
erations across the organization in order to have a more complete under-
standing of its customers and to better serve them, integration of databases 
is needed. The integration problem is clearly also important on the Web as 
we discussed above, where the task is to integrate data from multiple sites.    

There is a large body of literature on the topic. Most techniques have 
been proposed to achieve semi-automatic matching in specific domains 
(see the surveys in [146, 265, 455, 491]). Unfortunately, the criteria and 
methods used in match operations are almost all based on domain heuris-
tics which are not easily formulated mathematically. Thus, to build a 
schema matching system, we need to produce mapping heuristics which 
reflect our understanding of what the user considers to be a good match.  

Schema matching is challenging for many reasons. First of all, schemas 
of identical concepts may have structural and naming differences. Schemas 
may model similar but not identical contents, and may use different data 
models. They may also use similar words for different meanings.  
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Although it may be possible for some specific applications, in general, it 
is not possible to fully automate all matches between two schemas because 
some semantic information that determines the matches between two 
schemas may not be formally specified or even documented. Thus, any 
automatic algorithm can only generate candidate matches that the user 
needs to verify, i.e., accept, reject or change. Furthermore, the user should 
also be allowed to specify matches for elements that the system is not able 
to find satisfactory match candidates. Let us see a simple example.  

Example 1: Consider two schemas, S1 and S2, representing two customer 
relations, Cust and Customer.  

S1  S2 
Cust Customer 

CNo CustID 
CompName Company 
FirstName Contact 
LastName Phone 

We can represent the mapping with a similarity relation, ≅, over the 
power sets of S1 and S2, where each pair in ≅ represents one element of the 
mapping. For our example schemas, we may obtain 

 Cust.CNo ≅ Customer.CustID 
 Cust.CompName ≅ Customer.Company 
 {Cust.FirstName, Cust.LastName} ≅ Customer.Contact ▀ 

There are various types of matching based on the input information [455]. 

1. Schema-level only matching: In this type of matching, only the schema 
information (e.g. names and data types) is considered. No data instance 
is available.  

2. Domain and instance-level only matching: In this type of match, only 
instance data and possibly the domain of each attribute are provided. No 
schema is available. Such cases occur quite frequently on the Web, 
where we need to match corresponding columns of the hidden schemas.  

3. Integrated matching of schema, domain and instance data: In this 
type of match, both schemas and instance data (possibly domain infor-
mation) are available. The match algorithm can exploit clues from all of 
them to perform matching.   

There are existing approaches to all above types of matching. We will fo-
cus on the first two types. The third type usually combines the results of 
techniques from the first two, which we discuss in Sect. 10.5. Before going 
to the details, we first discuss some pre-processing tasks that usually need 
to be done before matching.  
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10.2 Pre-Processing for Schema Matching 

For pre-processing, issues such as concatenated words, abbreviations, and 
acronyms are dealt with. That is, they need to be normalized before being 
used in matching [227, 358, 559].  

Prep 1 (Tokenization): This process breaks an item, which can be a 
schema element (attribute) or attribute value, into atomic words. Such 
items are usually concatenated words. Delimiters (such as “-”, “_”, etc.) 
and case changes of letters are used to suggest the breakdown. For ex-
ample, we can break “fromCity” into “from City”, and “first-name” into 
“first name”. A domain dictionary of words is typically maintained to 
help the breakdown. Note that if “from”, “city”, “first” and “name” are 
not in the dictionary, they will be added to the dictionary. Existing dic-
tionary words are also utilized to suggest the breakdown. For example, 
“deptcity” will be split into “dept” and “city” if “city” is a word. The 
dictionary may be constructed automatically, which consists of all the 
individual words appeared in the given input used in matching, e.g., 
schemas, instance data and domains. The dictionary is updated as the 
processing progresses. However, the tokenization step has to be done 
with care. For example, we have “Baths” and “Bathrooms” if we split 
“Bath” with “Room” it could be a mistake because “Rooms” could have 
a very different meaning (the number of rooms in the house). To be 
sure, we need to ensure that “Bathroom” is not an English word, for 
which an online English dictionary may be employed.  

Prep 2 (Expansion): It expands abbreviations and acronyms to their full 
words, e.g., from “dept” to “departure”. The expansion is usually done 
based on the auxiliary information provided by the user or collected 
from other sources. Constraints may be imposed to ensure that the ex-
pansion is likely to be correct. For example, we may require that the 
word to be expanded is not in the English dictionary, with at least three 
letters, and having the same first letter as the expanding word. For ex-
ample, “CompName” is first converted to (Comp, Name) in tokeniza-
tion, and then “Comp” is expanded to “Company”. 

Prep 3 (Stopword removal and stemming): These are information re-
trieval pre-processing methods (see Chap. 6). They can be performed to 
attribute names and domain values. A domain specific stopword list 
may also be constructed manually. This step is useful especially in lin-
guistic based matching methods discussed below.  

Prep 4 (Standardization of words): Irregular words are standardized to a 
single form (e.g., using WordNet [175]), “colour”→ “color”, “Children” 
→ “Child”.  
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10.3 Schema-Level Matching 

A schema level matching algorithm relies on information about schema 
elements, such as name, description, data type and relationship types (such 
as part-of, is-a, etc.), constraints and schema structures. Before introduc-
ing some matching methods using such information, let us introduce the 
notion of match cardinality, which describes the number of elements in 
one schema that match the number of elements in the other schema.  

In general, given two schemas, S1 and S2, within a single match in the 
match relation one or more elements of S1 can match one or more elements 
of S2. We thus have 1:1, 1:m, m:1 and m:n matches. 1:1 match means that 
one element of S1 corresponds to one element of S2, and 1:m means that 
one element of S1 corresponds to a set of m (m > 1) elements of S2.  

Example 2: Consider the following schemas:  
S1  S2 
Cust Customer 

CustomID CustID 
Name FirstName  
Phone LastName  

We can find the following 1:1 and 1:m matches:  
1:1 CustomID CustID 
1:m Name  FirstName, LastName ▀ 

m:1 match is similar to 1:m match; m:n match is considerably more com-
plex. An example of an m:n match is to match Cartesian coordinates with 
polar coordinates. There is little work on such complex matches. Most ex-
isting approaches are for 1:1 and 1:m matches.  

We now describe some general matching approaches that employ vari-
ous types of information available in schemas. There are two main types of 
information in schemas, natural language words and constraints. Thus, 
there are two main types of approaches to matching. 

10.3.1 Linguistic Approaches 

They are used to derive match candidates based on the names, comments 
or descriptions of schema elements [107, 133, 144, 145, 227, 358, 559].  

Name Match 

N1 − Equality of names: The same name in different schemas often has the 
same semantics.  
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N2 − Synonyms: The names of two elements from different schemas are 
synonyms, e.g., Customer ≅ Client. This requires the use of thesaurus 
and/or dictionaries such as WordNet. In many cases, domain depend-
ent or enterprise specific thesaurus and dictionaries are required.  

N3 − Equality of hypernyms: A is a hypernym of B if B is a kind of A. If 
X and Y have the same hypernym, they are likely to match. For exam-
ple, “Car” is-a “vehicle” and “automobile” is-a “vehicle”. Thus, we 
have Car ≅ vehicle, automobile ≅ vehicle, and Car ≅ automobile.  

N4 − Common substrings: Edit distance and similar pronunciation may be 
used. For example, CustomerID ≅ CustID, and ShipTo ≅ Ship2. 

N5 − Cosine similarity: Some names are natural language words or phrases 
(after pre-processing). Then, text similarity measures are useful. Co-
sine similarity is a popular similarity measure used in information re-
trieval (see Chap. 6). This method is also very useful for Web query 
interface integration since the labels of the schema elements are natu-
ral language words or phrases (see the query interfaces in Fig. 10.1) 

N6 − User provided name matches: The user may provide a domain de-
pendent match dictionary (or table), a thesaurus, and/or an ontology.  

Description Match 

In many databases, there are comments to schema elements, e.g.,  

S1: CNo // customer unique number 
S2: CustID // id number of a customer 

These comments can be compared based on the cosine similarity as well.  

D1 – Use the cosine similarity to compare comments after stemming and 
stopword removal.  

10.3.2 Constraint Based Approaches 

Constraints such as data types, value ranges, uniqueness, relationship types 
and cardinalities, etc., can be exploited in determining candidate matches 
[327, 358, 382, 424].  

C1: An equivalence or compatibility table for data types and keys that s-
pecifies compatibility constraints for two schema elements to match can 
be provided, e.g., string ≅ varchar, and (primary key) ≅ unique.  
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Example 3: Consider the following two schemas:  
S1 S2 
Cust Customer 

CNo: int, primary key CustID: int, unique 
CompName: varchar (60) Company: string 
CTname: varchar (15) Contact: string 
StartDate: date  Date: date 

Constraints can suggest that “CNo” matches “CustID”, and “StartDate” 
may match “Date”. “CompName” in S1 may match “Company” in S2 or 
“Contact” in S2. Likewise, “CTname” in S1 may match “Company” or 
“Contact” in S2. In both cases, the types match. Although in these two 
cases, we are unable to find a unique match, the approach helps limit the 
number of match candidates and may be combined with other matchers 
(e.g., name and instance matchers). For structured schemas, hierarchical 
relationships such as is-a and part-of relationships may be utilized to help 
match.  ▀ 

In the context of the Web, the constraint information above is often not 
explicitly available because Web databases are for general public who are 
unlikely to know what an int, string or varchar is. Thus, these types are 
never shown in Web pages. However, some information may be inferred 
from the domain or instance information, which we discuss next.  

10.4 Domain and Instance-Level Matching 

In this type of matching, value characteristics are exploited to match 
schema elements [53, 145, 327, 531, 558]. For example, the two attribute 
names may match according to the linguistic similarity, but they may have 
different domain value characteristics. Then, they may not be the same but 
homonyms. For example, Location in a real estate sell may mean the ad-
dress, but could also mean some specific locations, e.g., lakefront property, 
hillside property, etc.  

In many applications, data instances are available, which is often the 
case in the Web database context. In some applications, although the in-
stance information is not available, the domain information of each attrib-
ute may be obtained. This is the case for Web query interfaces. Some at-
tributes in the query interface contain a list of possible values (the domain) 
for the user to choose from. No type information is explicitly given, but it 
can often be inferred. We note that the set of value instances of an attribute 
can be treated in the similar way as a domain. Thus, we will only deal with 
domains below.  
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Let us look at two types of domains or types of values: simple domains 
and composite domains. The domain similarity of two attributes, A and B, 
is the similarity of their domains: dom(A) and dom(B).  

Definition (Simple Domain): A simple domain is a domain in which 
each value has only a single component, i.e., the value cannot be decom-
posed.  

A simple domain can be of any type, e.g., year, time, money, area, month, 
integer, real, string, etc. 

Data Type: If there is no type specification at the schema level, we iden-
tify the data type from the domain values. Even if there is a type specifica-
tion at the schema level for each attribute, we can still refine the type to 
find more characteristic patterns. For example, the ISBN number of a book 
may be specified as a string type in a given schema. However, due to its 
fixed format, it is easy to generate a characteristic pattern from a set of 
ISBN numbers, e.g., a regular expression. Other examples include phone 
numbers, post codes, money, etc. Such specialized patterns are more useful 
in matching compatible attribute types.  

We describe two approaches for type identification: semi-automatic 
[559, 563] and automatic [145, 327] approaches.  

Semi-automatic approach: This is done via pattern matching. The pattern 
for each type may be expressed as a regular expression, which is defined 
by a human expert. For example, the regular expression for the time type 
can be defined as “[0−9]{2}:[0−9]{2}" or “dd:dd” (d for digit from 0-9) 
which recognizes time of the form “03:15”. One can use such regular ex-
pressions to recognize integer, real, string, month, weekday, date, time, 
datetime (combination of date and time), etc. To identify the data type, we 
can simply apply all the regular expression patterns to determine the type.  

In some cases, the values themselves may contain some information on 
the type. For example, values that contain “$” or “US$” indicate the mone-
tary type. For all values that we cannot infer their types, we can assume 
their domains are of string type with an infinite cardinality.  

Automated approach: Machine learning techniques, e.g., grammar induc-
tion, may be used to learn the underlying grammar/pattern of the values of 
an attribute, and then use the grammar to match attribute values of the 
other schemas. This method is particularly useful for value of fixed format, 
e.g., zip codes, phone numbers, zip codes, ISBNs, date entries, or money-
related entries, if their regular expressions are not specified by the user.  
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The following methods may be used in matching: 
DI 1 – Data types are used as constraints. The method C1 above is appli-

cable here. If the data/domain types of two attributes are not compati-
ble, they should not be matched. We can use a table specifying the de-
gree of compatibility between a set of predefined generic data types, to 
which data types of schema elements are mapped in order to determine 
their similarity. 

DI 2 – For numerical data, value ranges, averages and variances can be 
computed to access the level of similarity.  

DI 3 – For categorical data, we can extract and compare the set of values in 
the two domains to check whether the two attributes from different 
schemas share some common values. For example, if an attribute from 
S1 contains many “Microsoft” entries and an attribute in S2 also contains 
some “Microsoft”’s, then we can propose them as a match candidate.  

DI 4 – For alphanumeric data, string-lengths and alphabetic/non-alphabetic 
ratios are also helpful. 

DI 5 – For textual data, information retrieval methods such as the cosine 
measure may be used to compare the similarity of all data values in the 
two attributes.  

DI 6 – Schema element name as value is another match indicator, which 
characterizes the cases where matches relate some data instances of a 
schema with a set of elements (attributes) in another schema. For exam-
ple, in the airfare domain one schema uses “Economy” and “Business” 
as instances (values) of the attribute “Ticket Class”, while in another in-
terface, “Economy” and “Business” are attributes with the Boolean 
domain (i.e., “Yes” and “No”). This kind of match can be detected if the 
words used in one schema as attribute names are among the values of 
attributes in another schema [133, 563]. 

Definition (Composite Domain and Attribute): A composite domain d 
of arity k is a set of ordered k-tuples, where the ith component of each tu-
ple is a value from the ith sub-domain of d, denoted as di. Each di is a sim-
ple domain. The arity of domain d is denoted as αrity(d) (= k). An attrib-
ute is composite if its domain is composite.  

A composite domain is usually indicated by its values that contained de-
limiters of various forms. The delimiters can be punctuation marks (such 
as “,”, “-”, “/”, “_”, etc) and white spaces and some special words such as 
“to”. To detect a composite domain, we can use these delimiters to split a 
composite domain into simple sub-domains. In order to ensure correctness, 
we may also want to require that a majority of (composite) values can be 
consistently split into the same number of components. For example, the 
date can be expressed as a composite domain with MM/DD/YY.  
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DI 7 – The similarity of a simple domain and a composite domain is de-
termined by comparing the simple domain with each sub-domain of the 
composite domain. The similarity of composite domains is established 
by comparing their component sub-domains.  

We note that splitting a composite domain can be quite difficult in the Web 
context. For example, without sufficient auxiliary information (e.g., infor-
mation from other sites) it is not easy to split the following: “Dell desktop 
PC 1.5GHz 1GB RAM 30GB disk space”   

10.5 Combining Similarities 

Let us call a program that assesses the similarity of a pair of elements from 
two different schemas based on a particular match criterion a matcher. It 
is typically the case that the more indicators we have the better results we 
can achieve, because different matchers have their own advantages and 
also shortcomings. Combining schema-level and instance-level approach 
will produce better results than each type of approaches alone. This com-
bination can be done in various ways.  

Given the set of similarity values, sim1(u, v), sim2(u, v), …, simn(u, v), of 
a set of n matchers that compared two schema elements u (from S1) and v 
(from S2), one of the following strategies can be used to combine their 
similarity values.  

1. Max: This strategy returns the maximal similarity value of any matcher. 
It is thus optimistic. Let the combined similarity be CSim. Then 

CSim(u, v) = max{sim1(u, v), sim2(u, v), …, simn(u, v)} (1) 

2. Weighted Sum: This strategy computes a weighted sum of similarity 
values of the individual matchers. It needs relative weights which corre-
spond to the expected importance of the matchers: 

CSim(u, v) = λ1*sim1(u, v) + λ2sim2(u, v) + … +λn*simn(u, v), (2) 

where λi is a weight coefficient, and usually determined empirically.  
3. Weighted Average: This strategy computes a weighted average of 

similarity values of the individual matchers. It also needs relative 
weights that correspond to the expected importance of the matchers. 

n
vuSimvuSimvuSimvuCSim nn ),(...),(),(),( 2211 λλλ +++

=
,
 (3) 

where λi is a weight coefficient and is determined experimentally.  
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4. Machine Learning: This approach uses a classification algorithm, e.g., 
a decision tree, a naïve Bayesian classifier, or SVM, to determine 
whether two schema elements match each other. In this case, the user 
needs to label a set of training examples, which is described by a set of 
attributes and a class. The attributes can be the similarities. Each train-
ing example thus represents the similarity values of a pair of schema 
elements. The class of the example is either Yes or No, which indicates 
whether the two elements match or not as decided by the user.  

There are many other possible approaches. In practice, which method to 
use involves a significant amount of experimentation and parameter 
tuning. Note that the combination can also be done in stages for different 
types of matches. For example, we can combine the instance based simi-
larities first using one method, e.g., Max, and then combine schema based 
similarities using another method, e.g., Weighted Average. After that, the 
final combined similarity computation may use Weighted Sum. 

10.6 1:m Match 

The approaches presented above are for 1:1 matches. For 1:m match, other 
techniques are needed [133, 563, 559]. There are mainly two types of 1:m 
matches.  
Part-of Type: Each relevant schema element on the many side is a part of 

the element on the one side. For example, in one schema, we may have 
an attribute called “Address”, while in another schema, we may have 
three attributes, “Street”, “City” and “State”. In this case, “Street”, 
“City” or “State” is a part of “Address”. That is, the combination of 
“Street”, “City” or “State” forms “Address”. Thus, it is a 1:m match.  

Is-a Type: Each relevant schema element on the many side is a specializa-
tion of the schema element on the one side. The content of the attribute 
on the one side is the union or sum of the contents of the attributes on 
the many side. For example, “HomePhone” and “CellPhone” in S2 are 
specializations of “Phone” in S1. Another example is the (number of) 
“Passengers” in Fig. 10.3 (page 397), and the (number of) “Adults”, 
the (number of) “Seniors”, and the (number of) “Children” in Fig. 10.1 
in the airline ticket domain.  

Identifying Part-of 1:m Matches: For each attribute A in interface S1, we 
first check if it is a composite attribute as described above. If A is a com-
posite attribute, we find a subset of schema elements in S2 that has a 1:1 
correspondence with the sub-attributes of A. For a real application, we may 
need additional conditions to make the decision (see Sect. 10.8.1).  
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Identify Is-a 1:m Matches: In the case of part-of 1:m mappings, the do-
mains of the sub-attributes are typically different. In contrast, the identifi-
cation of is-a 1:m mappings of attributes requires that the domain of each 
corresponding sub-attribute be similar to that of the general attribute. 
Name matching of schema elements is useful here. For example, in the 
case of “Phone” in S1 and “HomePhone” and “CellPhone” in S2, the name 
similarity can help decide 1:m mapping. However, this strategy alone is 
usually not sufficient, e.g., “Passengers” in S1 and “Adults”, “Seniors” 
and “Children” in S2 have no name similarity. Additional information is 
needed. We will show an example in Sect. 10.8.1.  

Using the auxiliary information provided by the user is also a possibil-
ity. It is not unreasonable to ask the user to provide some information 
about the domain. For example, a domain ontology that includes a set of 
concepts and their relationships such as the following (Fig. 10.2) will be of 
great help:  

Part-of(“street”, “address”) Is-a(“home phone”, “phone”) 
Part-of(“city”, “address”) Is-a(“cell phone”, “phone”)  
Part-of(“state”, “address”) Is-a(“office phone”, “phone”) 
Part-of(“country”, “address”) Is-a(“day phone”, “phone”)  

Fig. 10.2. Part-of(X, Y) − X is a part of Y, and Is-a(X, Y) − X is a Y. 

10.7 Some Other Issues 

10.7.1  Reuse of Previous Match Results 

We have mentioned in several places that auxiliary information in addition 
to the input schemas and data instances, such as dictionaries, thesauri, and 
user-provided ontology information are very useful in schema matching. 
The past matching results can also be stored and reused for future matches 
[356, 455]. Reuse is important because many schemas are very similar to 
each other and to previously matched schemas. Given a new schema S to 
be matched with a set of existing schemas E, we may not need to match S 
with every existing schema in E. There are two slightly different scenarios:  

1. Matching of a large number of schemas: If we have a large number of 
schemas to match, we may not need to perform all pair-wise matches, 
which have n(n+1)/2 of them with n being the number of input sche-
mas. Since most schemas are very similar, the n(n+1)/2 number of 
matches are not necessary.  
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2. Incremental schema matching: In this scenario, given a set of schemas 
that has already been matched, when a new schema S needs to be 
matched with existing matched schemas E, we may not want to use S to 
match every schema in E using pair-wise matching. This is the same 
situation as the first case above. If the original match algorithm is not 
based on pair-wise match, we may not want to run the original algo-
rithm on all the schemas to just match this single schema with them. 

For both cases, we want to use old matches to facilitate the discovery of 
new matches. The key idea is to exploit the transitive property of similar-
ity relationship. For example, “Cname” in S1 matches “CustName” in S2 as 
they are both customer names. If “CTname” in the new schema S matches 
“Cname” in S1, we may conclude that “CTname” matches “CustName” in 
S2. The transitive property has also been used to deal with some difficult 
matching cases. For example, it may be difficult to map a schema element 
A directly to a schema element B, but easy to map both A and B to the 
schema element C in another schema. This helps us decide that A corre-
sponds to B [144, 559, 563].  

In the incremental case, we can also use a clustering-based method.  
For example, if we already have a large number of matches, we can group 
them into clusters and find a centroid to represent each cluster, in term of 
schema names and domains. When a new schema needs to be matched, the 
schema is compared with the centroid rather than with each individual 
schema in the cluster.  

10.7.2  Matching a Large Number of Schemas 

The techniques discussed so far are mainly for pair-wise matching of 
schemas. However, in many cases, we may have a large number of sche-
mas. This is the case for many Web applications because there are many 
Web databases in any domain or application. With a large number of 
schemas, new techniques can be applied. We do not need to depend solely 
on pair-wise matches. Instead, we can use statistical approaches such as 
data mining to find patterns, correlations and clusters to match the sche-
mas. In the next section, we will see two examples in which clustering and 
correlation methods are applied.   

10.7.3 Schema Match Results 

In pair-wise matching, for each element v in S2, the set of matching ele-
ments in S1 can be decided by one of the following methods [144].  
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1. Top N candidates: The top N elements of S1 that have the highest simi-
larities are chosen as match candidates. In most cases, N = 1 is the natu-
ral choice for 1:1 correspondences. Generally, N > 1 is useful in interac-
tive mode, i.e., the user can select among several match candidates.  

2. MaxDelta: The S1 element with the maximal similarity is determined as 
match candidate plus all S1 elements with a similarity differing at most 
by a tolerance value t, which can be specified either as an absolute or 
relative value. The idea is to return multiple match candidates when 
there are several S1 elements with almost the same similarity values. 

3. Threshold: All S1 elements with the final combined similarity values 
exceeding a given threshold t are selected. 

10.7.4  User Interactions 

Due to the difficulty of schema matching, extensive user interaction is of-
ten needed in building an accurate matching system for both parameter 
tuning and resolving uncertainties  

Building the Match System: There are typically many parameters and 
thresholds in an integration system, e.g., similarity values, weight coeffi-
cients, and decision thresholds, which are usually domain-specific or even 
attribute specific. Before the system is used to match other schemas, inter-
active experiments are needed to tune the parameters by trial-and-errors.  

After Matching: Although the parameters are fixed in the system build-
ing, their values may not be perfect. Matching mistakes and failures will 
still occur: (1) some matched attributes may be wrong (false positive); (2) 
some true matches may not be found (false negative). User interactions are 
needed to correct the situations and to confirm the correct matches.  

10.8 Integration of Web Query Interfaces 

The preceding discussions are generic to database integration and Web 
data integration. In this and the next sections, we focus on integration in 
the Web context. The Web consists of the surface Web and the deep 
Web. The surface Web can be browsed using any Web browser, while the 
deep Web consists of databases that can only be accessed through param-
eterized query interfaces. With the rapid expansion of the Web, there are 
now a huge number of deep web data sources. In almost any domain, one 
can find a large number of them, which are hosted by e-commerce sites. 
Each of such sources usually has a keyword based search engine or a query 
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interface that allows the user to fill in some information in order to retrieve 
the needed data. We have seen two query interfaces in Fig. 10.1 for finding 
airline tickets. We want to integrate multiple interfaces in order to provide 
the user a global query interface [153, 227] so that he/she does not need 
to manually query each individual source to obtain more complete infor-
mation. Only the global interface needs to be filled with the required in-
formation. The individual interfaces are filled and searched automatically.  

We focus on query interface integration mainly because there is exten-
sive research in this area, although the returned instance data integration is 
also of great importance and perhaps even more important due to the fact 
that the number of sites that provide such structured data is huge and most 
of them do not have query interfaces but only keyword search or can only 
be browsed by users (see Chap. 9).  

Since query interfaces are different from traditional database schemas, 
we first define a schema model.  

Schema Model of Query Interfaces: In each domain, there is a set of 
concepts C = {c1, c2, …, cn} that represents the essential information of the 
domain. These concepts are used in query interfaces to enable the user to 
restrict the search for some specific instances or objects of the domain. A 
particular query interface uses a subset of the concepts S ⊆ C. A concept i 
in S may be represented in the interface with a set of attributes (or fields) 
fi1, fi2, ..., fik. In most cases, each concept is only represented with a single 
attribute. Each attribute is labeled with a word or phrase, called the label 
of the attribute, which is visible to the user. Each attribute may also have a 
set of possible values that the user can use in search, which is its domain.  

All the attributes with their labels in a query interface are called the 
schema of the query interface [227, 608]. Each attribute also has a name 
in the HTML code. The name is attached to a TEXTBOX (which takes the 
user input). However, this name is not visible to the user. It is attached to 
the input value of the attribute and returned to the server as the attribute of 
the input value. The name is often an acronym that is less useful than the 
label for schema matching. For practical schema integration, we are not 
concerned with the set of concepts but only the label and name of each at-
tribute and its domain.  

Most ideas for schema matching in traditional databases are applicable 
to Web query interfaces as the schema of a query interface is similar to a 
schema in databases. However, there are also some important differences 
[67, 92].  

1. Limited use of acronyms and abbreviations: Data displayed in Web 
pages are for the general public to view and must be easy to understand. 
Hence, the use of acronyms and abbreviations is limited to those very 
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obvious ones. Enterprise-specific acronyms and abbreviations seldom 
appear. In the case of a company database, abbreviations are frequently 
used, which are often hard to understand by human users and difficult to 
analyze by automated systems. To a certain extent, this feature makes 
information integration on the Web easier.  

2. Limited vocabulary: In the same domain, there are usually a limited 
number of essential attributes that describe each object in the domain. 
For example, in the book domain, we have the title, author, publisher, 
ISBN number, etc. For each attribute, there is usually limited ways to 
express the attribute. The chosen label (describing a data attribute, e.g., 
“departure city”) needs to be short, and easily understood by the general 
public. Therefore, there are not many ways to express the same attrib-
utes. Limited vocabulary also makes statistical approaches possible.  

3. A large number of similar databases: There are often a large number 
of sites that offer the same services or sell the same products, which re-
sult in a large number of query interfaces and make it possible to use 
statistical methods. This is not the case in a company because the num-
ber of related databases is small. Integration of databases from multiple 
companies seldom happens.  

4. Additional structure: The attributes of a Web interface are usually or-
ganized in some meaningful ways. For example, related attributes are 
grouped and put together physically (e.g., “first name” and “last name” 
are usually next to each other), and there may also be a hierarchical or-
ganization of attributes. Such structures also help integration as we will 
see later. In the case of databases, attributes usually have no structure.  

Due to these differences, schema matching of query interfaces can exploit 
new methods. For example, data mining techniques can be employed as we 
will see in the next few sub-sections. Traditional schema matching ap-
proaches in the database context are usually based on pair-wise matching.  

Similar to schema integration, query interface integration also requires 
mapping of corresponding attributes of all the query interfaces.  

Example 4: For the two query interfaces in Fig. 10.3, the attribute corre-
spondences are: 

Interface 1 (S1) Interface 2 (S2) 
 Leaving from   From 
 Going to  To 
 Departure date Departure date 
 Return date Return date 
 Passengers: Number of tickets 
 Time 
 Preferred cabin 
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Fig. 10.3. Two query interfaces from the domain of airline ticket reservation 

The last two attributes from Interface 1 do not have matching attributes in 
Interface 2.  ▀ 

The problem of generating the mapping is basically the problem of iden-
tifying synonyms in the application domain. However, it is important to 
note that the synonyms here are domain dependent. A general-purpose se-
mantic lexicon such as WordNet or any thesaurus is not sufficient for the 
identification of most domain-specific synonyms. For example, it is diffi-
cult to infer from WordNet or any thesaurus that “Passengers” is synony-
mous to “Number of tickets” in the context of airline ticket reservation. 
Domain-specific lexicons are not generally available as they are expensive 
to build. In this section, we discuss three query interface matching tech-
niques. We also describe a method for building a global interface. 

10.8.1 A Clustering Based Approach 

This technique is a simplified version of the work in [559]. Given a large 
set of schemas from query interfaces in the same application domain, this 
technique utilizes a data mining method, clustering, to find attribute 
matches of all interfaces. Three types of information are employed, 
namely, attribute labels, attribute names and value domains. Let the set of 
interface schemas be {S1, S2, …, Sn}. The technique works in five steps:  

1. Pre-processing the data. It uses the methods given in Sect. 10.2.  
2. Computing all pair-wise attribute similarities of u (∈ Si) and v (∈ Sj), i ≠ 

j. This produces a similarity matrix.  
3. Identify initial 1:m matches. 
4. Cluster schema elements based on the similarity matrix. This step dis-

covers 1:1 matches.  
5. Generate the final 1:m matches of attributes. 

We now discuss each step in turn except the first step.  
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Computing all Pair-Wise Attribute Similarities: Let u be an attribute of 
Si and v be an attribute of Sj (i ≠ j). This step computes all linguistic simi-
larities (denoted by LingSim(u, v)) and domain similarities (denoted 
DomSim(u, v)). The aggregated similarity (denoted by AS(u, v)) is: 

),,(),(),( vuDomSimvuLingSimvuAS dsls ∗+∗= λλ  (4) 

where λls and λds are weight coefficients reflecting the relative importance 
of each component similarity.  

The linguistic similarity is based on both attribute labels and attribute 
names, which give two similarity values, lSim(u, v) and nSim(u, v), repre-
senting label and name similarities respectively. Both similarities are com-
puted using the cosine measure as discussed in N5 of Sect. 10.3.1. The two 
similarities are then combined through a linear combination method simi-
lar to Equation (4) above.   

Domain similarity of two simple domains dv and du is computed based 
on the data type similarity (denoted by typeSim(dv, du) and values similar-
ity (denoted by valueSim(dv, du)). The final DomSim is again a linear com-
bination of the two values. For the type similarity computation, if the types 
of domains dv and du are the same, typeSim(dv, du) = 1 and 0 otherwise. If 
typeSim(dv, du) = 0, then valueSim(dv, du) = 0.   

For two domains dv and du of the same type, the algorithm further evalu-
ates their value similarity. Let us consider two character string domains. 
Let the set of values in dv be {t1, t2, …, tn} and the set of values in du be 
{q1, q2, …, qk}. valueSim(dv, du) is computed as follows:  

1. Calculate all pair-wise value (i.e., (ti, qj)) similarities using the cosine 
measure with one value from each domain.  

2. Choose the pair with the maximum similarity among all pairs and delete 
the corresponding two values from dv and du. For a pair to be consid-
ered, its similarity must be greater than a threshold valueτ.  

3. Repeat step 2 on all remaining values in the domains until no pair of 
values has a similarity greater thanτ.  

Let the pairs of values chosen be P. valueSim(dv, du) is then computed 
using the Dice function [136]:  

.
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For two numeric domains, their value similarity is the proportion of the 
overlapping range of the domains. For an attribute whose domain is un-
known, it is assumed that its domain is dissimilar to the domain of any 
other attribute, be it finite or infinite. 
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Identify a Preliminary Set of 1:m Mappings: To identify 1:m mappings, 
the technique exploits the hierarchical organization of the interfaces. The 
hierarchical organization is determined using the layout and the proximity 
of attributes as they are likely to be physically close to each other.  

Part-of type: To identify the initial set of aggregate 1:m mappings of at-
tributes, it first finds all composite attributes in all interfaces as discussed 
in Sect. 10.4. For each composite attribute e in S, in every interface other 
than S, denoted by X, it looks for a set of attributes f = {f1, f2, … fr} (r > 1) 
with the same parent p, such that the following conditions hold: 

1. fi's are siblings, i.e., they share the same parent p. The sibling informa-
tion is derived from the physical proximity in the interface.  

2. The label of the parent p of fi's is highly similar to the label of e. 
3. The domains of fi’s have a 1-to-1 mapping with a subset of the sub-

domains of e based on the high domain similarities.  

If there exists such a f in interface X, a 1:m mapping of the part-of type 
is identified between e and attributes in f.  

Is-a type: The identification of is-a 1:m attribute mappings requires that the 
domain of each corresponding sub-attribute on the m side be similar to that 
of the general attribute on the one side. More precisely, for each non-
composite attribute h in an interface, we look for a set of attributes f = {f1, 
f2, … fr} (r > 1) in another interface X, that meets the following conditions: 

1. fi's are siblings of the same parent p, and p does not have any children 
other than fi's. 

2. The label of the parent p is highly similar to the label of h. 
3. The domain of each fi is highly similar to the domain of h. 

If the conditions are met, a 1:m mapping of the is-a type is identified be-
tween h and attributes in f. 

Cluster the Schema Elements based on the Similarity Matrix: Step 2 
produces a similarity matrix M. Let the total number of simple domains in 
the set of all given query interfaces S be w. We then have a w×w symmet-
ric similarity matrix. M[i, j] is the aggregated similarity of two attributes i 
and j. For attributes in the same interface, M[i, j] is infinite, which indicate 
that they should not be put together into a cluster.  

The clustering algorithm used is the hierarchical agglomerative cluster-
ing algorithm. The stopping criterion is a similarity threshold. That is, 
when there is no pair of clusters has the similarity greater than the thresh-
old, the algorithm stops. Each output cluster contains a set of 1:1 attribute 
mappings from different interfaces. 
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Obtain Additional 1:m Mapping: The preliminary set of 1:m correspon-
dences may not have found all such mappings. The clustering results may 
suggest additional 1:m mappings. The transitivity property can be used 
here. For example, assume that a composite attribute e maps to two attrib-
utes f1 and f2 in another interface in step 3 and the clustering results suggest 
that f1 and f2 map to h1 and h2 in yet another interface. Then, e also matches 
h1 and h2. 

10.8.2 A Correlation Based Approach 

This technique also makes use of a large number of interfaces. It is based 
on the technique in [229]. For pre-processing, the methods discussed in 
Sect. 10.2 are applied. The approach is based on co-occurrences of schema 
attributes and the following observations:  

1. In an interface, some attributes may be grouped together to form a big-
ger concept. For example, “first name” and “last name” compose the 
name of a person. This is called the grouping relationship, denoted by 
a set, e.g., {first name, last name}. Attributes in such a group often co-
occur in schemas, i.e., they are positively correlated.  

2. An attribute group rarely co-occurs in schemas with their synonym at-
tribute groups. For example, “first name” and “last name” rarely co-
occur with name in the same query interface. Thus, {first name, last 
name} and {name} are negatively correlated. They represent 2:1 
match. Note that a group may contain only one attribute.  

Based on the two observations, a correlation-based method to schema 
matching is in order. Negatively correlated groups represent synonym 
groups or matching groups.  

Given a set of input schemas S = {S1, S2, …, Sn} in the same application 
domain, where each schema Si is a transaction of attributes, we want to 
find all the matches M = {m1, …, mv}. Each mj is a complex matching gj1 = 
gj2 = … = gjw, where each gjk is an positively correlated attribute group and 

i
n
ijk Sg 1=⊆ U . Each mj represents the synonym relationship of attribute 

groups gj1 ,..., gjw. The approach for finding M consists of three steps: 

1. Group discovery: This step mines co-occurring or positively correlated 
attribute groups. It is done by first finding the set of all 2-attribute 
groups (i.e., each group contains only two attributes), denoted by L2, 
that are positively correlated according to the input schema set S (one 
data scan is needed). A 2-attribute group {a, b} is considered positively 
correlated if cp(a, b) is greater than a threshold value τp, where cp is a 
positive correlation measure. The algorithm then extends 2-attribute 
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groups to 3-attribute groups L3. A 3-attribute group g is considered posi-
tively correlated if every 2-attribute subset of g is in L2. In general, a k-
attribute group g is in Lk if every (k−1)-attribute sub-group of g is in Lk-1. 
This is similar to candidate generation in the Apriori algorithm for asso-
ciation rule mining (see Chap. 2). However, the method here does not 
scan the data after all 2-attribute groups have been generated.  

Example 5: Let L2 = {{a, b}, {b, c}, {a, c}, {c, d}, {d, f}}, which con-
tains all 2-attribute groups that are discovered from the data. {a, b, c} is 
in L3, but {a, c, d} is not because {a, d} is not in L2.  ▀ 

2. Match discovery: This step mines negatively correlated groups includ-
ing those singleton groups. Each discovered positively correlated group 
is first added into those transactions in S that contain some attributes of 
the group. That is, for a schema Si and a group g, if Si ∩ g ≠ ∅, then Si = 
Si ∪ {g}. The final augmented transaction set S is then used to mine 
negatively correlated groups; which are potential matching groups. The 
procedure for finding all negatively correlated groups is exactly the 
same as the above procedure for finding positively correlated groups. 
The only difference is that a different measure is used to determine 
negative correlations, which will be discussed shortly. A 2-attribute 
group {a, b} is considered negatively correlated if cn(a, b) is greater than 
a threshold value τn, where cn is a negative correlation measure. 

3. Matching selection: The discovered negative correlations may contain 
conflicts due to the idiosyncrasy of the data. Some correlations may also 
subsume others. For instance, in the book domain, the mining result may 
contain both {author} = {first name, last name}, denoted by m1 and {sub-
ject} = {first name, last name}, denoted by m2. Clearly, m1 is correct, but 
m2 is not. Since {subject} = {author} is not discovered, which should be 
due to transitivity of synonyms, m1 and m2 cannot be both correct. This 
causes a conflict. A match mj semantically subsumes a match mk, de-
noted by mj f  mk, if all the semantic relationships in mk are contained 
in mj. For instance, {arrival city} = {destination} = {to} f  {arrival city} = 
{destination} because the synonym relationship in the second match is 
subsumed by the first one. Also, {author} = {first name, last name} f  
{author} = {first name} because the second match is part of the first. 

We now present a method to choose the most confident and consistent 
matches and to remove possibly false ones. Between conflicting matches, 
we want to select the most negatively correlated one because it is more 
likely to be a group of genuine synonyms. Thus, a score function is 
needed, which is defined as the maximum negative correlation values of all 
2-attribute groups in the match:  
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score(mj, cn) = max cn(gjr, gjt), gjr, gjt ∈ mj, jr ≠ jt. (6) 

Combining the score function and semantic subsumption, the matches 
are ranked based on the following rules:  

1. If score(mj, cn) > score(mk, cn), mj is ranked higher than mk.  
2. If score(mj, cn) = score(mk, cn) and mj f  mk, mj is ranked higher than mk. 
3. Otherwise, mj and mk are ranked arbitrarily.  

Figure 10.4 gives the MatchingSelection() function. After the highest 
ranked match mt in an iteration is selected, the inconsistent parts in the re-
maining matches are removed (lines 6−10). The final output is the selected 
n-ary complex matches with no conflict. Note that ranking is redone in 
each iteration instead of sorting all the matches in the beginning, because 
after removing some conflicting parts, the ranking may change.  

Function MatchingSelection(M, cn)  
1  R ← ∅    // R stores the selected n-ary complex matches  
2  while M ≠ ∅ do 
4  Let mt be the highest ranked match in M  //select the top ranked match 
5  R ← R ∪ {mt}  
6  for each mj ∈ M do  
7  mj ← mj – mt;  // remove the conflicting part  
8  if |mj | < 2 then  
9 M ← M – {mj} // delete mj if it contains no matching 
10 endfor 
11 endwhile 
12 return R  

Fig. 10.4. The MatchingSelection function 

Correlation Measures: There are many existing correlation tests in statis-
tic, e.g., χ2 test and lift, etc. However, it was found that these methods were 
not suitable for this application. Hence, a new negative correlation measure 
corrn for two attributes Ap and Aq was proposed, which is called the H-
measure. Let us use a contingency table (Fig. 10.5) to define it. fij in the 
figure is the co-occurrence frequency count of the corresponding cell:    

 Ap ¬Ap  
Aq f11 f10 f1+ 
¬Aq f01 f00 f0+ 

 f+1 f+0 f++ 

Fig. 10.5. Contingency table for test of correlation 
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10.8.3 An Instance Based Approach 

This method is based on the technique given in [531]. It matches query in-
terfaces and also the query results. It assumes that: 

1. a global schema (GS) for the application domain is given, which repre-
sents the key attributes of the domain, and  

2. a number of sample data instances under the domain global schema are 
also available.  

This technique only finds 1:1 attribute matches. We use IS to denote the 
query interface schema and RS the returned result schema. Let us use an 
example to introduce the key observation exploited in this technique. Fig-
ure 10.6 shows an example of an online bookstore. The part labeled Data 
Attributes is the global schema with six attributes {Title, Author, Pub-
lisher, ISBN, Publication Date, Format}. The part labeled Interface is the 
query interface with five input elements/attributes. When the keyword 
query “Harry Potter” is submitted through the Title attribute in the inter-
face, a result page is returned which contains the answer to the query (la-
beled Result Page), which shows three book instances.  

Three types of semantic correspondence represented by different lines 
(dotted, dashed and solid) are also shown in Fig. 10.6. They are respec-
tively, the correspondence between attributes of the global schema and 
those of the query interface, the correspondence between the attributes of 
the global schema and those of the instance values in the result page, and 
the correspondence between attributes in the query interface and those of 
the instance values in the result pages. 

Observation: When a proper query is submitted to the right element of the 
query interface, the query words are very likely to reappear in the corre-
sponding attribute of the returned results. However, if an improper query is 
submitted to the Web database there are often few or no returned results.  
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Fig. 10.6. An example of a Web database with its query interface and a result page 

In the example shown in Fig. 10.6, the site retrieves only three matches 
for the query “Harry Potter” when submitted through the “Author” attribute, 
while it retrieves 228 matches for the same query when submitted to the Ti-
tle attribute. If “Harry Potter” is submitted to the “ISBN” attribute, there is 
no returned result. Intuitively, the number of times that query words reap-
pear in the returned results gives us a good indication what attributes 
match in the interface schema, the global schema, and the result schema.  

To obtain the number of reappearing occurrences, each value from the 
given instances can be submitted to each interface element while keeping 
default values for the other elements. For each TEXTBOX element in the 
query interface, all attribute values from the given instances are tried ex-
haustively. For each SELECT element, its domain values are limited to a 
set of fixed options. Then, an option similar to a value in the given in-
stances is found and submitted. Here, “similar” means that the attribute 
value and the option value have at least one common word. Note that this 
approach assumes that a data extraction system is available to produce a 
table from a returned result page (see Chap. 9). Each column has a hidden 
attribute (i.e., of the result schema).  

By counting the number of times that the query words re-occur in each 
column of the result table, a 3-dimensional occurrence matrix (OM) can 
be constructed. The three dimensions are: global schema (GS) attributes, 
query interface schema (IS) attributes and result schema (RS) attributes. 
Each cell OM[i, j, k] contains the sum of the occurrence counts obtained 
from kth attribute of RS of all the sample query words from the ith attrib-
ute of GS when the query words are submitted to the jth attribute of IS.  

Refine Search  

 

Your Search: 

Harry Potter 
Title:  

 
Author:  

any 
Format:  

ISBN:  

 

Search 

Query Interface 

…

Format

ISBN

Publish Date

Publisher

Author

Title

Data Attributes 

Search Results 

A Comprehensive Guide to Harry Potter 
Paperback | Jan 2001|Carson Dellosa Publishing company, Incor-
porated 

Beatrix Potter to Harry Potter: Portraits of Children’s 
Writers 
Julia Eccleshare            Hardcover | Sep 2002 | National Portrait Gallery 
God, Devil and Harry Potter 
John Killinger               Hardcover | Dec 2002 | St. Martin’s Press, LLC 

Result Page



10.8 Integration of Web Query Interfaces      405 

Intra-Site Schema Matching: We now briefly describe how to match at-
tributes in IS and GS, IS and RS, and GS and RS based on the projected 
matrices of OM, i.e., OMIG(M×N), OMIR(M×L), and OMGR(N×L), where N is the 
number of attributes in the global schema, M is the number of elements in 
the interface schema, and L is the number of columns in the result table. 
An example OMIG(5×4) matrix is shown in Fig. 10.7 with the correct match-
ing highlighted, GS = {TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS = 
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.  

We observe from Fig. 10.7 that the highest occurrence count may not 
represent a correct match. For example, the cell for AuthorIS and Publish-
erGS (534) has the highest value in the matrix but AuthorIS and PublisherGS 
do not correspond to each other. In general, for a cell mij, its value in com-
parison with those of other cells in its row i and its column j is more im-
portant than its absolute count.  

 TitleGS AuthorGS PublisherGS ISBNGS

AuthorIS 93 498 534 0 
TitleIS 451 345 501 0 

PublisherIS 62 184 468 2 
KeywordIS 120 248 143 275 

ISBNIS 0 0 0 258 

Fig. 10.7. An example of a OMIG(M×N) matrix with all matches highlighted   

The algorithm in [531] uses the mutual information measure (MI) to 
determine correct matches. The mutual information, which measures the 
mutual dependence of two variables, is defined as follows:  

.
)Pr()Pr(

),Pr(log),Pr(),( 2 yx
yxyxyxMI =  (9) 

In our context, x and y are attributes from IS and GS respectively. The 
probabilities, Pr(x, y), Pr(x) and Pr(y), can be easily computed using the 
OMIG(M×N) matrix.  

The algorithm simply computes the mutual information of every pair of 
attributes based on the counts in the matrix such as the one in Fig. 10.7. A 
corresponding mutual information matrix (called MI matrix) is then 
constructed (not shown here). To find 1-1 matches of the two schemas, the 
algorithm chooses each cell in the MI matrix whose value is the largest 
among all the values in the same row and the same column. The 
corresponding attributes of the cell forms a final match. 

The paper also has a similar method for finding matches from multiple 
Web databases, which is called inter-site schema matching.  
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10.9 Constructing a Unified Global Query Interface 

Once a set of query interfaces in the same domain is matched, we can 
automatically construct a well-designed global query interface that con-
tains all the (or the most significant) distinct attributes of all source inter-
faces. To build a “good” global interface, three requirements are identified 
in [154].  

1. Structural appropriateness: As noted earlier, elements of query inter-
faces are usually organized in groups (logical units) of related attributes 
so that semantically related attributes are placed in close vicinity. For 
example, “Adults”, “Seniors”, and “Children” of the interfaces shown in 
Fig. 10.1 are placed together. In addition, multiple related groups of at-
tributes are organized as super-groups (e.g., “Where and when do you 
want to go?” in Fig. 10.1). This leads to a hierarchical structure for in-
terfaces (see Fig. 10.8), where a leaf in the tree corresponds to an attrib-
ute in the interface, an internal node corresponds to a (super)group of at-
tributes and the order among the sibling nodes within the tree resembles 
the order of attributes in the interface (from left to right). The global 
query interface should reflect this hierarchical structure of the domain.  

2. Lexical appropriateness: Labels of elements should be chosen so as to 
convey the meaning of each individual element and to underline the hi-
erarchical organization of attributes (e.g., the three attributes together 
with the parent attribute “Number of Passengers” in Fig. 10.1).  

3. Instance appropriateness: The domain values for each attribute in the 
global interface must contain the values of the source interfaces.  

We will give a high level description of the algorithms in [153, 154] that 
build the global interface by merging given interfaces based on the above 
three requirements. The input to the algorithms consists of (1) a set of 
query interfaces and (2) a global mapping of corresponding attributes in 
the query interfaces. It is assumed that mapping is organized in clusters as 
discussed in Sect. 10.8.1. Each cluster contains all the matched attributes 
from different interfaces. We note that the domain model discovery idea in 
[227] can be seen as another approach to building global interfaces.   

10.9.1 Structural Appropriateness and the Merge Algorithm 

Structural appropriateness means to satisfy grouping constraints and ances-
tor-descendant relationship constraints of the attributes in individual inter-
faces. These constraints guide the merging algorithm to produce the global 
interface, which has one attribute for each cluster.  
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Fig. 10.8. Three input query interfaces (S1, S2, and S3) and the derived global 
query interface (GS). 

Grouping Constraints: Recall that semantically related attributes within 
an interface are usually grouped together. Grouping constraints require that 
these attributes should also appear together in the global interface.  

As the global interface has an attribute for each cluster, the problem is to 
partition all the clusters into semantically meaningful subsets (or groups), 
which are employed to organize attributes in the global interface. For in-
stance, for the example in Fig. 10.8, the following sets of clusters are pro-
duced, {c_deptCity, c_destCity}, {c_deptYear, c_deptTime, c_deptDay, 
c_depMonth}, and {c_Senior, c_Adult, c_Child, c_Infant}, where c_X is a 
cluster representing X (e.g., c_deptCity and c_destCity are clusters repre-
senting departure cities and destination cities, respectively). 

The partition is determined by considering each maximal set of adjacent 
sibling leaves in the schema tree of each source interface whose parent is 
not the root. The leaves whose parent is the root are not considered be-
cause no reliable information can be derived. These structural constraints 
are collected from all source interfaces in order to infer the way that attrib-
utes are organized in the global interface. All those sets (or groups) of clus-
ters whose intersection is not empty are merged to form the final groups, 
which are sequences of attribute clusters that preserve adjacency con-
straints in all interfaces. For example, {c_Adult, c_Senior, c_Child}, 
{c_Adult, c_Child}, {c_Adult, c_Child, c_Infant} are merged to produce 
the final group, [c_Senior, c_Adult, c_Child, c_Infant], which preserves all 
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adjacency constraints. Such a sequence does not always exist. In such a 
case, a sequence that accommodates most adjacency constraints is sought. 

Ancestor-Descendant Relationships: In hierarchical modeling of data the 
same information can be represented in various ways. For instance, the re-
lationship between “Authors” and “Books” can be captured as either ”Au-
thors” having “Books”, which makes “Books” a descendant of “Authors”, 
or “Books” having “Authors”, which makes “Books” an ancestor of “Au-
thors”. This, however, was not found to be a problem [153]. No such con-
flicting cases were found from a study of 300 query interfaces in eight ap-
plication domains.  

Merge Algorithm: The merge algorithm merges two interfaces at a time 
to produce the final global interface schema. One of them is the current 
global interface G. At the beginning, the schema tree with the most levels 
is chosen as the initial global schema G. Then each other interface is se-
quentially merged with G. During each merge, G is refined and expanded.  
The algorithm works in a bottom-up fashion. The merging between leaves 
is produced based on the clusters. The mapping between internal nodes is 
based on mappings of their children, which may be either leaf nodes or in-
ternal nodes. To meaningfully insert leaves without a match in the correct 
position, the algorithm relies on groups computed above to infer each leaf 
position. In our example, we start by merging S1 and S3. S1 is the initial 
global interface G. Within each group, it is easy to see the position of “In-
fant”, “ret_Year” and “dep_Year” (see Fig. 10.8 on the right). “Cabin” is 
inserted at the end since leaf children of the root are discarded before 
merging and then added as children of the root of the integrated schema 
tree. Additional details can be found in [153]. 

10.9.2 Lexical Appropriateness 

After the interfaces are merged, the attributes in the integrated interface 
need to be labeled so that (1) the labels of the attributes within a group are 
consistent and (2) the labels of the internal nodes are consistent with re-
spect to themselves and to the leaf nodes [154]. 

It can be observed in the query interface of Fig. 10.1 that between the 
labels of the attributes grouped together there are certain commonalities. 
For instance, “Adults”, “Seniors” and “Children” are all plurals, whereas 
“Leaving” and “Returning” are gerunds. Ideally, the groups within the 
global interface should have the same uniformity property. Since the at-
tributes may be from different interfaces, a group of attributes within the 
unified interface might not correspond to any group in a single interface, 
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which makes it hard to assign consistent labels. To deal with the problem, 
a strategy called intersect-and-union is used, which finds groups with 
non-empty intersection from different interfaces and then unions them.  

Example 6: Consider the example of the three interfaces in Fig. 10.8 with 
their passenger related groups organized as the table below. It is easy to 
see a systematic way of building a consistent solution.  

Cluster/Interface c_Adult  c_Senior  c_Child c_Infant 
S1 Adults Seniors Children  
S2 Adults  Children  
S3 Adult  Child Infant 

Notice that by combining the labels given by S1 and S2 a consistent nam-
ing assignment, namely, “Seniors”, “Adults” and “Children”, can be 
achieved because the two sets share labels (i.e., “Adults” and “Children”) 
that are consistent with the labels in both sets. This strategy can be itera-
tively applied until a label is assigned to each attribute in the group.  

To deal with minor variations, more relaxed rules for combining attrib-
ute labels can be used, e.g., requiring that the set of tokens of the labels to 
be equal after removal of stopwords (e.g., “Number of Adults” has the 
same set of tokens as “Adults Number”, i.e. {Number, Adults}) and stem-
ming. If a consistent solution for the entire group cannot be found, consis-
tent solutions for subsets of attributes are constructed. 

The assignment of consistent labels to the internal nodes uses a set of 
rules [154] that tries to select a label for each node in such a way that it is 
generic enough to semantically cover the set of its descendant leaf nodes. 
For example, the label “Travelers” is obtained in the integrated interface in 
Fig. 10.8 as follows. First, we know that “Passengers” is more generic 
than “Number of Passengers” and thus semantically covers both {Seniors, 
Adults, Children} and {Adults, Children}. Then, “Travelers” is found to be 
a hypernym of “Passengers“ (using WordNet) and thus semantically cov-
ers the union of {Seniors, Adults, Children} and {Adults, Children, Infant} 
which is the desired set {Seniors, Adults, Children, Infant} 

10.9.3 Instance Appropriateness 

Finally, we discuss how to determine the domain for each attribute in the 
global schema (interface). A domain has two aspects: the type and the set 
of values. To determine the domain type of a global attribute, compatibility 
rules are needed [230]. For instance, if all attributes in a cluster have a fi-
nite (infinite) domain then the global attribute will have a finite (infinite) 
domain. If in the cluster there are both finite and infinite domains, then the 
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domain of the global attribute will be hybrid (i.e., users can either select 
from a list of pre-compiled values or fill in a new value). As a case in 
point, the “Adults” attribute on the global interface derived from the two 
interface in Fig. 10.1 will have a finite domain, whereas the attribute “Go-
ing to” will have a hybrid domain. 

The set of domain values of a global attribute is given by the union of 
the domains of the attributes in the cluster. Computing the union is not al-
ways easy. For example, the values of the domains may have different 
scale/unit (e.g., the price may be in US$ or in Euro). Moreover, the same 
value may be specified in various ways (e.g., “Chicago O’Hare” vs. 
“ORD”). Currently, the problem is dealt with using user-provided auxiliary 
thesauruses [230].  
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11 Opinion Mining  

In Chap. 9, we studied structured data extraction from Web pages. Such 
data are usually records retrieved from underlying databases and displayed 
in Web pages following some fixed templates. The Web also contains a 
huge amount of information in unstructured texts. Analyzing these texts is 
of great importance and perhaps even more important than extracting 
structured data because of the sheer volume of valuable information of al-
most any imaginable types contained in them. In this chapter, we only fo-
cus on mining of opinions on the Web. The task is not only technically 
challenging because of the need for natural language processing, but also 
very useful in practice. For example, businesses always want to find public 
or consumer opinions on their products and services. Potential customers 
also want to know the opinions of existing users before they use a service 
or purchase a product. Moreover, opinion mining can also provide valuable 
information for placing advertisements in Web pages. If in a page people 
express positive opinions or sentiments on a product, it may be a good idea 
to place an ad of the product. However, if people express negative opinions 
about the product, it is probably not wise to place an ad of the product. A 
better idea may be to place an ad of a competitor’s product.   

The Web has dramatically changed the way that people express their 
opinions. They can now post reviews of products at merchant sites and ex-
press their views on almost anything in Internet forums, discussion groups, 
blogs, etc., which are commonly called the user generated content or 
user generated media. This online word-of-mouth behavior represents 
new and measurable sources of information with many practical applica-
tions. Techniques are now being developed to exploit these sources to help 
businesses and individuals gain such information effectively and easily. 

The first part of this chapter focuses on three mining tasks of evaluative 
texts (which are documents expressing opinions):  
1. Sentiment classification: This task treats opinion mining as a text clas-

sification problem. It classifies an evaluative text as being positive or 
negative. For example, given a product review, the system determines 
whether the review expresses a positive or a negative sentiment of the 
reviewer. The classification is usually at the document-level. No details 
are discovered about what people liked or didn’t like.     
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1. Featured-based opinion mining and summarization: This task goes 
to the sentence level to discover details, i.e., what aspects of an object 
that people liked or disliked. The object could be a product, a service, a 
topic, an individual, an organization, etc. For example, in a product re-
view, this task identifies product features that have been commented on 
by reviewers and determines whether the comments are positive or 
negative. In the sentence, “the battery life of this camera is too short,” 
the comment is on the “battery life” and the opinion is negative. A struc-
tured summary will also be produced from the mining results. 

2. Comparative sentence and relation mining: Comparison is another 
type of evaluation, which directly compares one object against one or 
more other similar objects. For example, the following sentence com-
pares two cameras: “the battery life of camera A is much shorter than 
that of camera B.” We want to identify such sentences and extract com-
parative relations expressed in them.  

The second part of the chapter discusses opinion search and opinion 
spam. Since our focus is on opinions on the Web, opinion search is natu-
rally relevant, and so is opinion spam. An opinion search system enables 
users to search for opinions on any object. Opinion spam refers to dishon-
est or malicious opinions aimed at promoting one’s own products and ser-
vices, and/or at damaging the reputations of those of one’s competitors. 
Detecting opinion spam is a challenging problem because for opinions ex-
pressed on the Web, the true identities of their authors are often unknown.   

The research in opinion mining only began recently. Hence, this chapter 
should be treated as statements of problems and descriptions of current re-
search rather than a report of mature techniques for solving the problems. 
We expect major progresses to be made in the coming years.   

11.1 Sentiment Classification 

Given a set of evaluative texts D, a sentiment classifier classifies each 
document d ∈ D into one of the two classes, positive and negative. Posi-
tive means that d expresses a positive opinion. Negative means that d ex-
presses a negative opinion. For example, given some reviews of a movie, 
the system classifies them into positive reviews and negative reviews. 

The main application of sentiment classification is to give a quick de-
termination of the prevailing opinion on an object. The task is similar but 
also different from classic topic-based text classification, which classifies 
documents into predefined topic classes, e.g., politics, science, sports, etc. 
In topic-based classification, topic related words are important. However, 
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in sentiment classification, topic-related words are unimportant. Instead, 
sentiment words that indicate positive or negative opinions are important, 
e.g., great, excellent, amazing, horrible, bad, worst, etc.   

The existing research in this area is mainly at the document-level, i.e., 
to classify each whole document as positive or negative (in some cases, the 
neutral class is used as well). One can also extend such classification to 
the sentence-level, i.e., to classify each sentence as expressing a positive, 
negative or neutral opinion. We discuss several approaches below.  

11.1.1  Classification Based on Sentiment Phrases 

This method performs classification based on positive and negative senti-
ment words and phrases contained in each evaluative text. The algorithm 
described here is based on the work of Turney [521], which is designed to 
classify customer reviews.  

This algorithm makes use of a natural language processing technique 
called part-of-speech (POS) tagging. The part-of-speech of a word is a 
linguistic category that is defined by its syntactic or morphological behav-
ior. Common POS categories in English grammar are: noun, verb, adjec-
tive, adverb, pronoun, preposition, conjunction and interjection. Then, 
there are many categories which arise from different forms of these catego-
ries. For example, a verb can be a verb in its base form, in its past tense, 
etc. In this book, we use the standard Penn Treebank POS Tags as shown 
in Table 11.1. POS tagging is the task of labeling (or tagging) each word in 
a sentence with its appropriate part of speech. For details on part-of-speech 
tagging, please refer to the report by Santorini [472]. The Penn Treebank 
site is at http://www.cis.upenn.edu/~treebank/home.html. 

The algorithm given in [521] consists of three steps:  

Step 1: It extracts phrases containing adjectives or adverbs. The reason for 
doing this is that research has shown that adjectives and adverbs are 
good indicators of subjectivity and opinions. However, although an iso-
lated adjective may indicate subjectivity, there may be an insufficient 
context to determine its semantic (or opinion) orientation. For exam-
ple, the adjective “unpredictable” may have a negative orientation in an 
automotive review, in such a phrase as “unpredictable steering”, but it 
could have a positive orientation in a movie review, in a phrase such as 
“unpredictable plot”. Therefore, the algorithm extracts two consecutive 
words, where one member of the pair is an adjective/adverb and the 
other is a context word. 

Two consecutive words are extracted if their POS tags conform to any 
of the patterns in Table 11.2. For example, the pattern in line 2 means 
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that two consecutive words are extracted if the first word is an adverb 
and the second word is an adjective, but the third word (which is not ex-
tracted) cannot be a noun. NNP and NNPS are avoided so that the names 
of the objects in the review cannot influence the classification. 

Table 11.2. Patterns of tags for extracting two-word phrases from reviews 

 First word  Second word  Third word 
   (Not Extracted) 
1.  JJ  NN or NNS  anything 
2.  RB, RBR, or RBS JJ  not NN nor NNS 
3.  JJ  JJ  not NN nor NNS 
4.  NN or NNS  JJ  not NN nor NNS 
5.  RB, RBR, or RBS VB, VBD, VBN, or VBG  anything 

Example 1: In the sentence “this camera produces beautiful pictures”, 
“beautiful pictures” will be extracted as it satisfies the first pattern.  ▀  

Step 2: It estimates the semantic orientation of the extracted phrases using 
the pointwise mutual information measure given in Equation 1:  

 Table 11.1. Penn Treebank part-of-speech tags (excluding punctuation) 

Tag Description Tag Description 
CC Coordinating conjunction  PRP$ Possessive pronoun   
CD Cardinal number   RB Adverb   
DT Determiner RBR Adverb, comparative   
EX Existential there   RBS Adverb, superlative   
FW Foreign word   RP   Particle   
IN Preposition or subordi-

nating conjunction   
SYM Symbol   

JJ Adjective TO to   
JJR Adjective, comparative   UH   Interjection   
JJS Adjective, superlative   VB   Verb, base form   
LS List item marker   VBD Verb, past tense   
MD Modal   VBG  Verb, gerund or present participle   
NN Noun, singular or mass   VBN  Verb, past participle   
NNS Noun, plural   VBP  Verb, non-3rd person singular pre-

sent   
NNP Proper noun, singular   VBZ  Verb, 3rd person singular present   
NNPS Proper noun, plural   WDT Wh-determiner   
PDT Predeterminer   WP Wh-pronoun   
POS Possessive ending   WP$  Possessive wh-pronoun   
PRP Personal pronoun   WRB Wh-adverb   
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Here, Pr(term1 ∧ term2) is the co-occurrence probability of term1 and 
term2, and Pr(term1)Pr(term2) gives the probability that the two terms co-
occur if they are statistically independent. The ratio between Pr(term1 ∧ 
term2) and Pr(term1)Pr(term2) is thus a measure of the degree of statisti-
cal dependence between them. The log of this ratio is the amount of in-
formation that we acquire about the presence of one of the words when 
we observe the other. 

The semantic/opinion orientation (SO) of a phrase is computed based 
on its association with the positive reference word “excellent” and its as-
sociation with the negative reference word “poor”: 

SO(phrase) = PMI(phrase, “excellent”) − PMI(phrase, “poor”). (2) 

The probabilities are calculated by issuing queries to a search engine and 
collecting the number of hits. For each search query, a search engine 
usually gives the number of relevant documents to the query, which is 
the number of hits. Thus, by searching the two terms together and sepa-
rately, we can estimate the probabilities in Equation 1. Turney [521] 
used the AltaVista search engine because it has a NEAR operator, which 
constrains the search to documents that contain the words within ten 
words of one another, in either order. Let hits(query) be the number of 
hits returned. Equation 2 can be rewritten as: 
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To avoid division by zero, 0.01 is added to the hits. 

Step 3: Given a review, the algorithm computes the average SO of all 
phrases in the review, and classifies the review as recommended if the 
average SO is positive, not recommended otherwise.  

Final classification accuracies on reviews from various domains range 
from 84% for automobile reviews to 66% for movie reviews.  

11.1.2  Classification Using Text Classification Methods 

The simplest approach to sentiment classification is to treat the problem as 
a topic-based text classification problem. Then, any text classification al-
gorithm can be employed, e.g., naïve Bayesian, SVM, kNN, etc.  
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The approach was experimented by Pang et al. [428] using movie re-
views of two classes, positive and negative. It was shown that using a uni-
gram (a bag of individual words) in classification performed well using ei-
ther naïve Bayesian or SVM. Test results using 700 positive reviews and 
700 negative reviews showed that these two classification algorithms 
achieved 81% and 82.9% accuracy respectively with 3-fold cross valida-
tion. However, neutral reviews were not used in this work, which made the 
problem easier. No stemming or stopword removal was applied.  

11.1.3  Classification Using a Score Function 

A custom score function for review sentiment classification was given by 
Dave et al. [122]. The algorithm consists of two steps: 

Step 1: It scores each term in the training set using the following equation,    
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where ti is a term and C is a class and C′ is its complement, i.e., not C, 
and Pr(ti|C) is the conditional probability of term ti in class C. It is com-
puted by taking the number of times that a term ti occurs in class C re-
views and dividing it by the total number of terms in the reviews of class 
C. A term’s score is thus a measure of bias towards either class ranging 
from −1 and 1.  

Step 2: To classify a new document di = t1…tn, the algorithm sums up the 
scores of all terms and uses the sign of the total to determine the class. 
That is, it uses the following equation for classification,   
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Experiments were conducted based on a large number of reviews (more 
than 13000) of seven types of products. The results showed that the bi-
grams (consecutive two words) and trigrams (consecutive three words) as 
terms gave (similar) best accuracies (84.6%−88.3%), on two different re-
view data sets. No stemming or stopword removal was applied.  

In this paper, the authors experimented with many alternative classifica-
tion techniques, e.g., naïve Bayesian, SVM, and several algorithms based 
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on other score functions. They also tried some word substitution strategies 
to improve generalization, e.g., 

• replace product names with a token (“_productname”); 
• replace rare words with a token (“_unique”); 
• replace category-specific words with a token (“_producttypeword”); 
• replace numeric tokens with NUMBER. 
Some linguistic modifications using WordNet, stemming, negation, and 
collocation were tested too. However, they were not helpful, and usually 
degraded the classification accuracy.  

In summary, the main advantage of document level sentiment classifica-
tion is that it provides a prevailing opinion on an object, topic or event. 
The main shortcomings of the document-level classification are: 

• It does not give details on what people liked or disliked. In a typical 
evaluative text such as a review, the author usually writes specific as-
pects of an object that he/she likes or dislikes. The ability to extract such 
details is useful in practice.  

• It is not easily applicable to non-reviews, e.g., forum and blog postings, 
because although their main focus may not be evaluation or reviewing 
of a product, they may still contain a few opinion sentences. In such 
cases, we need to identify and extract opinion sentences.  

There are several variations of the algorithms discussed in this section 
(see Bibliographic Notes). Apart from these learning based methods, there 
are also manual approaches for specific applications. For example, Tong 
[517] reported a system that generates sentiment timelines. The system 
tracks online discussions about movies and displays a plot of the number 
of positive sentiment and negative sentiment messages (Y-axis) over time 
(X-axis). Messages are classified by matching specific phrases that indicate 
sentiments of the author towards the movie (e.g., “great acting”, “wonder-
ful visuals”, “uneven editing”, “highly recommend it”, and “it sucks”). The 
phrases were manually compiled and tagged as indicating positive or nega-
tive sentiments to form a lexicon. The lexicon is specific to the domain 
(e.g., movies) and must be built anew for each new domain. 

11.2 Feature-Based Opinion Mining and Summarization 

Although studying evaluative texts at the document level is useful in many 
cases, it leaves much to be desired. A positive evaluative text on a particu-
lar object does not mean that the author has positive opinions on every as-
pect of the object. Likewise, a negative evaluative text does not mean that 
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the author dislikes everything about the object. For example, in a product 
review, the reviewer usually writes both positive and negative aspects of 
the product, although the general sentiment on the product could be posi-
tive or negative. To obtain such detailed aspects, we need to go to the sen-
tence level. Two tasks are apparent [245]:  

1. Identifying and extracting features of the product that the reviewers 
have expressed their opinions on, called product features. For instance, 
in the sentence “the picture quality of this camera is amazing,” the prod-
uct feature is “picture quality”.  

2. Determining whether the opinions on the features are positive, negative 
or neutral. In the above sentence, the opinion on the feature “picture 
quality” is positive.  

11.2.1 Problem Definition 

In general, the opinions can be expressed on anything, e.g., a product, an 
individual, an organization, an event, a topic, etc. We use the general term 
“object” to denote the entity that has been commented on. The object has a 
set of components (or parts) and also a set of attributes (or properties). 
Thus the object can be hierarchically decomposed according to the part-of 
relationship, i.e., each component may also have its sub-components and 
so on. For example, a product (e.g., a car, a digital camera) can have dif-
ferent components, an event can have sub-events, a topic can have sub-
topics, etc. Formally, we have the following definition:  

Definition (object): An object O is an entity which can be a product, per-
son, event, organization, or topic. It is associated with a pair, O: (T, A), 
where T is a hierarchy or taxonomy of components (or parts), sub-
components, and so on, and A is a set of attributes of O. Each compo-
nent has its own set of sub-components and attributes.  

Example 2: A particular brand of digital camera is an object. It has a set of 
components, e.g., lens, battery, view-finder, etc., and also a set of 
attributes, e.g., picture quality, size, weight, etc. The battery component al-
so has its set of attributes, e.g., battery life, battery size, battery weight, etc. 
 ▀ 

Essentially, an object is represented as a tree. The root is the object it-
self. Each non-root node is a component or sub-component of the object. 
Each link represents a part-of relationship. Each node is also associated 
with a set of attributes. An opinion can be expressed on any node and any 
attribute of the node.  
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Example 3: Following Example 2, one can express an opinion on the 
camera (the root node), e.g., “I do not like this camera”, or on one of its at-
tributes, e.g., “the picture quality of this camera is poor”. Likewise, one can 
also express an opinion on one of the camera’s components, e.g., “the bat-
tery of this camera is bad”, or an opinion on the attribute of the compo-
nent, “the battery life of this camera is too short.” ▀ 

To simplify our discussion, we use the word “features” to represent 
both components and attributes, which allows us to omit the hierarchy. Us-
ing features for products is also quite common in practice. For an ordinary 
user, it is probably too complex to use a hierarchical representation of 
product features and opinions. We note that in this framework the object 
itself is also treated as a feature.  

Let the evaluative text (e.g., a product review) be r. In the most general 
case, r consists of a sequence of sentences r = 〈s1, s2, …, sm〉.  

Definition (explicit and implicit feature): If a feature f appears in evalua-
tive text r, it is called an explicit feature in r. If f does not appear in r 
but is implied, it is called an implicit feature in r.  

Example 4: “battery life” in the following sentence is an explicit feature: 

“The battery life of this camera is too short”. 

“Size” is an implicit feature in the following sentence as it does not appear 
in the sentence but it is implied:  

“This camera is too large”. 

Definition (opinion passage on a feature): The opinion passage on fea-
ture f of an object evaluated in r is a group of consecutive sentences in r 
that expresses a positive or negative opinion on f.  

It is common that a sequence of sentences (at least one) in an evaluative 
text together expresses an opinion on an object or a feature of the object. 
Also, it is possible that a single sentence expresses opinions on more than 
one feature:  

“The picture quality is good, but the battery life is short”. 

Most current research focuses on sentences, i.e., each passage consisting 
of a single sentence. Thus, in our subsequent discussion, we use sentences 
and passages interchangeably.  

Definition (explicit and implicit opinion): An explicit opinion on feature 
f is a subjective sentence that directly expresses a positive or negative 
opinion. An implicit opinion on feature f is an objective sentence that 
implies a positive or negative opinion.  
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Example 5: The following sentence expresses an explicit positive opinion:  

“The picture quality of this camera is amazing.” 

The following sentence expresses an implicit negative opinion: 

“The earphone broke in two days.” 

Although this sentence states an objective fact (assume it is true), it implic-
itly expresses a negative opinion on the earphone.  ▀ 

Definition (opinion holder): The holder of a particular opinion is a per-
son or an organization that holds the opinion.  

In the case of product reviews, forum postings and blogs, opinion holders 
are usually the authors of the postings, although occasionally some authors 
cite or repeat the opinions of others. Opinion holders are more important in 
news articles because they often explicitly state the person or organization 
that holds a particular view. For example, the opinion holder in the sen-
tence “John expressed his disagreement on the treaty” is “John”.  

We now put things together to define a model of an object and a set of 
opinions on the object. An object is represented with a finite set of fea-
tures, F = {f1, f2, …, fn}. Each feature fi in F can be expressed with a finite 
set of words or phrases Wi, which are synonyms. That is, we have a set of 
corresponding synonym sets W = {W1, W2, …, Wn} for the n features. 
Since each feature fi in F has a name (denoted by fi), then fi ∈ Wi. Each au-
thor or opinion holder j comments on a subset of the features Sj ⊆ F. For 
each feature fk ∈ Sj that opinion holder j comments on, he/she chooses a 
word or phrase from Wk to describe the feature, and then expresses a posi-
tive or negative opinion on it.  

This simple model covers most but not all cases. For example, it does 
not cover the situation described in the following sentence: “the view-
finder and the lens of this camera are too close”, which expresses a nega-
tive opinion on the distance of the two components. We will follow this 
simplified model in the rest of this chapter.  

This model introduces three main practical problems. Given a collection 
of evaluative texts D as input, we have: 

Problem 1: Both F and W are unknown. Then, in opinion mining, we need 
to perform three tasks: 

Task 1: Identifying and extracting object features that have been com-
mented on in each evaluative text d ∈ D. 

Task 2: Determining whether the opinions on the features are positive, 
negative or neutral.   
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Task 3: Grouping synonyms of features, as different people may use dif-
ferent words or phrases to express the same feature. 

Problem 2: F is known but W is unknown. This is similar to Problem 1, 
but slightly easier. All the three tasks for Problem 1 still need to be per-
formed, but Task 3 becomes the problem of matching discovered fea-
tures with the set of given features F.  

Problem 3: W is known (then F is also known). We only need to perform 
Task 2 above, namely, determining whether the opinions on the known 
features are positive, negative or neutral after all the sentences that con-
tain them are extracted (which is simple).  

Clearly, the first problem is the most difficult to solve. Problem 2 is 
slightly easier. Problem 3 is the easiest, but still realistic.  

Example 6: A cellular phone company wants to mine customer reviews on 
a few models of its phones. It is quite realistic to produce the feature set F 
that the company is interested in and also the set of synonyms of each fea-
ture (although the set might not be complete). Then there is no need to per-
form Tasks 1 and 3 (which are very challenging problems).  ▀ 

Output: The final output for each evaluative text d is a set of pairs. Each 
pair is denoted by (f, SO), where f is a feature and SO is the semantic or 
opinion orientation (positive or negative) expressed in d on feature f. We 
ignore neutral opinions in the output as they are not usually useful.  

Note that this model does not consider the strength of each opinion, i.e., 
whether the opinion is strongly negative (or positive) or weakly negative 
(or positive), but it can be added easily (see [548] for a related work). 

There are many ways to use the results. A simple way is to produce a 
feature-based summary of opinions on the object. We use an example to 
illustrate what that means.  

Example 7: Assume we summarize the reviews of a particular digital 
camera, digital_camera_1. The summary looks like that in Fig. 11.1.   

In Fig. 11.1, “picture quality” and (camera) “size” are the product fea-
tures. There are 123 reviews that express positive opinions about the pic-
ture quality, and only 6 that express negative opinions. The <individual re-
view sentences> link points to the specific sentences and/or the whole 
reviews that give positive or negative comments about the feature.  

With such a summary, the user can easily see how the existing custom-
ers feel about the digital camera. If he/she is very interested in a particular 
feature, he/she can drill down by following the <individual review sen-
tences> link to see why existing customers like it and/or what they are not 
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satisfied with. The summary can also be visualized using a bar chart. Fig-
ure 11.2(A) shows the feature-based opinion summary of a digital camera. 

In the figure, the bars above the X-axis in the middle show the percent-
ages of positive opinions on various features (given at the top), and the 
bars below the X-axis show the percentages of negative opinions on the 
same features.   

 

Fig. 11.2. Visualization of feature-based opinion summary and comparison 

Digital_camera_1:  

 Feature: picture quality 
  Positive:  123 <individual review sentences> 
  Negative: 6 <individual review sentences> 
 Feature: size 
  Positive:  82       <individual review sentences> 
  Negative: 10 <individual review sentences> 
 … 

Fig. 11.1. An example of a feature-based summary of opinions 

Picture  Battery  Size WeightZoom positive 

negative Digital Camera 1 

Picture  Battery  Size Weight Zoom positive 

negative Digital Camera 1 Digital Camera 2

(A) Feature-based summary of opinions on a digital camera 

(B) Opinion comparison of two digital cameras 
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Comparing the opinion summaries of a few competing products is even 
more interesting. Figure 11.2(B) shows a visual comparison of consumer 
opinions on two competing digital cameras. We can clearly see how con-
sumers view different features of each product. Digital camera 1 is clearly 
superior to digital camera 2. Specifically, most customers have negative 
opinions about the picture quality, battery and zoom of digital camera 2. 
However, on the same three features, customers are mostly positive about 
digital camera 1. Regarding size and weight, customers have similar opin-
ions on both cameras. Thus, the visualization enables users to clearly see 
how the cameras compare with each other along each feature dimension. ▀  

Below, we discuss four other important issues.  

Separation of Opinions on the Object itself and its Features: It is often 
useful to separate opinions on the object itself and opinions on the features 
of the object. The opinion on the object itself reflects the general sentiment 
of the author (or the opinion holder) on the object, which is what sentiment 
classification tries to discover at the document level.  

Granularity of Analysis: Let us go back to the general representation of 
an object with a component tree and each component with a set of attrib-
utes. We can study opinions at any level.  

At level 1: We identify opinions on the object itself and its attributes.  
At level 2: We identify opinions on the major components of the object, 

and also opinions on the attributes of the components.  

At other levels, similar tasks can be performed. However, in practice, 
analysis at level 1 and level 2 are usually sufficient. 

Example 8: Given the following review of a camera (the object),  
“I like this camera. Its picture quality is amazing. However, the bat-
tery life is a little short”, 

in the first sentence, the positive opinion is at level 1, i.e., a positive opin-
ion on the camera itself. The positive opinion on the picture quality in the 
second sentence is also at level 1 as “picture quality” is an attribute of the 
camera. The third sentence expresses a negative opinion on an attribute of 
the battery (at level 2), which is a component of the camera.  ▀ 

Opinion Holder Identification: In some applications, it is useful to iden-
tify and extract opinion holders, i.e., persons or organizations that have ex-
pressed certain opinions. As we mentioned earlier, opinion holders are 
more useful for news articles and other types of formal documents, in 
which the person or organization that expressed an opinion is usually 
stated in the text explicitly. However, such holders need to be identified by 
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the system. In the case of the user-generated content on the Web, the opin-
ion holders are often the authors of discussion posts, bloggers, or review-
ers, whose login ids are often known although their true identities in the 
real-world may be unknown. We will not discuss opinion holders in the 
chapter further due to our focus on the user-generated content on the Web. 
Interested readers, please refer to [276]. 

Opinioned Object Identification and Pronoun Resolution: In product 
reviews, the reviewed objects are usually known. However, this is not the 
case for opinions expressed in blogs and discussions. For example, in the 
following post “I have a Canon S50 camera purchased from Amazon. It 
takes great photos.”, two interesting questions can be asked: (1) what ob-
ject does the post praise? and (2) what “it” means in the second sentence? 
Clearly, we know that the post praises “Canon S50 camera”, which is the 
problem of opinioned object identification, and we also know that “it” 
here means “Canon S50 camera” too, which is the problem of pronoun 
resolution. However, to automatically discover answers to the questions is 
a very challenging problem. So far, little work has been done.  

11.2.2 Object Feature Extraction 

Current research on feature extraction is mainly carried out from online 
product reviews. We focus on such reviews in this subsection as well.  

It is a common practice for online merchants (e.g., amazon.com) to ask 
their customers to review the products that they have purchased. There are 
also dedicated review sites like epinions.com. There are three main review 
formats on the Web. Different review formats may need different tech-
niques to perform the feature extraction task.   

Format 1 − Pros, cons and the detailed review: The reviewer is asked to 
describe pros and cons separately and also write a detailed review. An 
example of such a review is given in Fig. 11.3.   

Format 2 − Pros and cons: The reviewer is asked to describe pros and 
cons separately, but there is not a separate detailed review as in format 
1. That is, the details are in pros and cons. An example of such a review 
is given in Fig. 11.4.  

Format 3 − Free format: The reviewer can write freely, i.e., no separation 
of pros and cons. An example of such a review is given in Fig. 11.5. 

For formats 1 and 2, opinion (or semantic) orientations (positive or nega-
tive) of the features are known because pros and cons are separated. Only 
product features need to be identified. For format 3, we need to identify 
both product features and opinion orientations.  
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In both formats 2 and 3, reviewers typically use full sentences. How-
ever, for format 1, pros and cons tend to be very brief. For example, in Fig. 
11.3, under pros, we have “Great photos, easy to use, take videos”, which 
are elaborated in the detailed review.  

Let us deal with pros and cons of format 1 first. The detailed reviews of 
format 1 are not used as they are elaborations of pros and cons. Analyzing 
short sentence segments in pros and cons produces more accurate results. 
Detailed reviews of format 1 are the same as reviews of format 3. 

11.2.3 Feature Extraction from Pros and Cons of Format 1 

We now describe a supervised pattern learning approach to extract product 
features from pros and cons in the reviews of format 1. These patterns are 

My SLR is on the shelf 
by camerafun4. Aug 09 ‘04 
Pros: Great photos, easy to use, very small 
Cons: Battery usage; included memory is stingy. 
I had never used a digital camera prior to purchasing this Canon A70. I 
have always used a SLR … Read the full review 

Fig. 11.3. An example of a review of format 1. 

“It is a great digital still camera for this century” 
September 1 2004. 

Pros:  
It’s small in size, and the rotatable lens is great. It’s very easy to use, and 
has fast response from the shutter. The LCD …  

Cons:  
It almost has no cons. It could be better if the LCD is bigger and it’s going 
to be best if the model is designed to a smaller size.  

Fig. 11.4. An example of a review of format 2. 

GREAT Camera., Jun 3, 2004  
Reviewer: jprice174 from Atlanta, Ga. 
I did a lot of research last year before I bought this camera... It kinda hurt 
to leave behind my beloved nikon 35mm SLR, but I was going to Italy, and 
I needed something smaller, and digital.  
The pictures coming out of this camera are amazing. The 'auto' feature 
takes great pictures most of the time. And with digital, you're not wasting 
film if the picture doesn't come out. … 

Fig. 11.5. An example of a review of format 3. 
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generated from label sequential rules (LSR) (see Sect. 2.9.2). This me-
thod is based on the algorithm in [247, 347].   

A product feature can be expressed with a noun, adjective, verb or ad-
verb. The labels and their POS tags used in mining LSRs are: {$feature, 
NN}, {$feature, JJ}, {$feature, VB} and {$feature, RB}, where $feature de-
notes a feature to be extracted, and NN stands for noun, VB for verb, JJ for 
adjective, and RB for adverb. They represent both explicit features and 
implicit feature indicators. We call a word that indicates an implicit feature 
an implicit feature indicator. For example, in the sentence “this camera 
is too heavy”, “heavy” is an adjective and is an implicit feature indicator 
for feature “weight”.  

The feature extraction technique is based on the following observation: 

• Each sentence segment in pros and cons contains only one feature. Sen-
tence segments are separated by commas, periods, semi-colons, hy-
phens, ‘&’’s, ‘and’’s, ‘but’’s, etc.  

Example 9: Pros in Fig. 11.3 can be separated into three segments:  
great photos  〈photo〉 
easy to use    〈use〉 
very small 〈small〉 ⇒  〈size〉. 

Cons in Fig. 11.3 can be separated into two segments: 

battery usage 〈battery〉 
included memory is stingy  〈memory〉 ▀ 

We can see that each segment describes a product feature, which is 
listed within 〈 〉. Notice that 〈small〉 is an implicit feature indicator and 
〈size〉 is the implicit feature.  

One point to note is that an explicit feature may not be a noun or noun 
phrase. Verbs can be explicit features as well, e.g., “use” in “easy to use”. 
In general, 60−70% of the features are explicit noun features. A small pro-
portion of explicit features are verbs. 20−30% of the features are implicit 
features represented by their indicators. Let us now describe the method.  

Given a set of reviews, this method consists of the following three steps:  
1. Training data preparation for LSR mining: It consists of 4 sub-steps: 
• Part-Of-Speech (POS) tagging and sequence generation: For each 

sentence segment, the algorithm first performs POS tagging, and then 
produces a sequence. For example, the sentence segment,  

 “Included memory is stingy”. 

is turned into a sequence with POS tags:  

〈{included, VB}{memory, NN}{is, VB}{stingy, JJ}〉. 
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• Replace the actual feature words with {$feature, <tag>}, where $fea-
ture represents a feature. This replacement is necessary because dif-
ferent products have different features, and the replacement ensures 
that we can find general language patterns to extract any product fea-
ture. After replacement, the above example becomes:  
〈{included, VB}{$feature, NN}{is, VB}{stingy, JJ}〉. 

• Use an n-gram to produce shorter segments from long ones: For ex-
ample, the above sequence will generate two trigram sequences: 

〈{included, VB}{$feature, NN}{is, VB}〉 
〈{$feature, NN}{is, VB}{stingy, JJ}〉. 

 Trigrams are usually sufficient. The reason for using n-grams rather 
than full sentences is because most product features can be found 
based on local information and POS tags. Using long sentences tend 
to generate a large number of spurious rules. 

• Perform word stemming: This reduces a word to its stem (see Sect. 
6.5.2).  

After the four-step pre-processing, the resulting sentence (trigram) seg-
ments are saved in a sequence database for label sequential rule mining. 
In this file, each line contains one processed sequence.  

2. Label sequential rule mining: A LSR mining system is applied to find 
all rules that involve a feature, i.e., $feature. An example rule is:  

  〈{easy, JJ }{to}{*, VB}〉 → 〈{easy, JJ}{to}{$feature, VB}〉. 

Note that both POS tags and words may appear in a rule. A suitable 
minimum confidence and minimum support should be used, which can 
be chosen based on experiments. The right-hand-side of the rule is also 
called a language pattern.  

3. Feature extraction: The resulting language patterns are used to match 
each sentence segment in a new review to extract product features. That 
is, the word in the sentence segment that matches $feature in a language 
pattern is extracted. Three situations are considered in extraction: 

• If a sentence segment satisfies multiple rules, we search for a match-
ing rule in the following order: {$feature, NN}, {$feature, JJ}, {$fea-
ture, VB} and {$feature, RB}. The reason for this ordering is that noun 
features appear more frequently than other types. For rules of the 
same tag, the rule with the highest confidence is used since higher 
confidence indicates higher predictive accuracy. 
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• For sentence segments that no rules apply, nouns or noun phrases 
produced by a POS tagger are extracted as features if such nouns or 
noun phrases exist.  

• For a sentence segment with only a single word (e.g., “heavy” and 
“big”), this pattern-based method does not apply. In such cases, the 
single words are treated as (implicit or explicit) features.  

After extraction, we need to deal with several other important problems:  

Mapping to Implicit Features: There are many types of implicit feature 
indicators. Adjectives are perhaps the most common type. Many adjectives 
modify or describe some specific attributes or properties of objects. For 
example, the adjective “heavy” usually describes the attribute “weight” of 
an object. “Beautiful” is normally used to describe (positively) the attribute 
“look” or “appearance” of an object. By no means, however, does this say 
that these adjectives only describe such attributes. Their exact meaning can 
be domain dependent. For example, “heavy” in the sentence “the traffic is 
heavy” does not describe the “weight” of the traffic.  

One way to map indicator words to implicit features is to manually 
compile a list of such mappings during training data annotation, which can 
then be used in the same domain in the future. However, it is not clear 
whether this is an effective approach as little research has been done. 

Grouping Synonyms: It is common that people use different words or 
phrases to describe the same feature. For example, “photo” and “picture” 
refer to the same feature in digital camera reviews. Identifying and group-
ing synonyms is essential for practical applications. Although WordNet 
[175] and other thesaurus dictionaries help to some extent, they are far 
from sufficient due to the fact that many synonyms are domain dependent. 
For example, “picture” and “movie” are synonyms in movie reviews. 
However, they are not synonyms in digital camera reviews as “picture” is 
more related to “photo” while “movie” refers to “video”.  

Liu et al. [347] made an attempt using synonyms in WordNet. Carenini  
et al. [80] proposes a more sophisticated method based on several similar-
ity metrics that require the taxonomy of features to be given. The system 
merges each discovered feature to a feature node in the taxonomy. The 
similarity metrics are defined based on string similarity, synonyms and 
other distances measured using WordNet. Experimental results based on 
digital camera and DVD reviews show promising results. Clearly, many 
ideas and techniques described in Chap. 10 for information integration are 
applicable here.   

Granularity of Features: In the sentence segment “great photos”, it is 
easy to decide that “photo” is the feature. However, in “battery usage”, we 
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can use either “battery usage” or “battery” as the feature. As we discussed 
in Sect. 11.2.1, each object has a component/part tree and each component 
node has a set of attributes. In a practical application, we need to determine 
the right level of analysis. If it is too general, it may not be useful. If it is 
too specific, it may result in a large number of features and also make the 
extraction very difficult and inaccurate.  

11.2.4 Feature Extraction from Reviews of Formats 2 and 3 

Pros and cons of format 1 mainly consist of short phrases and incomplete 
sentences. The reviews of formats 2 and 3 usually consist of complete sen-
tences. To extract features from such reviews, the above algorithm can also 
be applied. However, some preliminary experiments show that it is not ef-
fective because complete sentences are more complex and contain a large 
amount of irrelevant information. Below, we describe an unsupervised 
method for finding explicit features that are nouns and noun phrases. This 
method requires a large number of reviews, and consists of two steps:  

1. Finding frequent nouns and noun phrases. Nouns and noun phrases (or 
groups) are identified by using a POS tagger. We then count their fre-
quency and only keep the frequent ones. A frequency threshold can be 
decided experimentally. The reason for using this approach is that most 
product features are nouns, and those nouns that are frequently talked 
about are usually genuine and important features. Irrelevant contents 
(see Fig. 11.5) in reviews are often diverse, i.e., they are quite different 
in different reviews. When people comment on product features, the vo-
cabulary that they use converges. Those nouns that are infrequent are 
likely to be non-features or less important features.    

2. Finding infrequent features by making use of sentiment words. Senti-
ment words (also called opinion words) are usually adjectives and ad-
verbs that express positive or negative opinions, e.g., great, amazing, 
bad, and expensive. The idea is as follows: The same opinion word can 
be used to describe different objects. Opinion words that modify fre-
quent features can be used to find infrequent features. For example, 
“picture” is found to be a frequent feature, and we have the sentence, 

“The pictures are absolutely amazing.” 

We also know that “amazing” is a positive opinion word (to be dis-
cussed in Sect. 11.2.5). Then “software” may also be extracted as a fea-
ture from the following sentence,  

“The software is amazing.” 
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because the two sentences follow the same language pattern and “soft-
ware” in the sentence is also a noun. 

This two-step approach is based on the work of Hu and Liu [245]. At 
the time this book was written, the shopping site Froogle of the search en-
gine Google implemented a method similar to step 1 of the algorithm. 
However, it does not restrict frequent terms to be nouns or noun phrases.  

The precision of step 1 of the above algorithm was improved by Pope-
scu and Etzioni in [447]. Their algorithm tries to remove those noun 
phrases that may not be product features. It evaluates each noun phrase by 
computing a PMI score between the phrase and meronymy discrimina-
tors associated with the product class, e.g., a scanner class. The meronymy 
discriminators for the scanner class are, “of scanner”, “scanner has”, 
“scanner comes with”, etc., which are used to find components or parts of 
scanners by searching on the Web (see [166] also). The PMI measure is a 
simplified version of the measure given in Sect. 11.1.1: 

,
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where f is a candidate feature identified in step 1 and d is a discriminator. 
Web search is used to find the number of hits. The idea of this approach is 
clear. If the PMI value of a candidate feature is too low, it may not be a 
component of the product because f and d do not co-occur frequently. The 
algorithm also distinguishes components/parts from attributes/properties 
using WordNet’s is-a hierarchy (which enumerates different kinds of 
properties) and morphological cues (e.g., “-iness”, “-ity” suffixes).  

Finally, we note that many information extraction techniques are also 
applicable, e.g., conditional random fields (CRF) [298], hidden Markov 
models (HMM) [185], and many others. However, no comparative evalua-
tion of these methods on this problem has been reported so far.  

11.2.5 Opinion Orientation Classification 

For reviews of format 3, we need to classify each sentence that contains a 
product feature as positive, negative or neutral. This classification may 
also be needed for reviews of format 2 because although pros and cons are 
separated in format 2, some sentences containing features are neutral.  

We describe two main techniques below. The accuracy is usually rea-
sonable (greater than 80%) if the sentences are either positive or negative, 
but if neutral sentences are included, the accuracy often drops signifi-
cantly. Sentences containing negations also pose difficulties.  
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1. Using sentiment words and phrases: As explained above, sentiment 
words and phrases are words and phrases that express positive or nega-
tive sentiments (or opinions). They are mostly adjectives and adverbs, 
but can be verbs and nouns too. Researchers have compiled sets of such 
words and phrases for adjectives, adverbs, verbs, and nouns respec-
tively. Each set is usually obtained through a bootstrapping process:  

• Manually find a set of seed positive and negative words. Separate 
seed sets are prepared for adjectives, adverbs, verbs and nouns.  

• Grow each of the seed set by iteratively searching for their synonyms 
and antonyms in WordNet until convergence, i.e., until no new words 
can be added to the set. Antonyms of positive (or negative) words will 
be added to the negative (or positive) set.  

• Manually inspect the results to remove those incorrect words. Al-
though this step is time consuming, it is only an one-time effort.  

Apart from a set of opinion words, there are also idioms, which can be 
classified as positive, negative and neutral as well. Many language pat-
terns also indicate positive or negative sentiments. They can be manu-
ally compiled and/or discovered using pattern discovery methods.  

Using the final lists of positive and negative words, phrases, idioms 
and patterns, each sentence that contains product features can be classi-
fied as follows: Sentiment words and phrases in the sentence are identi-
fied first. A positive word or phrase is assigned a score of +1 and a 
negative word or phrase is assigned a score of −1. All the scores are then 
summed up. If the final total is positive, then the sentence is positive, 
otherwise it is negative. If a negation word is near a sentiment word, the 
opinion is reversed. A sentence that contains a “but” clause (sub-
sentence that starts with “but”, “however”, etc.) indicates a sentiment 
change for the feature in the clause.  

This method is based on the techniques given by Hu and Liu [245], 
and Kim and Hovy [276]. In [447], Popescu and Etzioni proposed a 
more complex method, which makes use of syntactical dependencies 
produced by a parser. Yu and Hatzivassiloglou [584] presented a 
method similar to that in Sect. 11.1.1 but used a large number of seeds. 
Recall that Turney [521] used only two seeds (see Sect. 11.1.1), “excel-
lent” for positive and “poor” for negative. The sentence orientation is 
determined by a threshold of the average score of the words in the sen-
tence. It is not clear which method performs better because there is little 
comparative evaluation.  

Note that the opinion orientations of many words are domain and/or 
sentence context dependent. Such situations are usually hard to deal 
with. It can be easy in some cases. For example, “small” can be positive 
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or negative. However, if there is a “too” before it, it normally indicates a 
negative sentiment, e.g., “this camera is too small for me”.  

2. The methods described in Sect. 11.1 for sentiment classification are ap-
plicable here. Using supervised learning, we need to prepare a set of 
manually labeled positive, negative and neutral sentences as the training 
data. If sentiment words and phrases, idioms and patterns are used also 
as attributes, the classification results can be further improved. Sen-
tences containing negations and clauses starting with “but”, “however”, 
etc., need special handling since one part of the sentence may be posi-
tive and another part may be negative, e.g., “The pictures of this camera 
are great, but the camera itself is a bit too heavy.” 

In summary, although many classification techniques have been proposed, 
little comparative study of these techniques has been reported. A promis-
ing approach is to combine these techniques to produce a better classifier.  

11.3 Comparative Sentence and Relation Mining 

Directly expressing positive or negative opinions on an object is only one 
form of evaluation. Comparing the object with some other similar objects 
is another. Comparison is perhaps a more convincing way of evaluation. 
For example, when a person says that something is good or bad, one often 
asks “compared to what?” Thus, one of the most important ways of evalu-
ating an object is to directly compare it with some other similar objects. 

Comparisons are related to but also different from typical opinions. 
They have different semantic meanings and different syntactic forms. 
Comparisons may be subjective or objective. For example, a typical opin-
ion sentence is “the picture quality of camera x is great.” A subjective 
comparison is “the picture quality of camera x is better than that of camera 
y.” An objective comparison is “camera x is 20 grams heavier than cam-
era y”, which may be a statement of a fact and may not have an implied 
opinion on which camera is better.  

In this section, we study the problem of identifying comparative sen-
tences and comparative relations (defined shortly) in text documents, e.g., 
consumer reviews, forum discussions and news articles. This problem is 
also challenging because although we can see that the above example sen-
tences all contain some indicators, i.e., “better” and “longer”, many sen-
tences that contain such words are not comparisons, e.g., “in the context of 
speed, faster means better”. Similarly, many sentences that do not contain 
such indicators are comparative sentences, e.g., “cellphone X has blue-
tooth, but cellphone Y does not,” and “Intel is way ahead of AMD.”  
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11.3.1  Problem Definition 

A comparative sentence is a sentence that expresses a relation based on 
similarities or differences of more than one object. The comparison in a 
comparative sentence is usually expressed using the comparative or the 
superlative form of an adjective or adverb. The comparative is used to 
state that one thing has more (bigger, smaller) “value” than the other. The 
superlative is used to say that one thing has the most (the biggest, the 
smallest) “value”. The structure of a comparative consists normally of the 
stem of an adjective or adverb, plus the suffix -er, or the modifier “more” 
or “less” before the adjective or adverb. For example, in “John is taller 
than James”, “taller” is the comparative form of the adjective “tall”. The 
structure of a superlative consists normally of the stem of an adjective or 
adverb, plus the suffix -est, or the modifier “most” or “least” before the 
adjective or adverb. In “John is the tallest in the class”, “tallest” is the 
superlative form of the adjective “tall”.  

A comparison can be between two or more objects, groups of objects, 
one object and the rest of the objects. It can also be between an object and 
its previous or future versions.  

Types of Important Comparisons: We can classify comparisons into 
four main types. The first three types are gradable comparisons and the 
last one is the non-gradable comparison. The gradable types are defined 
based on the relationships of greater or less than, equal to, and greater or 
less than all others.  

1. Non-equal gradable comparisons: Relations of the type greater or less 
than that express an ordering of some objects with regard to some of 
their features, e.g., “the Intel chip is faster than that of AMD”. This type 
also includes user preferences, e.g., “I prefer Intel to AMD”.  

2. Equative comparisons: Relations of the type equal to that state two ob-
jects are equal with respect to some of their features, e.g., “the picture 
quality of camera A is as good as that of camera B” 

3. Superlative comparisons: Relations of the type greater or less than all 
others that rank one object over all others, e.g., “the Intel chip is the 
fastest”. 

4. Non-gradable comparisons: Sentences that compare features of two or 
more objects, but do not grade them. There are three main types:  
• Object A is similar to or different from object B with regard to some 

features, e.g., “Coke tastes differently from Pepsi”. 
• Object A has feature f1, and object B has feature f2 (f1 and f2 are usu-

ally substitutable), e.g., “desktop PCs use external speakers but lap-
tops use internal speakers”.  
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• Object A has feature f, but object B does not have, e.g., “cell phone A 
has an earphone, but cell phone B does not have”. 

Gradable comparisons can be classified further into two types: adjectival 
comparisons and adverbial comparisons. Adjectival comparisons 
involve comparisons of degrees associated with adjectives, e.g., in “John is 
taller than Mary,” and “John is the tallest in the class”. Adverbial 
comparisons are similar but usually occur after verb phrases, e.g., “John 
runs faster than James,” and “John runs the fastest in the class”. 

Given an evaluative text d, comparison mining consists of two tasks:  

1. Identify comparative passages or sentences from d, and classify the 
identified comparative sentences into different types or classes.  

2. Extract comparative relations from the identified sentences. This in-
volves the extraction of entities and their features that are being com-
pared, and the comparative keywords. Relations in gradable adjectival 
comparisons can be expressed with 

 (<relationWord>, <features>, <entityS1>, <entityS2>, <type>) 

where: 
relationWord: The comparative keyword used to express a compara-

tive relation in a sentence. 
features: a set of features being compared. 
entityS1 and entityS2: Sets of entities being compared. Entities in en-

tityS1 appear to the left of the relation word and entities in en-
tityS2 appear to the right of the relation word.  

type: non-equal gradable, equative or superlative.  

Example 10: Consider the comparative sentence “Canon’s optics is bet-
ter than those of Sony and Nikon.” The extracted relation is: 

 (better, {optics}, {Canon}, {Sony, Nikon}, non-equal gradable).  ▀ 

We can also design relation representations for adverbial comparisons 
and non-gradable comparisons. In this section, however, we only focus on 
adjectival gradable comparisons as there is little study on relation extrac-
tion of the other types. For simplicity, we will use comparative sentences 
and gradable comparative sentences interchangeably from now on. 

Finally, we note that there are other types of comparatives in linguistics 
that are used to express different types of relations. However, they are rela-
tively rare in evaluative texts and/or less useful in practice. For example, a 
meta-linguistic comparative compares the extent to which a single object 
has one property to a greater or lesser extent than another property, e.g., 
“Ronaldo is angrier than upset” (see [150, 274, 313, 393]). 
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11.3.2 Identification of Gradable Comparative Sentences  

This is a classification problem. A machine learning algorithm is applica-
ble to solve this problem. The main issue is what attributes to use. 

An interesting phenomenon about comparative sentences is that such a 
sentence usually has a comparative keyword. It is shown in [256] that us-
ing a set of 83 keywords, 98% of the comparative sentences (recall = 98%) 
can be identified with a precision of 32% using the authors’ data set. Let us 
see what the keywords are: 

1. Comparative adjectives (with the POS tag of JJR) and comparative 
adverbs (with the POS tag of RBR), e.g., more, less, better, longer and 
words ending with -er.  

2. Superlative adjectives (with the POS tag of JJS) and superlative ad-
verbs (with the POS tag of RBS), e.g., most, least, best, tallest and 
words ending with -est. 

3. Words like same, similar, differ and those used with equative as, e.g., 
same as, as well as, etc. 

4. Others, such as favor, beat, win, exceed, outperform, prefer, ahead, 
than, superior, inferior, number one, up against, etc.  

Note that those words with POS tags of JJR, RBR, JJS and RBS are not 
used as keywords themselves. Instead, their POS tags, JJR, RBR, JJS and 
RBS, are treated as four keywords only. There are four exceptions: more, 
less, most, and least are treated as individual keywords because their us-
ages are diverse, and using them as individual keywords enables the sys-
tem to catch their individual usage patterns for classification.  

Since keywords alone are able to achieve a very high recall, the follow-
ing learning approach is used in [255] to improve the precision:  

• Use the set of keywords to filter out those sentences that are unlikely to 
be comparative sentences (do not contain any keywords). The remaining 
set of sentences R forms the candidate set of comparative sentences.  

• Work on R to improve the precision, i.e., to classify the sentences in R 
into comparative and non-comparative sentences, and then into different 
types of comparative sentences.  

It is also observed in [255] that comparative sentences have strong patterns 
involving comparative keywords, which is not surprising. These patterns 
can be used as attributes in learning. To discover these patterns, class se-
quential rule (CSR) mining (see Sect. 2.9.3) was used. Each training ex-
ample used for mining CSRs is a pair (si, yi), where si is a sequence and yi 
is a class, yi ∈ {comparative, non-comparative}. 
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Training Data Preparation: The sequences in the training data are gener-
ated from sentences. Since we want to find patterns surrounding specific 
keywords, we use keywords as pivots to produce sequences.  

Let the set of pivots be P. We generate the training sequence database as 
follows:  

1. For each sentence, only words within the radius of r of the keyword 
pivot pi ∈ P are used to form a sequence. In [256], r is set to 3. Each 
pivot in a sentence forms a separate sequence. 

2. Each word is then replaced with its POS tag. The actual words are not 
used because the contents of sentences may be very different, but their 
underlying language patterns can be the same. Using POS tags allow us 
to capture content independent patterns. There is an exception. For each 
keyword (except those represented by JJR, RBR, JJS and RBS), the ac-
tual word and its POS tag are combined together to form a single item. 
The reason for this is that some keywords have multiple POS tags de-
pending on their use. Their specific usages can be important in deter-
mining whether a sentence is a comparative sentence or not. For exam-
ple, the keyword “more” can be a comparative adjective (more/JJR) or a 
comparative adverb (more/RBR) in a sentence.  

3. A class is attached to each sequence according to whether the sentence 
is a comparative or non-comparative sentence.   

Example 11: Consider the comparative sentence “this/DT camera/NN 
has/VBZ significantly/RB more/JJR noise/NN at/IN iso/NN 100/CD than/IN 
the/DT nikon/NN 4500/CD.” It has the keywords “more” and “than”. The 
sequence involving “more” put in the training set is: 

(〈{NN}{VBZ}{RB}{more/JJR}{NN}{IN}{NN}〉, comparative) 

CSR Generation: Using the training data, CSRs can be generated. Recall 
that a CSR is an implication of the form, X → y, where X is a sequence and 
y is a class. Due to the fact that some keywords appear very frequently in 
the data and some appear rarely, multiple minimum supports are used in 
mining. The minimum item support for each keyword is computed with 
freq*τ, where τ is set to 0.1 (freq is the actual frequency of its occurrence). 
See Sect. 2.7.2 or Sect. 2.8.2 in Chap. 2 for details on mining with multiple 
minimum supports.   

In addition to the automatically generated rules, some manually com-
piled rules are also used in [255, 256], which are more complex and diffi-
cult to generate by current rule mining techniques. 

Classifier Building: There are many ways to build classifiers using the 
discovered CSRs, we describe two methods:  
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1. Treat all CSRs as a classifier. A CSR simply expresses the conditional 
probability that a sentence is a comparison if it contains the sequence 
pattern X. These rules can thus be used for classification. That is, for 
each test sentence, the algorithm finds all the rules satisfied by the sen-
tence, and then chooses the rule with the highest confidence to classify 
the sentence. This is basically the “use the strongest rule” method dis-
cussed in Sect. 3.5.1 in Chap. 3.  

2. Use CSRs as attributes to create a data set and then learn a naïve Baye-
sian (NB) classifier (or any other types of classifiers) (see Sect. 3.5.2 in 
Chap. 3). The data set uses the following attribute set:  

Attribute Set =  {X | X is the sequential pattern in CSR X → y} ∪  
 {Z | Z is the pattern in a manual rule Z → y}. 

The class is not used but only the sequence pattern X (or Z) of each rule. 
The idea is that these patterns are predictive of the classes. A rule’s pre-
dictability is indicated by its confidence. The minimum confidence of 
60% is used in [255].  

Each sentence forms an example in the training data. If the sentence 
has a particular pattern in the attribute set, the corresponding attribute 
value is 1, and is 0 otherwise. Using the resulting data, it is straightfor-
ward to perform NB learning. Other learning methods can be used as 
well, but according to [255], NB seems to perform better.  

Classify Comparative Sentences into Three Types: This step classifies 
comparative sentences obtained from the last step into one of the three 
types or classes, non-equal gradable, equative, and superlative. For this 
task, the keywords alone are already sufficient. That is, we use the set of 
keywords as the attribute set for machine learning. If the sentence has a 
particular keyword in the attribute set, the corresponding attribute value is 
1, and otherwise it is 0. SVM gives the best results in this case. 

11.3.3  Extraction of Comparative Relations  

We now discuss how to extract relation entries/items. Label sequential 
rules are again used for this task. The algorithm presented below is based 
on the work in [256], which makes the following assumptions:  

1. There is only one relation in a sentence. In practice, this is violated only 
in a very small number of cases. 

2. Entities or features are nouns (includes nouns, plural nouns and proper 
nouns) and pronouns. These cover most cases. However, a feature can 
sometimes be a noun used in its verb form or some action described as a 
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verb (e.g., “Intel costs more”; “costs” is a verb and a feature). Such 
comparisons are adverbial comparisons and are not considered in [256].   

Sequence Data Generation: A sequence database for mining is created as 
follows: Since we are interested in predicting and extracting items repre-
senting entityS1 (denoted by $entityS1), entityS2 (denoted by $entityS2), 
and features (denoted by $feature), which are all called labels, we first 
manually mark/label such words in each sentence in the training data. For 
example, in the sentence “Intel/NNP is/VBZ better/JJR than/IN amd/NN”, 
the proper noun “Intel” is labeled with $entityS1, and the noun “amd” is 
labeled with $entityS2. The two labels are then used as pivots to generate 
sequence data. For every occurrence of a label in a sentence, a separate se-
quence is created and put in the sequence database. A radius of 4 is used in 
[256]. The following position words are also added to keep track of the 
distance between two items in a generated pattern:  

1. Distance words = {l1, l2, l3, l4, r1, r2, r3, r4}, where li means distance 
of i to the left of the pivot, and ri means the distance of i to the right of 
pivot. 

2. Special words #start and #end are used to mark the start and the end of a 
sentence. 

Example 12: The comparative sentence “Canon/NNP has/VBZ better/JJR 
optics/NNS than/IN Nikon/NNP” has $entityS1 “Canon”, $feature “optics” 
and $entityS2 “Nikon”. The three sequences corresponding to the two enti-
ties and one feature put in the database are: 

〈{#start}{l1}{$entityS1, NNP}{r1}{has, VBZ}{r2}{better, JJR} 
{r3}{$feature, NNS}{r4}{thanIN}〉  

〈{#start}{l4}{$entityS1, NNP}{l3}{has, VBZ}{l2}{better, JJR} {l1} 
{$feature, NNS}{r1}{thanIN}{r2}{entityS2, NNP}{r3} {#end}〉 

〈{has, VBZ}{l4}{better, JJR}{l3}{$feature, NNS}{l2}{thanIN} 
{l1}{$entityS2, NNP}{r1}{#end}〉. 

The keyword “than” is merged with its POS tag to form a single item. 

LSR Generation: After the sequence database is built, a rule mining sys-
tem is applied to generate label sequential rules. Note that only those rules 
that contain one or more labels (i.e., $entityS1, $entityS2, and $feature) 
will be generated. An example of a LSR rule is as follows 

Rule 1:  〈{*, NN}{VBZ}{JJR}{thanIN}{*, NN}〉 →  
 〈{$entityS1, NN}{VBZ}{JJR}{thanIN}{$entityS2, NN}〉. 

Relation Item Extraction: The generated LSRs are used to extract rela-
tion items from each input (or test) sentence. One strategy is to use all the 
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rules to match the sentence and to extract the relation items using the rule 
with the highest confidence. For example, the above rule will label and ex-
tract “coke” as entityS1, and “pepsi” as entityS2 from the following sen-
tence:  

 〈{coke, NN}{is, VBZ}{definitely, RB}{better, JJR}{thanIN}{pepsi, NN}〉. 

There is no feature in this sentence. The relationWord is simply the key-
word that identifies the sentence as a comparative sentence. In this case, it 
is “better.” A similar but more complex method is used in [256]. 

Again, many other methods can also be applied to the extraction, e.g., 
conditional random fields, hidden Markov models, and others. Results in 
[256] show that the LSR-based method outperforms conditional random 
fields. Further research and more comprehensive evaluations are needed to 
assess the strengths and weaknesses of these methods. 

11.4 Opinion Search 

Like the general Web search, one can also crawl the user-generated content 
on the Web and provide an opinion search service. The objective is to en-
able users to search for opinions on any object. Let us look at some typical 
opinion search queries: 

1. Search for opinions on a particular object or feature of an object, e.g., 
customer opinions on a digital camera or the picture quality of a digital 
camera, or public opinions on a political topic. Recall that the object can 
be a product, organization, topic, etc.  

2. Search for opinions of a person or organization (i.e., opinion holder) on 
a particular object or feature of the object. For example, one may search 
for Bill Clinton’s opinion on abortion or a particular aspect of it. This 
type of search is particularly relevant to news documents, where indi-
viduals or organizations who express opinions are explicitly stated. In 
the user-generated content on the Web, the opinions are mostly ex-
pressed by authors of the postings. 

For the first type of queries, the user may simply give the name of the ob-
ject and/or some features of the object. For the second type of queries, the 
user may give the name of the opinion holder and also the name of the ob-
ject. Clearly, it is not appropriate to simply apply keyword matching for ei-
ther type of queries because a document containing the query words may 
not have opinions. For example, many discussion and blog posts do not 
contain opinions, but only questions and answers on some objects. Opin-
ionated documents or sentences need to be identified before search is per-
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formed. Thus, the simplest form of opinion search can be keyword-based 
search applied to the identified opinionated documents/sentences.  

As for ranking, traditional Web search engines rank Web pages based 
on authority and relevance scores. The basic premise is that the top ranked 
pages (ideally the first page) contain sufficient information to satisfy the 
user’s information need. This may be fine for the second type of queries 
because the opinion holder usually has only one opinion on the search ob-
ject, and the opinion is usually contained in a single document or page (in 
some cases, using a general search engine with an appropriate set of key-
words may be sufficient to find answers for such queries). However, for 
the first type of opinion queries, the top ranked documents only represent 
the opinions of a few persons. Therefore, they need to reflect the natural 
distribution of positive and negative sentiments of the whole population. 
Moreover, in many cases, opinionated documents are very long (e.g., re-
views). It is hard for the user to read many of them in order to obtain a 
complete picture of the prevailing sentiments. Some form of summary of 
opinions is desirable, which can be either a simple rating average of re-
views and proportions of positive and negative opinions, or a sophisticated 
feature-based summary as we discussed earlier. To make it even easier for 
the user, two rankings may be produced, one for positive opinions and one 
for negative opinions. 

Providing a feature-based summary for each search query is an ideal so-
lution. An analogy can be drawn from traditional surveys or opinion polls. 
An opinionated document is analogous to a filled survey form. Once all or 
a sufficient number of survey forms are collected, some analysts will ana-
lyze them to produce a survey summary, which is usually in the form of a 
bar or pie chart. One seldom shows all the filled survey forms to users 
(e.g., the management team of an organization or the general public) and 
asks them to read everything in order to draw their own conclusions. How-
ever, automatically generating a feature-based summary for each search 
object (or query) is a very challenging problem. To build a practical search 
system, some intermediate solution based on Problem 2 and 3 in Sect. 
11.2.1 may be more appropriate.  

Opinions also have a temporal dimension. For example, the opinions of 
people on a particular object, e.g., a product or a topic, may change over 
time. Displaying the changing trend of sentiments along the time axis can 
be very useful in many applications.  

Finally, like opinion search, comparison search will be useful as well. 
For example, when you want to register for a free email account, you most 
probably want to know which email system is best for you, e.g., hotmail, 
gmail or Yahoo! mail. Wouldn’t it be nice if you can find comparisons of 
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features of these email systems from existing users by issuing a search 
query “hotmail vs. gmail vs. yahoo mail.”?  

11.5 Opinion Spam 

In Sect. 6.10, we discussed Web spam, which refers to the use of 
“illegitimate means” to boost the search rank position of some target Web 
pages. The reason for spamming is because of the economic and/or 
publicity value of the rank position of a page returned by a search engine. 
In the context of opinions on the Web, the problem is similar. It has 
become a common practice for people to find and to read opinions on the 
Web for many purposes. For example, if one wants to buy a product, one 
typically goes to a merchant or review site (e.g., amazon.com) to read 
some reviews of existing users of the product. If one sees many positive 
reviews of the product, one is very likely to buy the product. On the 
contrary, if one sees many negative reviews, he/she will most likely choose 
another product. Positive opinions can result in significant financial gains 
and/or fames for organizations and individuals. This, unfortunately, gives 
good incentives for opinion spam, which refers to human activities (e.g., 
write spam reviews) that try to deliberately mislead readers or automated 
opinion mining systems by giving undeserving positive opinions to some 
target objects in order to promote the objects and/or by giving unjust or 
false negative opinions on some other objects in order to damage their 
reputation. In this section, we use customer reviews of products as an 
example to study opinion spam on the Web. Most of the analyses are also 
applicable to opinions expressed in other forms of user-generated contents, 
e.g., forum postings, group discussions, and blogs.  

11.5.1  Objectives and Actions of Opinion Spamming 

As we indicated above, there are two main objectives for writing spam re-
views: 

1. To promote some target objects, e.g., one’s own products.  
2. To damage the reputation of some other target objects, e.g., products of 

one’s competitors.  

In certain cases, the spammer may want to achieve both objectives, while 
in others, he/she only aims to achieve one of them because either he/she 
does not have an object to promote or there is no competition. Another ob-
jective is also possible but may be rare. That is, the spammer writes some 
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irrelevant information or false information in order to annoy readers and to 
fool automated opinion mining systems.  

To achieve the above objectives, the spammer usually takes both or one 
of the actions below: 

• Write undeserving positive reviews for the target objects in order to 
promote them. We call such spam reviews hype spam.  

• Write unfair or malicious negative reviews for the target objects to dam-
age their reputation. We call such spam review defaming spam.  

11.5.2 Types of Spam and Spammers 

Table 11.3 below gives a simplified view of spam reviews. Spam reviews 
in regions 1, 3 and 5 are typically written by owners or manufacturers of 
the product or persons who have direct economic or other interests in the 
product. Their main goal is to promote the product. Although opinions ex-
pressed in reviews of region 1 may be true, reviewers do not announce 
their conflict of interests. 

Spam reviews in regions 2, 4, and 6 are likely to be written by competi-
tors, who give false information in order to damage the reputation of the 
product. Although opinions in reviews of region 4 may be true, reviewers 
do not announce their conflict of interests and may have malicious inten-
sions.  

Table 11.3. Spam reviews vs. product quality 

 Hype spam review Defaming spam review 
Good quality product 1 2 
Poor quality product 3 4 

In-between good and poor 
quality product 5 6 

Clearly, spam reviews in region 1 and 4 are not so damaging, while 
spam reviews in regions 2, 3, 5 and 6 are very harmful. Thus, spam detec-
tion techniques should focus on identifying reviews in these regions.  

Manual and Automated Spam: Spam reviews may be manually written 
or automatically generated. Writing spam reviews manually is not a simple 
task if one wants to spam on a product at many review sites and write them 
differently to avoid being detected by methods that catch near duplicate 
reviews. Using some language templates, it is also possible to automati-
cally generate many different variations of the same review.  
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Individual Spammers and Group Spammers: A spammer may act indi-
vidually (e.g., the author of a book) or as a member of a group (e.g., a 
group of employees of a company).  
Individual spammers: In this case, a spammer, who does not work with 

anyone else, writes spam reviews. The spammer may register at a review 
site as a single user, or as “many users” using different user-ids. He/she 
can also register at multiple review sites and write spam reviews.  

Group spammers: A group of spammers works collaboratively to promote 
a target object and/or to damage the reputation of another object. They 
may also register at multiple sites and spam at these sites. Group spam 
can be very damaging because they may take control of the sentiments 
on the product and completely mislead potential customers. 

11.5.3 Hiding Techniques 

In order to avoid being detected, spammers may take a variety of precau-
tions. We study individual and group of spammers separately. The lists are 
by no means exhaustive and should be considered as just examples. 

An Individual Spammer 

1. The spammer builds up reputation by reviewing other products in the 
same or different categories/brands that he/she does not care about and 
give them agreeable ratings and reasonable reviews. Then, he/she be-
comes a trustworthy reviewer. However, he/she may write spam reviews 
on the products that he/she really cares about. This hiding method is 
useful because some sites rank reviewers based on their reviews that are 
found helpful by readers, e.g., amazon.com. Some sites also have trust 
systems that allow readers to assign trust scores to reviewers.  

2. The spammer registers multiple times at a site using different user-ids 
and write multiple spam reviews under these user-ids so that their re-
views or ratings will not appear as outliers. The spammer may even use 
different machines to avoid being detected by server log based detection 
methods that can compare IP addresses of reviewers (discussed below).   

3. The spammer gives a reasonably high rating but write a critical (nega-
tive) review. This may fool detection methods that find outliers based on 
ratings alone. Yet, automated review mining systems will pick up all the 
negative sentiments in the actual review content.  

4. Spammers write either only positive reviews on his/her own products or 
only negative reviews on the products of his/her competitors, but not 
both. This is to hide from spam detection methods that compare one’s 
reviews on competing products from different brands.   
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A Group of Spammers 

1. Every member of the group reviews the same product to lower the rating 
deviation.  

2. Every member of the group writes a review roughly at the time when 
the product is launched in order to take control of the product. It is gen-
erally not a good idea to write many spam reviews at the same time after 
many reviews have been written by others because a spike will appear, 
which can be easily detected.  

3. Members of the group write reviews at random or irregular intervals to 
hide spikes.  

4. If the group is sufficiently large, it may be divided into sub-groups so 
that each sub-group can spam at different web sites (instead of only 
spam at the same site) to avoid being detected by methods that compare 
average ratings and content similarities of reviews from different sites. 

11.5.4 Spam Detection 

So far, little study has been done on opinion spam detection. This sub-
section outlines some possible approaches. We note that each individual 
technique below may not be able to reliably detect spam reviews, but it can 
be treated as a spam indicator. A holistic approach that combines all 
evidences is likely to be effective. One possible combination method is to 
treat spam detection as a classification problem. All the individual methods 
simply compute spam evidences which can be put in a data set from which 
a spam classifier can be learned. For this approach to work, a set of re-
views needs to be manually labeled for learning. The resulting classifier 
can be used to classify each new review as a spam review or not one. 

Review Centric Spam Detection: In this approach, spam detection is 
based only on reviews. A review has two main parts: rating and content.  

Compare content similarity: In order to have the maximum impact, a 
spammer may write multiple reviews on the same product (using differ-
ent user-ids) or multiple products of the same brand. He/she may also 
write reviews at multiple review sites. However, for a single spammer to 
write multiple reviews that look very different is not an easy task. Thus, 
some spammers simply use the same review or slight variations of the 
same review. In a recent study of reviews from amazon.com, it was 
found that some spammers were so lazy that they simply copied the 
same review and pasted it for many different products of the same brand. 
Techniques that can detect near duplicate documents are useful here (see 
Sect. 6.5.5). For automatically generated spam reviews based on lan-
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guage templates, sophisticated pattern mining methods may be needed to 
detect them.  

Detect rating and content outliers: If we assume that reviews of a product 
contain only a very small proportion of spam, we can detect possible 
spam activities based on rating deviations, especially for reviews in re-
gion 2 and 3, because they tend to be outliers. For reviews in regions 5 
and 6, this method may not be effective.   

If a product has a large proportion of spam reviews, it is hard to detect 
them based on review ratings, even though each spammer may act inde-
pendently, because they are no longer outliers. In this case, we may need 
to employ reviewer centric and server centric spam detection methods 
below. This case is similar to group spam, which is also hard to detect 
based on content alone because the spam reviews are written by different 
members of the group and there are a large number of them. Hence, their 
reviews are not expected to be outliers. However, members of the group 
may be detected based on reviewer centric detection methods and server 
centric detection methods. The following methods are also helpful.  

Compare average ratings from multiple sites: This method is useful to ac-
cess the level of spam activities from a site if only a small number of re-
view sites are spammed. For example, if the averages rating at many re-
view sites for a product are quite high but at one site it is quite low, this 
is an indication that there may be some group spam activities going on.  

Detect rating spikes: This method looks at the review ratings (or contents) 
from the time series point of view. If a number of reviews with similar 
ratings come roughly at the same time, a spike will appear which indi-
cates a possible group spam.  

Reviewer Centric Spam Detection: In this approach, “unusual” behaviors 
of reviewers are exploited for spam detection. It is assumed that all the re-
views of each reviewer at a particular site are known. Most review sites 
provide such information, e.g., amazon.com, or such information can be 
found by matching user-ids.  

Watch early reviewers: Spammers are often the first few reviewers to re-
view a product because earlier reviews tend to have a bigger impact. 
Their ratings for each product are in one of the two extremes, either very 
high or very low. They may do this consistently for a number of products 
of the same brand.  

Detect early remedial actions: For a given product, as soon as someone 
writes a (or the first) negative review to a product, the spammer gives a 
positive review just after it, or vice versa.  

Compare review ratings of the same reviewer on products from different 
brands: A spammer often writes very positive reviews for products of 
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one brand (to promote the product) and very negative reviews for similar 
products of another brand. A rating (or content) comparison will show 
discrepancies. If some of the ratings also deviate a great deal from the 
average ratings of the products, this is a good indicator of possible spam.  

Compare review times: A spammer may review a few products from dif-
ferent brands at roughly the same time. Such behaviors are unusual for a 
normal reviewer.  

As we mentioned above, detecting a group of spammers is difficult. 
However, we can reduce their negative impact by detecting each individual 
member in the group using the above and below methods.  

Server centric spam detection: The server log at the review site can be 
helpful in spam detection as well. If a single person registers multiple 
times at a Web site having the same IP address, and the person also writes 
multiple reviews for the same product or even different products using dif-
ferent user-ids, it is fairly certain that the person is a spammer. Using the 
server log may also detect some group spam activities. For example, if 
most good reviews of a product are from a particular region where the 
company that produces the product is located, it is a good indication that 
these are likely spam.   

As more and more people and organizations are using opinions on the 
Web for decision making, spammers have more and more incentives to ex-
press false sentiments in product reviews, discussions and blogs. To ensure 
the quality of information provided by an opinion mining and/or search 
system, spam detection is a critical task. Without effective detection, opin-
ions on the Web may become useless. This section analyzed various as-
pects of opinion spam and outlined some possible detection methods. This 
may just be the beginning of a long journey of the “arms race” between 
spam and detection of spam.  

Bibliographic Notes 

Opinion mining received a great deal of attention recently due to the avail-
ability of a huge volume of online documents and user-generated content 
on the Web, e.g., reviews, forum discussions, and blogs. The problem is 
intellectually challenging, and also practically useful. The most widely 
studied sub-problem is sentiment classification, which classifies evaluative 
texts or sentences as positive, negative, or neutral. Representative works 
on classification at the document level include those by Turney [521], 
Pang et al. [428], and Dave et al. [122]. They have been discussed in this 
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chapter. Sentence level subjectivity classification was studied by 
Hatzivassiloglou and Wiebe [225], which determines whether a sentence is 
a subjective sentence (but may not express a positive or negative opinion) 
or a factual one. Sentence level sentiment or opinion classification (posi-
tive, negative and neutral) was studied by Hu and Liu [245], Kim and 
Hovy [276], Wiebe and Riloff [545], among others. Some of these meth-
ods were discussed in Sect. 11.2.5. Other related works at both the docu-
ment and sentence levels include those by Hearst [232], Tong [517], Das 
and Chen [120], Morinaga et al. [397], Agrawal et al. [10], Nasukawa and 
Yi [402], Beineke et al. [44], Nigam and Hurst [412], Gamon [191], Ga-
mon et al. [192], Pang and Lee [426, 427], Riloff and Wiebe [462], Wilson 
et al. [548], etc.  

Most sentence level and even document level classification methods are 
based on word or phrase sentiment identification. Automatic and semi-
automatic methods for the purpose have been explored by several re-
searchers. There are basically two types of approaches: (1) corpus-based 
approaches, and (2) dictionary-based. approaches. Corpus-based ap-
proaches find co-occurrence patterns of words to determine their senti-
ments, e.g., the works by Turney [521], Riloff and Wiebe [462], Hatzivas-
siloglou and McKeown [224], Yu and Hatzivassiloglou [584], and 
Grefenstette et al. [206]. Dictionary-based approaches use synonyms, an-
tonyms and hierarchies in WordNet to determine word sentiments. Such 
approaches were studied by Hu and Liu [245], Valitutti et al. [524], Kim 
and Hovy [276], and Andreevskaia and Bergler [22].  

The idea of feature-based opinion summarization was introduced by Hu 
and Liu [245] to deal with a large number of reviews. Some methods for 
performing the task were also proposed. Popescu and Etzioni [447], and 
Carenini et al [80] explored the issues further. Liu et al. [347] studied the 
problem of product feature extraction from pros and cons, which are short 
phrases. Yi et al. [577], Ku et al. [291] and Kobayashi et al. [284] investi-
gated similar problems as well. More recent work can be found in [81, 159, 
264, 267, 277, 278, 290, 409, 483, 507, 544, 546, 622].  

Regarding mining comparative sentences and relations, Jindal and Liu 
[255, 256] defined the problem and proposed some initial techniques based 
on data mining and machine learning methods. Research in linguistics on 
syntax and semantics of comparatives can be found in [150, 274, 393]. 

The discussions on opinion search and opinion spam are based on a re-
cent study of product reviews from amazon.com by the author’s research 
group.  



12  Web Usage Mining 

With the continued growth and proliferation of e-commerce, Web services, 
and Web-based information systems, the volumes of clickstream and user 
data collected by Web-based organizations in their daily operations has 
reached astronomical proportions. Analyzing such data can help these or-
ganizations determine the life-time value of clients, design cross-marketing 
strategies across products and services, evaluate the effectiveness of pro-
motional campaigns, optimize the functionality of Web-based applications, 
provide more personalized content to visitors, and find the most effective 
logical structure for their Web space. This type of analysis involves the 
automatic discovery of meaningful patterns and relationships from a large 
collection of primarily semi-structured data, often stored in Web and ap-
plications server access logs, as well as in related operational data sources. 

Web usage mining refers to the automatic discovery and analysis of 
patterns in clickstream and associated data collected or generated as a re-
sult of user interactions with Web resources on one or more Web sites 
[114, 387, 505]. The goal is to capture, model, and analyze the behavioral 
patterns and profiles of users interacting with a Web site. The discovered 
patterns are usually represented as collections of pages, objects, or re-
sources that are frequently accessed by groups of users with common 
needs or interests.  

Following the standard data mining process [173], the overall Web us-
age mining process can be divided into three inter-dependent stages: data 
collection and pre-processing, pattern discovery, and pattern analysis. In 
the pre-processing stage, the clickstream data is cleaned and partitioned 
into a set of user transactions representing the activities of each user during 
different visits to the site. Other sources of knowledge such as the site con-
tent or structure, as well as semantic domain knowledge from site ontolo-
gies (such as product catalogs or concept hierarchies), may also be used 
in pre-processing or to enhance user transaction data. In the pattern discov-
ery stage, statistical, database, and machine learning operations are per-
formed to obtain hidden patterns reflecting the typical behavior of users, as 
well as summary statistics on Web resources, sessions, and users. In the fi-
nal stage of the process, the discovered patterns and statistics are further 
processed, filtered, possibly resulting in aggregate user models that can be 
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used as input to applications such as recommendation engines, visualiza-
tion tools, and Web analytics and report generation tools. The overall 
process is depicted in Fig. 12.1.  

In the remainder of this chapter, we provide a detailed examination of 
Web usage mining as a process, and discuss the relevant concepts and 
techniques commonly used in all the various stages mentioned above. 

12.1 Data Collection and Pre-Processing 

An important task in any data mining application is the creation of a suit-
able target data set to which data mining and statistical algorithms can be 
applied. This is particularly important in Web usage mining due to the 
characteristics of clickstream data and its relationship to other related data 
collected from multiple sources and across multiple channels. The data 
preparation process is often the most time consuming and computationally 
intensive step in the Web usage mining process, and often requires the use 
of special algorithms and heuristics not commonly employed in other do-
mains. This process is critical to the successful extraction of useful patterns 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 12.1. The Web usage mining process 
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from the data. The process may involve pre-processing the original data, 
integrating data from multiple sources, and transforming the integrated 
data into a form suitable for input into specific data mining operations. 
Collectively, we refer to this process as data preparation.  

Much of the research and practice in usage data preparation has been fo-
cused on pre-processing and integrating these data sources for different 
analysis. Usage data preparation presents a number of unique challenges 
which have led to a variety of algorithms and heuristic techniques for pre-
processing tasks such as data fusion and cleaning, user and session identi-
fication, pageview identification [115]. The successful application of data 
mining techniques to Web usage data is highly dependent on the correct 
application of the pre-processing tasks. Furthermore, in the context of e-

Fig. 12.2. Steps in data preparation for Web usage mining. 
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commerce data analysis, these techniques have been extended to allow for 
the discovery of important and insightful user and site metrics [286]. 

Figure 12.2 provides a summary of the primary tasks and elements in 
usage data pre-processing. We begin by providing a summary of data types 
commonly used in Web usage mining and then provide a brief discussion 
of some of the primary data preparation tasks. 

12.1.1 Sources and Types of Data 

The primary data sources used in Web usage mining are the server log 
files, which include Web server access logs and application server logs. 
Additional data sources that are also essential for both data preparation and 
pattern discovery include the site files and meta-data, operational data-
bases, application templates, and domain knowledge. In some cases and 
for some users, additional data may be available due to client-side or 
proxy-level (Internet Service Provider) data collection, as well as from ex-
ternal clickstream or demographic data sources such as those provided by 
data aggregation services from ComScore (www.comscore.com), NetRat-
ings (www.nielsen-netratings.com), and Acxiom (www.acxiom.com). 

The data obtained through various sources can be categorized into four 
primary groups [115, 505].  

Usage Data: The log data collected automatically by the Web and applica-
tion servers represents the fine-grained navigational behavior of visitors. It 
is the primary source of data in Web usage mining. Each hit against the 
server, corresponding to an HTTP request, generates a single entry in the 
server access logs. Each log entry (depending on the log format) may con-
tain fields identifying the time and date of the request, the IP address of the 
client, the resource requested, possible parameters used in invoking a Web 
application, status of the request, HTTP method used, the user agent 
(browser and operating system type and version), the referring Web re-
source, and, if available, client-side cookies which uniquely identify a re-
peat visitor.  A typical example of a server access log is depicted in Fig. 
12.3, in which six partial log entries are shown. The user IP addresses in 
the log entries have been changed to protect privacy. 

For example, log entry 1 shows a user with IP address “1.2.3.4” access-
ing a resource: “/classes/cs589/papers.html” on the server (maya.cs. 
depaul.edu). The browser type and version, as well as operating system in-
formation on the client machine are captured in the agent field of the entry. 
Finally, the referrer field indicates that the user came to this location from 
an outside source: “http://dataminingresources.blogspot.com/”. The next 
log entry shows that this user has navigated from “papers.html” (as re-
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flected in the referrer field of entry 2) to access another resource: 
“/classes/cs589/papers/cms-tai.pdf”. Log entry 3 shows a user who has ar-
rived at the resource “/classes/ds575/papers/hyperlink.pdf” by doing a 
search on Google using keyword query: “hyperlink analysis for the web 
survey”. Finally, entries 4−6 all correspond to a single click-through by a 
user who has accessed the resource “/classes/cs480/announce.html”. En-
tries 5 and 6 are images embedded in the file “announce.html” and thus 
two additional HTTP request are registered as hits in the server log corre-
sponding to these images. 

Depending on the goals of the analysis, this data needs to be trans-
formed and aggregated at different levels of abstraction. In Web usage 
mining, the most basic level of data abstraction is that of a pageview. A 
pageview is an aggregate representation of a collection of Web objects 
contributing to the display on a user’s browser resulting from a single user 
action (such as a click-through). Conceptually, each pageview can be 
viewed as a collection of Web objects or resources representing a specific 
“user event,” e.g., reading an article, viewing a product page, or adding a 
product to the shopping cart.  At the user level, the most basic level of be-
havioral abstraction is that of a session. A session is a sequence of page-
views by a single user during a single visit. The notion of a session can be 

1 2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727) 
http://dataminingresources.blogspot.com/

2 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727) 
http://maya.cs.depaul.edu/~classes/cs589/papers.html

3 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200 
318814 HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1) 
http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey

4 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 
http://maya.cs.depaul.edu/~classes/cs480/

5 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 
http://maya.cs.depaul.edu/~classes/cs480/announce.html

6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 
http://maya.cs.depaul.edu/~classes/cs480/announce.html

Fig. 12.3. Portion of a typical server log
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further abstracted by selecting a subset of pageviews in the session that are 
significant or relevant for the analysis tasks at hand. 

Content Data:  The content data in a site is the collection of objects and 
relationships that is conveyed to the user. For the most part, this data is 
comprised of combinations of textual materials and images. The data 
sources used to deliver or generate this data include static HTML/XML 
pages, multimedia files, dynamically generated page segments from 
scripts, and collections of records from the operational databases. The site 
content data also includes semantic or structural meta-data embedded 
within the site or individual pages, such as descriptive keywords, docu-
ment attributes, semantic tags, or HTTP variables. The underlying domain 
ontology for the site is also considered part of the content data. Domain 
ontologies may include conceptual hierarchies over page contents, such as 
product categories, explicit representations of semantic content and rela-
tionships via an ontology language such as RDF, or a database schema 
over the data contained in the operational databases. 

Structure Data: The structure data represents the designer’s view of the 
content organization within the site. This organization is captured via the 
inter-page linkage structure among pages, as reflected through hyperlinks. 
The structure data also includes the intra-page structure of the content 
within a page. For example, both HTML and XML documents can be rep-
resented as tree structures over the space of tags in the page. The hyperlink 
structure for a site is normally captured by an automatically generated “site 
map.” A site mapping tool must have the capability to capture and repre-
sent the inter- and intra-pageview relationships. For dynamically generated 
pages, the site mapping tools must either incorporate intrinsic knowledge 
of the underlying applications and scripts that generate HTML content, or 
must have the ability to generate content segments using a sampling of pa-
rameters passed to such applications or scripts. 

User Data: The operational database(s) for the site may include additional 
user profile information. Such data may include demographic information 
about registered users, user ratings on various objects such as products or 
movies, past purchases or visit histories of users, as well as other explicit 
or implicit representations of users’ interests. Some of this data can be cap-
tured anonymously as long as it is possible to distinguish among different 
users. For example, anonymous information contained in client-side cook-
ies can be considered a part of the users’ profile information, and used to 
identify repeat visitors to a site. Many personalization applications require 
the storage of prior user profile information.  
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12.1.2 Key Elements of Web Usage Data Pre-Processing 

As noted in Fig. 12.2, the required high-level tasks in usage data pre-
processing include the fusion and synchronization of data from multiple 
log files, data cleaning, pageview identification, user identification, session 
identification (or sessionization), episode identification, and the integration 
of clickstream data with other data sources such as content or semantic in-
formation, as well as user and product information from operational data-
bases.  We now examine some of the essential tasks in pre-processing. 

Data Fusion and Cleaning 

In large-scale Web sites, it is typical that the content served to users comes 
from multiple Web or application servers. In some cases, multiple servers 
with redundant content are used to reduce the load on any particular server. 
Data fusion refers to the merging of log files from several Web and appli-
cation servers. This may require global synchronization across these serv-
ers. In the absence of shared embedded session ids, heuristic methods 
based on the “referrer” field in server logs along with various sessioniza-
tion and user identification methods (see below) can be used to perform the 
merging. This step is essential in “inter-site” Web usage mining where the 
analysis of user behavior is performed over the log files of multiple related 
Web sites [513]. 

Data cleaning is usually site-specific, and involves tasks such as, remov-
ing extraneous references to embedded objects that may not be important 
for the purpose of analysis, including references to style files, graphics, or 
sound files. The cleaning process also may involve the removal of at least 
some of the data fields (e.g. number of bytes transferred or version of 
HTTP protocol used, etc.) that may not provide useful information in 
analysis or data mining tasks. 

Data cleaning also entails the removal of references due to crawler navi-
gations. It is not uncommon for a typical log file to contain a significant 
(sometimes as high as 50%) percentage of references resulting from search 
engine or other crawlers (or spiders). Well-known search engine crawlers 
can usually be identified and removed by maintaining a list of known 
crawlers. Other “well-behaved” crawlers which abide by standard robot 
exclusion protocols, begin their site crawl by first attempting to access to 
exclusion file “robots.txt” in the server root directory. Such crawlers, can 
therefore, be identified by locating all sessions that begin with an (at-
tempted) access to this file. However, a significant portion of crawlers ref-
erences are from those that either do not identify themselves explicitly 
(e.g., in the “agent” field) or implicitly; or from those crawlers that delib-
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erately masquerade as legitimate users. In this case, identification and re-
moval of crawler references may require the use of heuristic methods that 
distinguish typical behavior of Web crawlers from those of actual users. 
Some work has been done on using classification algorithms to build mod-
els of crawlers and Web robot navigations [510], but such approaches have 
so far been met with only limited success and more work in this area is re-
quired.  

Pageview Identification 

Identification of pageviews is heavily dependent on the intra-page struc-
ture of the site, as well as on the page contents and the underlying site do-
main knowledge. Recall that, conceptually, each pageview can be viewed 
as a collection of Web objects or resources representing a specific “user 
event,” e.g., clicking on a link, viewing a product page, adding a product to 
the shopping cart. For a static single frame site, each HTML file may have 
a one-to-one correspondence with a pageview. However, for multi-framed 
sites, several files make up a given pageview. For dynamic sites, a page-
view may represent a combination of static templates and content gener-
ated by application servers based on a set of parameters.  

In addition, it may be desirable to consider pageviews at a higher level 
of aggregation, where each pageview represents a collection of pages or 
objects, for examples, pages related to the same concept category. In e-
commerce Web sites, pageviews may correspond to various product-
oriented events, such as product views, registration, shopping cart changes, 
purchases, etc. In this case, identification of pageviews may require a pri-
ori specification of an “event model” based on which various user actions 
can be categorized.  

In order to provide a flexible framework for a variety of data mining ac-
tivities a number of attributes must be recorded with each pageview. These 
attributes include the pageview id (normally a URL uniquely representing 
the pageview), static pageview type (e.g., information page, product view, 
category view, or index page), and other metadata, such as content attrib-
utes (e.g., keywords or product attributes). 

User Identification 

The analysis of Web usage does not require knowledge about a user’s 
identity. However, it is necessary to distinguish among different users. 
Since a user may visit a site more than once, the server logs record multi-
ple sessions for each user. We use the phrase user activity record to refer 
to the sequence of logged activities belonging to the same user. 
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In the absence of authentication mechanisms, the most widespread ap-
proach to distinguishing among unique visitors is the use of client-side 
cookies. Not all sites, however, employ cookies, and due to privacy con-
cerns, client-side cookies are sometimes disabled by users. IP addresses, 
alone, are not generally sufficient for mapping log entries onto the set of 
unique visitors. This is mainly due to the proliferation of ISP proxy servers 
which assign rotating IP addresses to clients as they browse the Web. It is 
not uncommon to find many log entries corresponding to a limited number 
of proxy server IP addresses from large Internet Service Providers such as 
America Online. Therefore, two occurrences of the same IP address (sepa-
rated by a sufficient amount of time), in fact, might correspond to two dif-
ferent users. Without user authentication or client-side cookies, it is still 
possible to accurately identify unique users through a combination of IP 
addresses and other information such as user agents and referrers [115].  

Consider, for instance, the example of Fig. 12.4. On the left, the figure 
depicts a portion of a partly preprocessed log file (the time stamps are 
given as hours and minutes only). Using a combination of IP and Agent 
fields in the log file, we are able to partition the log into activity records 
for three separate users (depicted on the right). 

 

Time IP URL Ref Agent
0:01 1.2.3.4 A - IE5;Win2k
0:09 1.2.3.4 B A IE5;Win2k
0:10 2.3.4.5 C - IE6;WinXP;SP1
0:12 2.3.4.5 B C IE6;WinXP;SP1
0:15 2.3.4.5 E C IE6;WinXP;SP1
0:19 1.2.3.4 C A IE5;Win2k
0:22 2.3.4.5 D B IE6;WinXP;SP1
0:22 1.2.3.4 A - IE6;WinXP;SP2
0:25 1.2.3.4 E C IE5;Win2k
0:25 1.2.3.4 C A IE6;WinXP;SP2
0:33 1.2.3.4 B C IE6;WinXP;SP2
0:58 1.2.3.4 D B IE6;WinXP;SP2
1:10 1.2.3.4 E D IE6;WinXP;SP2
1:15 1.2.3.4 A - IE5;Win2k
1:16 1.2.3.4 C A IE5;Win2k
1:17 1.2.3.4 F C IE6;WinXP;SP2
1:26 1.2.3.4 F C IE5;Win2k
1:30 1.2.3.4 B A IE5;Win2k
1:36 1.2.3.4 D B IE5;Win2k

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:22 1.2.3.4 A -
0:25 1.2.3.4 C A
0:33 1.2.3.4 B C
0:58 1.2.3.4 D B
1:10 1.2.3.4 E D
1:17 1.2.3.4 F C

User 3

0:10 2.3.4.5 C -
0:12 2.3.4.5 B C
0:15 2.3.4.5 E C
0:22 2.3.4.5 D B

User 2

Fig. 12.4. Example of user identification using IP + Agent 
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Sessionization 

Sessionization is the process of segmenting the user activity record of each 
user into sessions, each representing a single visit to the site. Web sites 
without the benefit of additional authentication information from users and 
without mechanisms such as embedded session ids must rely on heuristics 
methods for sessionization. The goal of a sessionization heuristic is to re-
construct, from the clickstream data, the actual sequence of actions per-
formed by one user during one visit to the site.  

We denote the “conceptual” set of real sessions by R, representing the 
real activity of the user on the Web site. A sessionization heuristic h at-
tempts to map R into a set of constructed sessions, denoted by Ch. For the 
ideal heuristic, h*, we have Ch* = R. In other words, the ideal heuristic can 
re-construct the exact sequence of user navigation during a session. Gener-
ally, sessionization heuristics fall into two basic categories: time-oriented 
or structure-oriented. Time-oriented heuristics apply either global or local 
time-out estimates to distinguish between consecutive sessions, while 
structure-oriented heuristics use either the static site structure or the im-
plicit linkage structure captured in the referrer fields of the server logs. 
Various heuristics for sessionization have been identified and studied 
[115]. More recently, a formal framework for measuring the effectiveness 
of such heuristics has been proposed [498], and the impact of different 
heuristics on various Web usage mining tasks has been analyzed [46]. 

As an example, two variations of time-oriented heuristics and a basic 
navigation-oriented heuristic are given below. Each heuristic h scans the 
user activity logs to which the Web server log is partitioned after user 
identification, and outputs a set of constructed sessions: 

• h1: Total session duration may not exceed a threshold θ. Given t0, the 
timestamp for the first request in a constructed session S, the request 
with a timestamp t is assigned to S, iff t − t0 ≤ θ. 

• h2: Total time spent on a page may not exceed a threshold δ. Given t1, 
the timestamp for request assigned to constructed session S, the next re-
quest with timestamp t2 is assigned to S, iff t2 − t1 ≤ δ. 

• h-ref: A request q is added to constructed session S if the referrer for q 
was previously invoked in S. Otherwise, q is used as the start of a new 
constructed session. Note that with this heuristic it is possible that a re-
quest q may potentially belong to more than one “open” constructed 
session, since q may have been accessed previously in multiple sessions. 
In this case, additional information can be used for disambiguation. For 
example, q could be added to the most recently opened session satisfy-
ing the above condition. 
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An example of the application of sessionization heuristics is given in 
Fig. 12.5 and Fig. 12.6. In Fig. 12.5, the heuristic h1, described above, with 
θ = 30 minutes has been used to partition a user activity record (from the 
example of Fig. 12.4) into two separate sessions.  

If we were to apply h2 with a threshold of 10 minutes, the user record 
would be seen as three sessions, namely, A B C E, A, and F B D. 
On the other hand, Fig. 12.6 depicts an example of using h-ref heuristic on 
the same user activity record. In this case, once the request for F (with time 
stamp 1:26) is reached, there are two open sessions, namely, A B C E 
and A. But F is added to the first because its referrer, C, was invoked in 
session 1. The request for B (with time stamp 1:30) may potentially belong 
to both open sessions, since its referrer, A, is invoked both in session 1 and 
in session 2. In this case, it is added to the second session, since it is the 
most recently opened session. 

Episode identification can be performed as a final step in pre-processing 
of the clickstream data in order to focus on the relevant subsets of page-
views in each user session. An episode is a subset or subsequence of a ses-
sion comprised of semantically or functionally related pageviews. This 
task may require the automatic or semi-automatic classification of page-

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C

Session 1

1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

Session 2

Fig. 12.5. Example of sessionization with a time-oriented heuristic 

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:26 1.2.3.4 F C

Session 1

1:15 1.2.3.4 A -
1:30 1.2.3.4 B A
1:36 1.2.3.4 D BSession 2

Fig. 12.6. Example of sessionization with the h-ref heuristic



460      12  Web Usage Mining 

views into different functional types or into concept classes according to a 
domain ontology or concept hierarchy. In highly dynamic sites, it may also 
be necessary to map pageviews within each session into “service-based” 
classes according to a concept hierarchy over the space of possible pa-
rameters passed to script or database queries [47]. For example, the analy-
sis may ignore the quantity and attributes of an item added to the shopping 
cart, and focus only on the action of adding the item to the cart. 

Path Completion 

Another potentially important pre-processing task which is usually per-
formed after sessionization is path completion. Client- or proxy-side 
caching can often result in missing access references to those pages or ob-
jects that have been cached. For instance, if a user returns to a page A dur-
ing the same session, the second access to A will likely result in viewing 
the previously downloaded version of A that was cached on the client-side, 
and therefore, no request is made to the server. This results in the second 
reference to A not being recorded on the server logs. Missing references 
due to caching can be heuristically inferred through path completion which 
relies on the knowledge of site structure and referrer information from 
server logs [115]. In the case of dynamically generated pages, form-based 
applications using the HTTP POST method result in all or part of the user 
input parameter not being appended to the URL accessed by the user 
(though, in the latter case, it is possible to recapture the user input through 
packet sniffers which listen to all incoming and outgoing TCP/IP network 
traffic on the server side).  

A simple example of missing references is given in Fig. 12.7. On the 
left, a graph representing the linkage structure of the site is given. The dot-
ted arrows represent the navigational path followed by a hypothetical user. 
After reaching page E, the user has backtracked (e.g., using the browser’s 
“back” button) to page D and then B from which she has navigated to page 
C. The back references to D and B do not appear in the log file because 
these pages where cached on the client-side (thus no explicit server request 
was made for these pages). The log file shows that after a request for E, the 
next request by the user is for page C with a referrer B. In other words, 
there is a gap in the activity record corresponding to user’s navigation from 
page E to page B.  Given the site graph, it is possible to infer the two miss-
ing references (i.e., E  D and D  B) from the site structure and the re-
ferrer information given above. It should be noted that there are, in gen-
eral, many (possibly infinite), candidate completions (for example, 
consider the sequence E  D, D  B, B  A, A  B). A simple heuristic 
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that can be used for disambiguating among candidate paths is to select the 
one requiring the fewest number of “back” references. 

Data Integration 

The above pre-processing tasks ultimately result in a set of user sessions 
(or episodes), each corresponding to a delimited sequence of pageviews. 
However, in order to provide the most effective framework for pattern dis-
covery, data from a variety of other sources must be integrated with the 
preprocessed clickstream data. This is particularly the case in e-commerce 
applications where the integration of both user data (e.g., demographics, 
ratings, and purchase histories) and product attributes and categories from 
operational databases is critical. Such data, used in conjunction with usage 
data, in the mining process can allow for the discovery of important busi-
ness intelligence metrics such as customer conversion ratios and lifetime 
values [286].  

In addition to user and product data, e-commerce data includes various 
product-oriented events such as shopping cart changes, order and shipping 
information, impressions (when the user visits a page containing an item 
of interest), click-throughs (when the user actually clicks on an item of in-
terest in the current page), and other basic metrics primarily used for data 
analysis. The successful integration of these types of data requires the crea-
tion of a site-specific “event model” based on which subsets of a user’s 
clickstream are aggregated and mapped to specific events such as the addi-
tion of a product to the shopping cart. Generally, the integrated e-
commerce data is stored in the final transaction database. To enable full-
featured Web analytics applications, this data is usually stored in a data 
warehouse called an e-commerce data mart. The e-commerce data mart 

A 

B C 

D E F 

User’s actual navigation path: 
 

A B  D  E  D  B  C 

What the server log shows: 
 

URL   Referrer 
 A         -- 
 B         A 
 D         B 
 E         D 
 C         B 

Fig. 12.7. Missing references due to caching. 
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is a multi-dimensional database integrating data from various sources, and 
at different levels of aggregation. It can provide pre-computed e-metrics 
along multiple dimensions, and is used as the primary data source for 
OLAP (Online Analytical Processing), for data visualization, and in data 
selection for a variety of data mining tasks [71, 279]. Some examples of 
such metrics include frequency or monetary value of purchases, average 
size of market baskets, the number of different items purchased, the num-
ber of different item categories purchased, the amount of time spent on 
pages or sections of the site, day of week and time of day when a certain 
activity occurred, response to recommendations and online specials, etc. 

12.2 Data Modeling for Web Usage Mining 

Usage data pre-processing results in a set of n pageviews, P = {p1, p2, ···, 
pn}, and a set of m user transactions, T = {t1,t2,···,tm}, where each ti in T 
is a subset of P. Pageviews are semantically meaningful entities to 
which mining tasks are applied (such as pages or products). Conceptu-
ally, we view each transaction t as an l-length sequence of ordered pairs: 
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where each pt
i = pj for some j in {1, 2, ···, n}, and w(pt

i)  is the weight as-
sociated with pageview pt

i in transaction t, representing its significance. 
The weights can be determined in a number of ways, in part based on the 
type of analysis or the intended personalization framework. For example, 
in collaborative filtering applications which rely on the profiles of similar 
users to make recommendations to the current user, weights may be based 
on user ratings of items. In most Web usage mining tasks the weights are 
either binary, representing the existence or non-existence of a pageview in 
the transaction; or they can be a function of the duration of the pageview in 
the user’s session. In the case of time durations, it should be noted that 
usually the time spent by a user on the last pageview in the session is not 
available. One commonly used option is to set the weight for the last page-
view to be the mean time duration for the page taken across all sessions in 
which the pageview does not occur as the last one. In practice, it is com-
mon to use a normalized value of page duration instead of raw time dura-
tion in order to account for user variances. In some applications, the log of 
pageview duration is used as the weight to reduce the noise in the data. 

For many data mining tasks, such as clustering and association rule min-
ing, where the ordering of pageviews in a transaction is not relevant, we 
can represent each user transaction as a vector over the n-dimensional space 
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of pageviews. Given the transaction t above, the transaction vector t (we 
use a bold face lower case letter to represent a vector) is given by: 
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j), for some j in {1, 2, ···, n}, if pj appears in the trans-
action t, and wt

pi = 0 otherwise. Thus, conceptually, the set of all user trans-
actions can be viewed as an m×n user-pageview matrix (also called the 
transaction matrix), denoted by UPM. 

An example of a hypothetical user-pageview matrix is depicted in Fig. 
12.8. In this example, the weights for each pageview is the amount of time 
(e.g., in seconds) that a particular user spent on the pageview. In practice, 
these weights must be normalized to account for variances in viewing 
times by different users. It should also be noted that the weights may be 
composite or aggregate values in cases where the pageview represents a 
collection or sequence of pages and not a single page. 

Given a set of transactions in the user-pageview matrix as described 
above, a variety of unsupervised learning techniques can be applied to 
obtain patterns. These techniques such as clustering of transactions (or 
sessions) can lead to the discovery of important user or visitor segments. 
Other techniques such as item (e.g., pageview) clustering and association 
or sequential pattern mining can find important relationships among 
items based on the navigational patterns of users in the site.  

As noted earlier, it is also possible to integrate other sources of knowl-
edge, such as semantic information from the content of Web pages with 
the Web usage mining process. Generally, the textual features from the 
content of Web pages represent the underlying semantics of the site. Each 

A B C D E F
user0 15 5 0 0 0 185
user1 0 0 32 4 0 0
user2 12 0 0 56 236 0
user3 9 47 0 0 0 134
user4 0 0 23 15 0 0
user5 17 0 0 157 69 0
user6 24 89 0 0 0 354
user7 0 0 78 27 0 0
user8 7 0 45 20 127 0
user9 0 38 57 0 0 15

Sessions /
users 

Pageviews 

Fig. 12.8. An example of a user-pageview matrix (or transaction matrix) 
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pageview p can be represented as a r-dimensional feature vector, where r 
is the total number of extracted features (words or concepts) from the site 
in a global dictionary. This vector, denoted by p, can be given by:  

( ))(),...,(),( 21 r
ppp ffwffwffw=p   

where fwp( fj ) is the weight of the jth feature (i.e., fj ) in pageview p, for 1 ≤  
j ≤ r. For the whole collection of pageviews in the site, we then have an 
n×r pageview-feature matrix PFM = {p1, p2, …, pn}. The integration 
process may, for example, involve the transformation of user transactions 
(in user-pageview matrix) into “content-enhanced” transactions containing 
the semantic features of the pageviews. The goal of such a transformation 
is to represent each user session (or more generally, each user profile) as a 
vector of semantic features (i.e., textual features or concept labels) rather 
than as a vector over pageviews. In this way, a user’s session reflects not 
only the pages visited, but also the significance of various concepts or con-
text features that are relevant to the user’s interaction. 

While, in practice, there are several ways to accomplish this transforma-
tion, the most direct approach involves mapping each pageview in a transac-
tion to one or more content features. The range of this mapping can be the 
full feature space, or feature sets (composite features) which in turn may 
represent concepts and concept categories. Conceptually, the transformation 
can be viewed as the multiplication of the user-pageview matrix UPM, de-
fined earlier, with the pageview-feature matrix PFM. The result is a new 
matrix, TFM = {t1, t2, …, tm}, where each ti  is a r-dimensional vector 
over the feature space. Thus, a user transaction can be represented as a 
content feature vector, reflecting that user’s interests in particular con-
cepts or topics. 

As an example of content-enhanced transactions, consider Fig. 12.9 
which shows a hypothetical matrix of user sessions (user-pageview ma-
trix) as well as a document index for the corresponding Web site concep-
tually represented as a term-pageview matrix. Note that the transpose of 
this term-pageview matrix is the pageview-feature matrix. The user-
pageview matrix simply reflects the pages visited by users in various ses-
sions. On the other hand, the term-pageview matrix represents the con-
cepts that appear in each page. For simplicity we have assumed that all 
the weights are binary (however, note that in practice weights in the user 
transaction data are usually not binary and represent some measure of 
significance of the page in that transaction; and the weights in the term-
pageview matrix are usually a function of term frequencies).  

In this case, the corresponding content-enhanced transaction matrix 
(derived by multiplying the user-pageview matrix and the transpose of 
the term-pageview matrix) is depicted in Fig. 12.10. The resulting matrix 
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shows, for example, that users 4 and 6 are more interested in Web infor-
mation retrieval, while user 3 is more interested in data mining. 

Various data mining tasks can now be performed on the content-
enhanced transaction data. For example, clustering the enhanced transac-
tion matrix of Fig. 12.10 may reveal segments of users that have common 
interests in different concepts as indicated from their navigational behav-
iors.  

If the content features include relational attributes associated with items 
on the Web site, then the discovered patterns may reveal user interests at 
the deeper semantic level reflected in the underlying properties of the 
items that are accessed by the users on the Web site. As an example, con-
sider a site containing information about movies. The site may contain 
pages related to the movies themselves, as well as attributes describing the 
properties of each movie, such as actors, directors, and genres. The mining 

 A.html B.html C.html D.html E.html 
user1 1 0 1 0 1 
user2 1 1 0 0 1 
user3 0 1 1 1 0 
user4 1 0 1 1 1 
user5 1 1 0 0 1 
user6 1 0 1 1 1 

 
 A.html B.html C.html D.html E.html 
web 0 0 1 1 1 
data 0 1 1 1 0 
mining 0 1 1 1 0 
business 1 1 0 0 0 
intelligence 1 1 0 0 1 
marketing 1 1 0 0 1 
ecommerce 0 1 1 0 0 
search 1 0 1 0 0 
information 1 0 1 1 1 
retrieval 1 0 1 1 1 

Fig. 12.9. Examples of a user-pageview matrix (top) and a term-pageview matrix 
(bottom) 

 web data mining business intelligence marketing ecommerce search information retrieval 
user1 2 1 1 1 2 2 1 2 3 3 
user2 1 1 1 2 3 3 1 1 2 2 
user3 2 3 3 1 1 1 2 1 2 2 
user4 3 2 2 1 2 2 1 2 4 4 
user5 1 1 1 2 3 3 1 1 2 2 
user6 3 2 2 1 2 2 1 2 4 4 

Fig. 12.10. The content-enhanced transaction matrix from matrices of Fig. 12.9  
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process may, for instance, generate an association rule such as: {“British”, 
“Romance”, “Comedy” ⇒ “Hugh Grant”}, suggesting that users who are 
interested in British romantic comedies may also like the actor Hugh Grant 
(with a certain degree of confidence). Therefore, the integration of seman-
tic content with Web usage mining can potentially provide a better under-
standing of the underlying relationships among objects. 

12.3 Discovery and Analysis of Web Usage Patterns 

The types and levels of analysis, performed on the integrated usage data, 
depend on the ultimate goals of the analyst and the desired outcomes. In 
this section we describe some of the most common types of pattern discov-
ery and analysis techniques employed in the Web usage mining domain 
and discuss some of their applications. 

12.3.1 Session and Visitor Analysis 

The statistical analysis of pre-processed session data constitutes the most 
common form of analysis. In this case, data is aggregated by predeter-
mined units such as days, sessions, visitors, or domains. Standard statisti-
cal techniques can be used on this data to gain knowledge about visitor be-
havior. This is the approach taken by most commercial tools available for 
Web log analysis. Reports based on this type of analysis may include in-
formation about most frequently accessed pages, average view time of a 
page, average length of a path through a site, common entry and exit 
points, and other aggregate measures. Despite a lack of depth in this type 
of analysis, the resulting knowledge can be potentially useful for improv-
ing the system performance, and providing support for marketing deci-
sions. Furthermore, commercial Web analytics tools are increasingly in-
corporating a variety of data mining algorithms resulting in more 
sophisticated site and customer metrics. 

Another form of analysis on integrated usage data is Online Analytical 
Processing (OLAP). OLAP provides a more integrated framework for 
analysis with a higher degree of flexibility. The data source for OLAP 
analysis is usually a multidimensional data warehouse which integrates us-
age, content, and e-commerce data at different levels of aggregation for 
each dimension. OLAP tools allow changes in aggregation levels along 
each dimension during the analysis. Analysis dimensions in such a struc-
ture can be based on various fields available in the log files, and may in-
clude time duration, domain, requested resource, user agent, and referrers. 
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This allows the analysis to be performed on portions of the log related to a 
specific time interval, or at a higher level of abstraction with respect to the 
URL path structure. The integration of e-commerce data in the data ware-
house can further enhance the ability of OLAP tools to derive important 
business intelligence metrics [71]. The output from OLAP queries can also 
be used as the input for a variety of data mining or data visualization tools.  

12.3.2 Cluster Analysis and Visitor Segmentation 

Clustering is a data mining technique that groups together a set of items 
having similar characteristics. In the usage domain, there are two kinds of 
interesting clusters that can be discovered: user clusters and page clusters.  

Clustering of user records (sessions or transactions) is one of the most 
commonly used analysis tasks in Web usage mining and Web analytics. 
Clustering of users tends to establish groups of users exhibiting similar 
browsing patterns. Such knowledge is especially useful for inferring user 
demographics in order to perform market segmentation in e-commerce ap-
plications or provide personalized Web content to the users with similar 
interests. Further analysis of user groups based on their demographic at-
tributes (e.g., age, gender, income level, etc.) may lead to the discovery of 
valuable business intelligence. Usage-based clustering has also been used 
to create Web-based “user communities” reflecting similar interests of 
groups of users [423], and to learn user models that can be used to provide 
dynamic recommendations in Web personalization applications [390]. 

Given the mapping of user transactions into a multi-dimensional space 
as vectors of pageviews (see Fig. 12.8), standard clustering algorithms, 
such as k-means, can partition this space into groups of transactions that 
are close to each other based on a measure of distance or similarity among 
the vectors (see Chap. 4). Transaction clusters obtained in this way can 
represent user or visitor segments based on their navigational behavior or 
other attributes that have been captured in the transaction file. However, 
transaction clusters by themselves are not an effective means of capturing 
the aggregated view of common user patterns. Each transaction cluster 
may potentially contain thousands of user transactions involving hundreds 
of pageview references. The ultimate goal in clustering user transactions is 
to provide the ability to analyze each segment for deriving business intelli-
gence, or to use them for tasks such as personalization. 

One straightforward approach in creating an aggregate view of each 
cluster is to compute the centroid (or the mean vector) of each cluster. The 
dimension value for each pageview in the mean vector is computed by 
finding the ratio of the sum of the pageview weights across transactions to 
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the total number of transactions in the cluster. If pageview weights in the 
original transactions are binary, then the dimension value of a pageview p 
in a cluster centroid represents the percentage of transactions in the cluster 
in which p occurs. Thus, the centroid dimension value of p provides a 
measure of its significance in the cluster. Pageviews in the centroid can be 
sorted according to these weights and lower weight pageviews can be fil-
tered out. The resulting set of pageview-weight pairs can be viewed as an 
“aggregate usage profile” representing the interests or behavior of a sig-
nificant group of users.  

More formally, given a transaction cluster cl, we can construct the ag-
gregate profile prcl as a set of pageview-weight pairs by computing the 
centroid of cl: 

},),(|)),(,{( µ≥= clclcl prpweightprpweightppr  (1) 

where: 
• the significance weight, weight(p, prcl ), of the page p within the aggre-

gate profile prcl is given by 
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• | cl | is the number of transactions in cluster cl; 
• w(p,s) is the weight of page p in transaction vector s of cluster cl; and 
• the threshold µ is used to focus only on those pages in the cluster that 

appear in a sufficient number of vectors in that cluster. 

Each such profile, in turn, can be represented as a vector in the original 
n -dimensional space of pageviews. This aggregate representation can be 
used directly for predictive modeling and in applications such as recom-
mender systems: given a new user, u , who has accessed a set of pages, Pu, 
so far, we can measure the similarity of Pu to the discovered profiles, and 
recommend to the user those pages in matching profiles which have not 
yet been accessed by the user.  

As an example, consider the transaction data depicted in Fig. 12.11 
(left). For simplicity we assume that feature (pageview) weights in each 
transaction vector are binary (in contrast to weights based on a function of 
pageview duration). We assume that the data has already been clustered 
using a standard clustering algorithm such as k-means, resulting in three 
clusters of user transactions. The table on the right of Fig. 12.11 shows the 
aggregate profile corresponding to cluster 1. As indicated by the pageview 
weights, pageviews B and F are the most significant pages characterizing 
the common interests of users in this segment. Pageview C, however, only 
appears in one transaction and might be removed given a filtering thresh-



12.3 Discovery and Analysis of Web Usage Patterns      469 

old greater than 0.25. Such patterns are useful for characterizing user or 
customer segments. This example, for instance, indicates that the resulting 
user segment is clearly interested in items B and F and to a lesser degree in 
item A. Given a new user who shows interest in items A and B, this pattern 
may be used to infer that the user might belong to this segment and, there-
fore, we might recommend item F to that user. 

Clustering of pages (or items) can be performed based on the usage data 
(i.e., starting from the user sessions or transaction data), or based on the 
content features associated with pages or items (keywords or product at-
tributes). In the case of content-based clustering, the result may be collec-
tions of pages or products related to the same topic or category. In usage-
based clustering, items that are commonly accessed or purchased together 
can be automatically organized into groups. It can also be used to provide 
permanent or dynamic HTML pages that suggest related hyperlinks to the 
users according to their past history of navigational or purchase activities.  

A variety of stochastic methods have also been proposed recently for 
clustering of user transactions, and more generally for user modeling. For 
example, recent work in this area has shown that mixture models are able 
to capture more complex, dynamic user behavior. This is, in part, because 
the observation data (i.e., the user-item space) in some applications (such 
as large and very dynamic Web sites) may be too complex to be modeled 
by basic probability distributions such as a normal or a multinomial distri-
bution. In particular, each user may exhibit different “types” of behavior 
corresponding to different tasks, and common behaviors may each be re-
flected in a different distribution within the data. 

Fig. 12.11. Derivation of aggregate profiles from Web transaction clusters 

 A B C D E F
user 1 0 0 1 1 0 0 
user 4 0 0 1 1 0 0 
user 7 0 0 1 1 0 0 
user 0 1 1 0 0 0 1 
user 3 1 1 0 0 0 1 
user 6 1 1 0 0 0 1 
user 9 0 1 1 0 0 1 
user 2 1 0 0 1 1 0 
user 5 1 0 0 1 1 0 
user 8 1 0 1 1 1 0 

Aggregated Profile 
for Cluster 1 

Weight Pageview 
1.00 B 
1.00 F 
0.75 A 
0.25 C 

Cluster 0 

Cluster 1 

Cluster 2 
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The general idea behind mixture models (such as a mixture of Markov 
models) is as follow. We assume that there exist k types of user behavior 
(or k user clusters) within the data, and each user session is assumed to be 
generated via a generative process which models the probability distribu-
tions of the observed variables and hidden variables. First, a user cluster is 
chosen with some probability. Then, the user session is generated from a 
Markov model with parameters specific to that user cluster. The probabili-
ties of each user cluster is estimated, usually via the EM [127] algorithm, 
as well as the parameters of each mixture component. Mixture-based user 
models can provide a great deal of flexibility. For example, a mixture of 
first-order Markov models [76] not only can probabilistically cluster user 
sessions based on similarities in navigation behavior, but also characterize 
each type of user behavior using a first-order Markov model, thus captur-
ing popular navigation paths or characteristics of each user cluster. A mix-
ture of hidden Markov models was proposed in [580] for modeling click-
stream of Web surfers. In addition to user-based clustering, this approach 
can also be used for automatic page classification. Incidentally, mixture 
models have been discussed in Sect. 3.7 in the context of naïve Bayesian 
classification. The EM algorithm is used in the same context in Sect. 5.1.   

Mixture models tend to have their own shortcomings. From the data 
generation perspective, each individual observation (such as a user session) 
is generated from one and only one component model. The probability as-
signment to each component only measures the uncertainty about this as-
signment. This assumption limits this model’s ability of capturing complex 
user behavior, and more seriously, may result in overfitting.  

Probabilistic Latent Semantic Analysis (PLSA) provides a reasonable 
solution to the above problem [240]. In the context of Web user naviga-
tion, each observation (a user visiting a page) is assumed to be generated 
based on a set of unobserved (hidden) variables which “explain” the user-
page observations. The data generation process is as follows: a user is se-
lected with a certain probability, next conditioned on the user, a hidden 
variable is selected, and then the page to visit is selected conditioned on 
the chosen hidden variable. Since each user usually visits multiple pages, 
this data generation process ensures that each user is explicitly associated 
with multiple hidden variables, thus reducing the overfitting problems as-
sociated with the above mixture models. The PLSA model also uses the 
EM algorithm to estimate the parameters which probabilistically character-
ize the hidden variables underlying the co-occurrence observation data, 
and measure the relationship among hidden and observed variables.  

This approach provides a great deal of flexibility since it provides a sin-
gle framework for quantifying the relationships between users, between 
items, between users and items, and between users or items and hidden 
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variables that “explain” the observed relationships [254]. Given a set of n 
user profiles (or transaction vectors), UP = {u1, u2, … , un}, and a set of m 
items (e.g., pages or products), I = {i1, i2, … , im}, the PLSA model associ-
ates a set of unobserved factor variables Z = {z1, z2, …, zq} with observa-
tions in the data (q is specified by the user). Each observation corresponds 
to a weight wuk(ij) for an item ij in the user profile for a user uk. This weight 
may, for example, correspond to the significance of the page in the user 
transaction or the user rating associated with the item. For a given user u 
and a given item i, the following joint probability can be derived (see [254] 
for details of the derivation): 
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In order to explain the observations in (UP, I), we need to estimate the 
parameters Pr(zk), Pr(u|zk), and Pr(i|zk), while maximizing the following 
likelihood L(UP, I) of the observation data: 
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The Expectation−Maximization (EM) algorithm is used to perform maxi-
mum likelihood parameter estimation. Based on initial values of Pr(zk), 
Pr(u|zk), and Pr(i|zk), the algorithm alternates between an expectation step 
and maximization step. In the expectation step, posterior probabilities are 
computed for latent variables based on current estimates, and in the maxi-
mization step the re-estimated parameters are obtained. Iterating the expec-
tation and maximization steps monotonically increases the total likelihood 
of the observed data L(UP, I), until a local optimal solution is reached. De-
tails of this approach can be found in [254]. 

Again, one of the main advantages of PLSA model in Web usage min-
ing is that using probabilistic inference with the above estimated parame-
ters, we can derive relationships among users, among pages, and between 
users and pages. Thus this framework provides a flexible approach to 
model a variety of types of usage patterns.  

12.3.3 Association and Correlation Analysis 

Association rule discovery and statistical correlation analysis can find 
groups of items or pages that are commonly accessed or purchased to-
gether. This, in turn, enables Web sites to organize the site content more 
efficiently, or to provide effective cross-sale product recommendations.  
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Most common approaches to association discovery are based on the Ap-
riori algorithm (see Sect. 2.2). This algorithm finds groups of items (page-
views appearing in the preprocessed log) occurring frequently together in 
many transactions (i.e., satisfying a user specified minimum support 
threshold). Such groups of items are referred to as frequent itemsets. As-
sociation rules which satisfy a minimum confidence threshold are then 
generated from the frequent itemsets.  

Recall an association rule is an expression of the form X→Y [sup, conf], 
where X and Y are itemsets, sup is the support of the itemset X ∪ Y repre-
senting the probability that X and Y occur together in a transaction, and 
conf is the confidence of the rule, defined by sup(X∪Y) / sup(X), represent-
ing the conditional probability that Y occurs in a transaction given that X 
has occurred in that transaction. More details on association rule discovery 
can be found in Chap. 2. 

The mining of association rules in Web transaction data has many ad-
vantages. For example, a high-confidence rule such as  

special-offers/, /products/software/ → shopping-cart/  
might provide some indication that a promotional campaign on software 
products is positively affecting online sales. Such rules can also be used to 
optimize the structure of the site. For example, if a site does not provide di-
rect linkage between two pages A and B, the discovery of a rule, A → B, 
would indicates that providing a direct hyperlink from A to B might aid us-
ers in finding the intended information. Both association analysis (among 
products or pageviews) and statistical correlation analysis (generally 
among customers or visitors) have been used successfully in Web person-
alization and recommender systems [236, 389].  

Indeed, one of the primary applications of association rule mining in 
Web usage or e-commerce data is in recommendation. For example, in the 
collaborative filtering context, Sarwar et al. [474] used association rules in 
the context of a top-N recommender system for e-commerce. The prefer-
ences of the target user are matched against the items in the antecedent X 
of each rule, and the items on the right hand side of the matching rules are 
sorted according to the confidence values. Then the top N ranked items 
from this list are recommended to the target user (see Sect. 3.5.3). 

One problem for association rule recommendation systems is that a sys-
tem cannot give any recommendations when the dataset is sparse (which is 
often the case in Web usage mining and collaborative filtering applica-
tions). The reason for this sparsity is that any given user visits (or rates) 
only a very small fraction of the available items, and thus it is often diffi-
cult to find a sufficient number of common items in multiple user profiles. 
Sarwar et al. [474] relied on some standard dimensionality reduction tech-
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niques to alleviate this problem. One deficiency of this and other dimen-
sionality reduction approaches is that some of the useful or interesting 
items may be removed, and therefore, may not appear in the final patterns. 
Fu et al. [187] proposed two potential solutions to this problem. The first 
solution is to rank all the discovered rules based on the degree of intersec-
tion between the left-hand side of each rule and the user’s active session 
and then to generate the top k recommendations. This approach will relax 
the constraint of having to obtain a complete match with the left-hand-side 
of the rules. The second solution is to utilize collaborative filtering: the 
system finds “close neighbors” who have similar interest to a target user 
and makes recommendations based on the close neighbors’ histories.  

Lin et al. [337] proposed a collaborative recommendation system us-
ing association rules. The proposed mining algorithm finds an appropriate 
number of rules for each target user by automatically selecting the mini-
mum support. The system generates association rules among users (user 
associations), as well as among items (item associations). If a user mini-
mum support is greater than a threshold, the system generates recommen-
dations based on user associations, else it uses item associations. 

Because it is difficult to find matching rule antecedent with a full user 
profile (e.g., a full user session or transaction), association-based recom-
mendation algorithms typically use a sliding window w over the target 
user’s active profile or session. The window represents the portion of 
user’s history that will be used to predict future user actions (based on 
matches with the left-hand sides of the discovered rules). The size of this 
window is iteratively decreased until an exact match with the antecedent of 
a rule is found. A problem with the naive approach to this algorithm is that 
it requires repeated search through the rule-base. However, efficient trie-
based data structure can be used to store the discovered itemsets and allow 
for efficient generation of recommendations without the need to generate 
all association rules from frequent itemsets [389]. Such data structures are 
commonly used for string or sequence searching applications. In the con-
text of association rule mining, the frequent itemsets are stored in a di-
rected acyclic graph. This frequent itemset graph is an extension of the 
lexicographic tree used in the tree projection mining algorithm of Agarwal, 
et al. [2]. The graph is organized into levels from 0 to k, where k is the 
maximum size among all frequent itemsets. Each node at depth d in the 
graph corresponds to an itemset, X, of size d and is linked to itemsets of 
size d+1 that contain X at level d+1. The single root node at level 0 corre-
sponds to the empty itemset. To be able to search for different orderings of 
an itemset, all itemsets are sorted in lexicographic order before being in-
serted into the graph. If the graph is used to recommend items to a new 
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target user, that user’s active session is also sorted in the same manner be-
fore matching with itemsets. 

As an example, suppose that in a hypothetical Web site with user trans-
action data depicted in the left table of Fig. 12.12. Using a minimum sup-
port (minsup) threshold of 4 (i.e., 80%), the Apriori algorithm discovers 
the frequent itemsets given in the right table. For each itemset, the support 
is also given. The corresponding frequent itemset graph is depicted in Fig. 
12.13. 

A recommendation engine based on this framework matches the current 
user session window with the previously discovered frequent itemsets to 
find candidate items (pages) for recommendation. Given an active session 
window w and a group of frequent itemsets, the algorithm considers all the 
frequent itemsets of size |w| + 1 containing the current session window by 
performing a depth-first search of the Frequent Itemset Graph to level |w|. 
The recommendation value of each candidate is based on the confidence of 
the corresponding association rule whose consequent is the singleton con-
taining the page to be recommended. If a match is found, then the children 
of the matching node n containing w are used to generate candidate rec-
ommendations. In practice, the window w can be incrementally decreased 
until a match is found with and itemset. For example, given user active 
session window <B, E>, the recommendation generation algorithm, using 
the graph of Fig. 12.13, finds items A and C as candidate recommenda-
tions. The recommendation scores of item A and C are 1 and 4/5, corre-
sponding to the confidences of the rules, B, E → A and B, E → C, respec-
tively. 

A problem with using a single global minimum support threshold in as-
sociation rule mining is that the discovered patterns will not include “rare” 
but important items which may not occur frequently in the transaction data. 
This is particularly important when dealing with Web usage data, it is of-
ten the case that references to deeper content or product-oriented pages oc-

Fig. 12.12. Web transactions and resulting frequent itemsets (minsup = 4) 



12.3 Discovery and Analysis of Web Usage Patterns      475 

cur far less frequently than those of top level navigation-oriented pages. 
Yet, for effective Web personalization, it is important to capture patterns 
and generate recommendations that contain these items. A mining method 
based on multiple minimum supports is proposed in [344] that allows 
users to specify different support values for different items. In this method, 
the support of an itemset is defined as the minimum support of all items 
contained in the itemset. For more details on mining using multiple mini-
mum supports, see Sect. 2.4. The specification of multiple minimum sup-
ports thus allows frequent itemsets to potentially contain rare items which 
are deemed important. It has been shown that the use of multiple support 
association rules in the context of Web personalization can dramatically 
increase the coverage (or recall) of recommendations while maintaining a 
reasonable precision [389]. 

12.3.4 Analysis of Sequential and Navigational Patterns 
 
The technique of sequential pattern mining attempts to find inter-session 
patterns such that the presence of a set of items is followed by another item 
in a time-ordered set of sessions or episodes. By using this approach, Web 
marketers can predict future visit patterns which will be helpful in placing 
advertisements aimed at certain user groups. Other types of temporal 
analysis that can be performed on sequential patterns include trend analy-
sis, change point detection, or similarity analysis. In the context of Web 
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Fig. 12.13.  A frequent itemset graph. 
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usage data, sequential pattern mining can be used to capture frequent 
navigational paths among user trails.  

Sequential patterns (SPs) in Web usage data capture the Web page trails 
that are often visited by users, in the order that they were visited. Sequen-
tial patterns are those sequences of items that frequently occur in a suffi-
ciently large proportion of (sequence) transactions. A sequence 〈s1s2…sn〉 
occurs in a transaction t = 〈p1, p2, . . . , pm〉 (where n ≤ m) if there exist n 
positive integers 1 ≤ a1 < a2 < . . . < an ≤ m, and si = pai for all i. We say 
that 〈cs1 cs2…csn〉 is a contiguous sequence in t if there exists an integer 0 
≤ b ≤ m − n, and csi = pb+i for all i = 1 to n. In a contiguous sequential 
pattern (CSP), each pair of adjacent items, si and si+1, must appear con-
secutively in a transaction t which supports the pattern. A normal sequen-
tial pattern can represent non-contiguous frequent sequences in the under-
lying set of sequence transactions.  

Given a sequence transaction set T, the support (denoted by sup(S)) of a 
sequential (respectively, contiguous sequential) pattern S in T is the frac-
tion of transactions in T that contain S. The confidence of the rule X → Y, 
where X and Y are (contiguous) sequential patterns, is defined as:  

conf(X → Y) = sup(X ◦ Y ) / sup(X) ,  

where ◦ denotes the concatenation operator.  
In the context of Web usage data, CSPs can be used to capture frequent 

navigational paths among user trails [497]. In contrast, items appearing in 
SPs, while preserving the underlying ordering, need not be adjacent, and 
thus they represent more general navigational patterns within the site. Note 
that sequences and sequential patterns or rules discussed here are special 
cases of those defined in Sect. 2.9.  

The view of Web transactions as sequences of pageviews allows for a 
number of useful and well-studied models to be used in discovering or ana-
lyzing user navigation patterns. One such approach is to model the naviga-
tional activities in the Web site as a Markov model: each pageview (or a 
category) can be represented as a state and the transition probability be-
tween two states can represent the likelihood that a user will navigate from 
one state to the other. This representation allows for the computation of a 
number of useful user or site metrics. For example, one might compute the 
probability that a user will make a purchase, given that she has performed 
a search in an online catalog. Markov models have been proposed as the 
underlying modeling machinery for link prediction as well as for Web pre-
fetching to minimize system latencies [132, 473]. The goal of such ap-
proaches is to predict the next user action based on a user’s previous surf-
ing behavior. They have also been used to discover high probability user 
navigational trails in a Web site [57]. More sophisticated statistical learn-
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ing techniques, such as mixtures of Markov models, have also been used to 
cluster navigational sequences and perform exploratory analysis of users’ 
navigational behavior in a site [76].  

More formally, a Markov model is characterized by a set of states {s1, 
s2, ... , sn} and a transition probability matrix, [Pri,j]n×n, where Pri,j repre-
sents the probability of a transition from state si to state sj. Markov models 
are especially suited for predictive modeling based on contiguous se-
quences of events. Each state represents a contiguous subsequence of prior 
events. The order of the Markov model corresponds to the number of prior 
events used in predicting a future event. So, a kth-order Markov model 
predicts the probability of next event by looking the past k events. Given a 
set of all paths R, the probability of reaching a state sj from a state si via a 
(non-cyclic) path r ∈ R is the product of all the transition probabilities 
along the path and is given by Pr(r) = ∏Prm,m+1, where m ranges from i to j 
− 1. The probability of reaching sj from si is the sum of these path prob-
abilities over all paths: Pr(j|i) = ∑r∈R Pr(r). 

As an example of how Web transactions can be modeled as a Markov 
model, consider the set of Web transaction given in Fig. 12.14 (left). The 
Web transactions involve pageviews A, B, C, D, and E. For each transac-
tion the frequency of occurrences of that transaction in the data is given in 
the table’s second column (thus there are a total of 50 transactions in the 
data set). The (absorbing) Markov model for this data is also given in Fig. 
12.14 (right). The transitions from the “start” state represent the prior prob-
abilities for transactions starting with pageviews A and B. The transitions 
into the “final” state represent the probabilities that the paths end with the 
specified originating pageviews. For example, the transition probability 
from the state A to B is 16/28 = 0.57 since out of the 28 occurrences of A 
in transactions, in 16 cases, B occurs immediately after A. 

Higher-order Markov models generally provide a higher prediction ac-
curacy. However, this is usually at the cost of lower coverage (or recall) 
and much higher model complexity due to the larger number of states. In 
order to remedy the coverage and space complexity problems, Pitkow and 
Pirolli [446] proposed all-kth-order Markov models (for coverage im-
provement) and a new state reduction technique, called longest repeating 
subsequences (LRS) (for reducing model size). The use of all-kth-order 
Markov models generally requires the generation of separate models for 
each of the k orders: if the model cannot make a prediction using the kth 
order, it will attempt to make a prediction by incrementally decreasing the 
model order. This scheme can easily lead to even higher space complexity 
since it requires the representation of all possible states for each k. 
Deshpande and Karypis [132] proposed selective Markov models, intro-
ducing several schemes in order to tackle the model complexity problems 
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with all-kth-order Markov models. The proposed schemes involve pruning 
the model based on criteria such as support, confidence, and error rate. In 
particular, the support-pruned Markov models eliminate all states with low 
support determined by a minimum frequency threshold. 

Another way of efficiently representing contiguous navigational trails is 
by inserting each trail into a trie structure. A good example of this ap-
proach is the notion of aggregate tree introduced as part of the WUM (Web 
Utilization Miner) system [497]. The aggregation service of WUM extracts 
the transactions from a collection of Web logs, transforms them into se-
quences, and merges those sequences with the same prefix into the aggre-
gate tree (a trie structure). Each node in the tree represents a navigational 
subsequence from the root (an empty node) to a page and is annotated by 
the frequency of occurrences of that subsequence in the transaction data 
(and possibly other information such as markers to distinguish among re-
peat occurrences of the corresponding page in the subsequence). WUM 
uses a mining query language, called MINT, to discover generalized navi-
gational patterns from this trie structure. MINT includes mechanisms to 
specify sophisticated constraints on pattern templates, such as wildcards 
with user-specified boundaries, as well as other statistical thresholds such 
as support and confidence. This approach and its extensions have proved 
useful in evaluating the navigational design of a Web site [496]. 
As an example, again consider the set of Web transactions given in the 
previous example. Figure 12.15 shows a simplified version of WUM’s ag-
gregate tree structure derived from these transactions. Each node in the tree 
represents a navigational subsequence from the root (an empty node) to a 
page and is annotated by the frequency of occurrences of that subsequence 
in the session data.  The advantage of this approach is that the search for 

Transaction Frequency 
A, B, E 10 

B, D, B, C 4 
B, C, E 10 

A, B, E, F 6 
A, D, B 12 

B, D, B, E 8 
 

6/34 

F 

28/34 

6/6 

28/50 

22/50 

16/28 12/62 
24/24 

12/62 4/14 

14/62 

24/62 

10/14 

12/28 
A

B

C

E

start

final

D

Fig. 12.14. An example of modeling navigational trails as a Markov 
h i
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navigational patterns can be performed very efficiently and the confidence 
and support for the navigational patterns can be readily obtained from the 
node annotations in the tree. For example, consider the contiguous naviga-
tional sequence <A, B, E, F>. The support for this sequence can be com-
puted as the support of the last page in the sequence, F, divided by the 
support of the root node: 6/50 = 0.12, and the confidence of the sequence 
is the support of F divided by the support of its predecessor, E, or 6/16 = 
0.375. If there are multiple branches in the tree containing the same navi-
gational sequence, then the support for the sequence is the sum of the sup-
ports for all occurrences of the sequence in the tree and the confidence is 
updated accordingly. For example, the support of the sequence <D, B> is 
(12+12)/50 = 0.48, while the confidence is the aggregate support for B di-
vided by the aggregate support for D, i.e., 24/24 = 1.0. The disadvantage of 
this approach is the possibly high space complexity, especially in a site 
with many dynamically generated pages.  

12.3.5 Classification and Prediction based on Web User 
Transactions 

Classification is the task of mapping a data item into one of several prede-
fined classes. In the Web domain, one is interested in developing a profile 
of users belonging to a particular class or category. This requires extraction 
and selection of features that best describe the properties of given the class 
or category. Classification can be done by using supervised learning algo-
rithms such as decision trees, naive Bayesian classifiers, k-nearest 
neighbor classifiers, and Support Vector Machines (Chap. 3). It is also 
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Fig. 12.15. An example of modeling navigational trails in an aggregate tree 
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possible to use previously discovered clusters and association rules for 
classification of new users (Sect. 3.5). 

Classification techniques play an important role in Web analytics appli-
cations for modeling the users according to various predefined metrics. For 
example, given a set of user transactions, the sum of purchases made by 
each user within a specified period of time can be computed. A classifica-
tion model can then be built based on this enriched data in order to classify 
users into those who have a high propensity to buy and those who do not, 
taking into account features such as users’ demographic attributes, as well 
their navigational activities.  

Another important application of classification and prediction in the 
Web domain is that of collaborative filtering. Most collaborative filtering 
applications in existing recommender systems use k-nearest neighbor clas-
sifiers to predict user ratings or purchase propensity by measuring the cor-
relations between a current (target) user’s profile (which may be a set of 
item ratings or a set of items visited or purchased) and past user profiles in 
order to find users in the database with similar characteristics or prefer-
ences [236]. Many of the Web usage mining approaches discussed earlier 
can also be used to automatically discover user models and then apply 
these models to provide personalized content to an active user [386, 445].  

Basically, collaborative filtering based on the k-nearest neighbor (kNN) 
approach involves comparing the activity record for a target user with the 
historical records T of other users in order to find the top k users who have 
similar tastes or interests. The mapping of a visitor record to its neighbor-
hood could be based on similarity in ratings of items, access to similar con-
tent or pages, or purchase of similar items. In most typical collaborative 
filtering applications, the user records or profiles are a set of ratings for a 
subset of items. The identified neighborhood is then used to recommend 
items not already accessed or purchased by the active user. Thus, there are 
two primary phases in collaborative filtering: the neighborhood formation 
phase and the recommendation phase. In the context of Web usage mining, 
kNN involves measuring the similarity or correlation between the target 
user’s active session u (represented as a vector) and each past transaction 
vector v (where v ∈ T). The top k most similar transactions to u are con-
sidered to be the neighborhood for the session u. More specifically, the 
similarity between the target user, u, and a neighbor, v, can be calculated 
by the Pearson’s correlation coefficient defined below: 
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where C is the set of items that are co-rated by u and v (i.e., items that 
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have been rated by both of them), ru,i and rv,i are the ratings (or weights) of 
some item i for the target user u and a possible neighbor v respectively, 
and ur and vr are the average ratings (or weights) of u and v respectively. 
Once similarities are calculated, the most similar users are selected. 

It is also common to filter out neighbors with a similarity of less than a 
specific threshold to prevent predictions being based on very distant or 
negative correlations. Once the most similar user transactions are identi-
fied, the following formula can be used to compute the rating prediction of 
an item i for target user u.  

∑
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where V is the set of k similar users, rv,i are the ratings of those users on 
item i, and sim(u, v) is the Pearson correlation described above. The for-
mula in essence computes the degree of preference of all the neighbors 
weighted by their similarity and then adds this to the target user's average 
rating, the idea being that different users may have different “baselines” 
around which their ratings are distributed.  

The problem with the user-based formulation of the collaborative filter-
ing problem is the lack of scalability: it requires the real-time comparison 
of the target user to all user records in order to generate predictions. A 
variation of this approach that remedies this problem is called item-based 
collaborative filtering [475]. Item-based collaborative filtering works by 
comparing items based on their pattern of ratings across users. Again, a 
nearest-neighbor approach can be used. The kNN algorithm attempts to 
find k similar items that are co-rated by different users similarly. The simi-
larity measure typically used is the adjusted cosine similarity given be-
low: 
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where U is the set of all users, i and j are items, ru,i represents the rating of 
user u ∈ U on item i, and ur is the average of the user u's ratings as before. 
Note that in this case, we are computing the pair-wise similarities among 
items (not users) based on the ratings for these items across all users. After 
computing the similarity between items we select a set of k most similar 
items to the target item (i.e., the item for which we are interested in pre-
dicting a rating value) and generate a predicted value of user u’s rating by 
using the following formula 
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where J is the set of k similar items, ru,j is the rating of user u on item j, 
and sim(i, j) is the similarity between items i and j as defined above. It is 
also common to ignore items with negative similarity to the target item. 
The idea here is to use the user’s own ratings for the similar items to ex-
trapolate the prediction for the target item. 

12.4 Discussion and Outlook 

Web usage mining has emerged as the essential tool for realizing more 
personalized, user-friendly and business-optimal Web services. Advances 
in data pre-processing, modeling, and mining techniques, applied to the 
Web data, have already resulted in many successful applications in adap-
tive information systems, personalization services, Web analytics tools, 
and content management systems. As the complexity of Web applications 
and user’s interaction with these applications increases, the need for intel-
ligent analysis of the Web usage data will also continue to grow. 

Usage patterns discovered through Web usage mining are effective in 
capturing item-to-item and user-to-user relationships and similarities at the 
level of user sessions. However, without the benefit of deeper domain 
knowledge, such patterns provide little insight into the underlying reasons 
for which such items or users are grouped together. Furthermore, the in-
herent and increasing heterogeneity of the Web has required Web-based 
applications to more effectively integrate a variety of types of data across 
multiple channels and from different sources.  

Thus, a focus on techniques and architectures for more effective integra-
tion and mining of content, usage, and structure data from different sources 
is likely to lead to the next generation of more useful and more intelligent 
applications, and more sophisticated tools for Web usage mining that can 
derive intelligence from user transactions on the Web.  

Bibliographic Notes 

Web usage mining as a complete process, integrating various stages of data 
mining cycle, including data preparation, pattern discovery, and interpreta-
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tion, was initially introduced by Cooley et al. [114]. This initial work was 
later extended by Srivastava, et al. [505].  

Proper data preparation is an essential activity that enables the discov-
ery of actionable knowledge from usage data. A complete discussion of the 
stages and tasks in data preparation for Web usage mining can be found in 
the paper by Cooley et al. [115]. One of these tasks is that of sessionization 
of the user activity records in the log data which is generally accomplished 
through the use of various heuristics. Several heuristics were defined by 
Cooley et al. [115]. Berendt et al. [46] and Spiliopoulou et al. [498] intro-
duced several additional sessionization heuristics, and developed a com-
prehensive framework for the evaluation of these heuristics in the context 
of various applications in Web usage mining. Much of the discussion of 
Sect. 12.1 is based on these sources. 

One of the primary applications of Web usage mining has been in Web 
personalization and predictive user modeling. Initially, Web usage mining 
as a tool for personalization was introduced by Mobasher et al. [388]. 
More recent surveys of issues and techniques related to personalization 
based on Web usage mining can be found in the papers by Pierrakos et al. 
[445], Mobasher [386], and Anand and Mobasher [20].  

Another important application of Web usage mining is the analysis of 
customer and visitor behavior in e-commerce and for Web marketing. Web 
usage mining applied to e-commerce data enables the discovery of impor-
tant business intelligence metrics such as customer conversion ratios and 
lifetime values. A good discussion of lessons and challenges in e-business 
data analysis can be found in the paper by Kohavi et al. [286]. 
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page repository, 283 
parsing, 278–279 
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robot, 273 
robots.txt, 315 
scalability, 286 
spider, 273 
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symmetric binary attribute, 141 
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decision list, 75 
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divide-and-conquer, 62 
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denial of service, 283 
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DEPTA, 380 
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simple matching distance, 137 
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distributed hypertext system, 2 
divide-and-conquer, 81 
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document index, 187 
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DOM, see Document Object Model 
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domain matching, 382, 387, 398 
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duplicate detection, 203 
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eager learning, 112 
e-commerce data mart, 461 
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false negative, 73 
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gap, 209 
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gradable comparison, 433 
grammar induction, 369 
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hit, 415 
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hype spam, 442 
hyperlink, 2, 6, 184 
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mutual information measure, 405 
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information retrieval, 9, 183–225 
information retrieval query, 185–186 
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full document query, 186 
keyword query, 185 
multi-word query, 224 
natural language question, 186 
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information retrieval evaluation, 
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precision-recall curve, 197 
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rank precision, 199 

information theory, 64 
informative example, 337, 339 
InfoSpiders, 292, 306 
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in-link spamming, 232 
in-link, 223, 239 
input space, 108 
input vector, 97 
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instance-level matching, 382, 387 
integer compression, 209 
inter-cluster separation, 146 
inter-site schema matching, 405 
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Internet, 1, 3 
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intra-site schema matching, 405 
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inverted index, 187, 204 
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irreducible, 249, 251, 252 
IR score, 224 
is-a type, 385, 391 
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J 
Jaccard coefficient, 138, 204, 300 
Jaccard distance, 138 
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kernel function, 99, 108–110 
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language pattern, 13, 427 
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Laplace smoothing, 91, 95, 192 
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left singular vector, 216 
query and retrieval, 208–209 
right singular vector, 216 
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lazy learning, 112 
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Lidstone smoothing, 91, 95, 192 
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linear SVM: separable case, 99–104 
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linguistic similarity, 398 
link analysis, 237 
link canonicalization, 280 
link extraction, 280 
link spamming, 231–232 
linkage locality, 298 
link-cluster conjecture, 295 
link-content conjecture, 295 
link topology, 295 
list iteration rule, 330 
list page, 324, 373 
live crawling, 318 
longest common subsequence, 366 
longest repeating subsequence, 477 
LSI, see latent semantic indexing  
LSI query and retrieval, 218 
LSR, see label sequential rule 
LU learning, 151–164 

co-training, 156–158 
combinatorial Laplacian, 162 
constrained optimization, 169 
EM-based algorithm, 153–154 
evaluation, 164 
Gaussian fields, 162 
mincut, 161 
self-training, 158–159, 
spectral graph transducer, 161–
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theoretical foundation, 168–169 
transductive SVM, 159–160 
transduction, 159 
weighting the unlabeled data, 
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M 
m:n, 385 
main content block, 5, 202 
Manhattan distance, 135, 136 

manual spam, 442 
MAP, see maximum a posteriori 
margin, 99, 100 
margin hyperplane, 100 
market basket analysis, 13 
Markov chain, 247 
Markov model, 476 
match cardinality, 385 
matcher, 390 
matching group, 400, 401 
maximum matching, 347 
MaxDelta, 394 
maximal margin hyperplane, 99 
maximum a posteriori, 88 
maximum flow community, 265–268 
maximum likelihood estimation, 179 
maximum support difference, 26 
MDR, 362 
mean absolute deviation, 140 
Mercer’s theorem, 111 
meta-search, 225–228 

Borda ranking, 227–228 
CombANZ, 227 
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Condorcet ranking, 227–228 
duplicate removal, 225 
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minconf, 15 
mincut, 161 
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minimum confidence, 15 
minimum item support, 24, 25, 37 
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mirror site, 203 
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MIS, see minimum item support 
missing value, 70, 91 
mixture component, 92 
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mixture weight, 92 
Mosaic, 3 
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MS-PS, 48 
multinomial distribution, 94, 96 
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center star method, 350–351 
partial tree alignment, 351–356 
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multiple minimum supports, 23, 41, 

48, 52, 475 
algorithm, 28 
downward closure, 25 
extended model, 25 
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join step, 29 
minimum item support, 25 
prune step, 29 
rare item, 23, 24 
rule generation, 31 

multiple random sampling , 72 
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multi-word query, 224 
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mutual information measure, 405 
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assumption, 88 
Laplace’s law of succession, 91 
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maximum a posteriori (MAP), 
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zero count, 90–91 
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generative model, 92 
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mixture component, 92 
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multinomial distribution, 94–95 
multivariate Bernoulli 

distribution, 96 
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name match, 385 
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nearest neighbor learning, 160 
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nominal attribute, 136, 138, 140 
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nonlinear SVM, 108 
normal vector, 99 
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O 
occurrence type, 223 
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Okapi, 190 
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Open Directory Project, 289 
open tag, 328 
opinion holder, 420 
opinion mining, 411 
opinion orientation classification, 
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precision-recall curve, 197 
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principal eigenvector, 247, 249 
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sis, 470 
product feature, 418 
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EM algorithm, 173 
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IDNF, 172 
iterative SVM, 175 
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theoretical foundation, 168 
two-step approach, 169 
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Boolean query, 185 
full document query, 186 
keyword query, 185 
multi-word query, 224 
natural language question, 186 
phrase query, 185–186 
proximity query, 186 
single word query, 224 
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R 
random surfer, 248 
rank precision, 199 
rank prestige, 241, 243 
ranking SVM, 195 
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rare item problem, 23, 24 
ratio-scaled attribute, 140 
recall, 73, 169, 196, 311  
reciprocal ranking, 228 
recommendation engine, 11, 450 
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371 

reinforcement learning, 305 
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relative URL, 281 
re-learning, 338 
reliable negative document, 170 
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reputation score, 224 
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review centric spam detection, 444 
reviewer centric spam detection, 445 
right singular vector, 216 
RoadRunner, 374 
robot exclusion protocol, 315 
robot, 273 
robots.txt, 315 
Rocchio classification, 193–194 
Rocchio relevance feedback, 193 
rule induction, 75–81 

decision list, 75 
default class, 76 
ordered class, 76 
ordered rule, 76 
rule pruning, 80 
separate-and-conquer, 81 
sequential covering, 75 
understandability, 81 

rule learning, 75 
rule pruning, 70, 84 
rule understandability, 81 
ruleitem, 34 

S 
scale-up method, 135 
schema matching , 378, 382 
search engine optimization, 230 
search, 222–225 
search engine, 4 
search length, 311 
seed, 126 
segmentation, 118 
selective query expansion, 308 
self-training, 158 
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separate-and-conquer, 81 
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sequential pattern mining, 6, 37–52, 

475 
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server log, 452 
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single-link method, 133 
singular value decomposition, 215 
singular value, 216 
skewed class distribution, 71 
small-world, 319 
smoothing, 91, 95, 192 
social choice theory, 227 
social network analysis, 9, 237–238 
soft-margin SVM, 106 
spam detection, 444 
spamming, 184, 229–235, 441–446 
sparseness, 19 
sparse region, 147 
spectral clustering, 150 
spectral graph transducer, 161–162  
spider, 273 
spider trap, 282 
spy technique, 171 
squared Euclidean distance, 136 
SSE, see sum of squared error 
standardization of words, 384 
start rule , 331–332 
stationary probability distribution, 

249 
statistical language model, 191 
stemming, 200, 280, 384 
stem, 200 
stemmer, 200 
STM, see simple tree matching 
stochastic matrix, 248, 249, 252 
stopword removal, 186, 199, 280, 

384 
string matching, 344 
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strongest rule, 85–87 
strongly connected, 251 
structured data extraction, 323–378 
subsequence, 38 
subspace clustering, 150 
sufficient match, 341 
sum of squared error, 121 
superlative adjective, 435 
superlative adverb, 435 
supersequence, 38 
supervised learning, 6, 55–115 

assumption, 58 
class attribute, 55 
class label, 55, 97 
classification function, 56 
classification based on associa-

tions, see classification based 
on associations,  

decision tree, see decision tree 
example, 55 
instance, 55 
k-nearest neighbor, see k-nearest 

neighbor classification  
learning process, 58 

model, 57 
testing phase, 58 
training data, 57 
training set, 57 
training phase, 58 
unseen data, 57 
test data, 57 

naïve Bayesian, see naïve Bayes-
ian classification 

prediction function, 56 
rule induction, see rule induction 
SVM, see support vector ma-

chines 
vector, 55 

support, 14, 38, 50 
support count, 14, 61 
support difference constraint, 26, 45, 

48 
support vector machines, 97-111 

bias, 97 

complementarity condition, 102, 
106 

decision boundary, 98, 104 
decision surface, 98 
dual variable, 104 
dual, 103 
input vector, 97 
input space, 108 
kernel, 108–111 

feature space, 108 
Gaussian RBF kernel, 111 
input space, 108 
kernel function, 110–111 
kernel trick, 111 
polynomial kernel, 110-11 

Kuhn-Tucker conditions, 102, 
106 

Lagrange multiplier, 101, 106 
Lagrangian, 101 
linear learning system, 97 
linear separable case, 99–104 
linear non-separable case, 105–

108 
margin hyperplane, 92–93 
margin, 99 
maximal margin hyperplane, 99, 

104 
nonlinear SVM, 108–111 
normal vector, 919 
polynomial kernel, 111 
primal, 103 

primal Lagrangian, 103 
primal variable, 103, 106 

slack variable, 105 
soft-margin SVM, 106 
support vector, 103 
weight vector, 97 
Wolfe dual, 104 

support vector, 103 
surface Web, 394 
SVD, see singular value decomposi-

tion  
symmetric attribute, 137 
synonym, 386, 215 
synonym group, 400 
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T 
tag tree, see DOM tree 
TCP/IP, 3 
template , 324, 339 
term, 183, 185, 187 
term frequency, 189 
term spamming, 230 
term-pageview matrix, 464 
test data, 57 
test set, 71 
testing phase, 58 
text clustering, 138 
text mining, 6 
TF, 299 
TF-IDF, 189, 299 
theme, 262–263 
 tidy, 278, 356 
Tim Berners-Lee, 2 
Timed PageRank, 254 
token, 330 
top N candidate, 394 
topic drift, 260 
topical crawler, 273, 292–309 

adaptive topical crawler, 303 
best-first variation, 300–303 
best-N-first, 302 
Clever, 302 
cluster hypothesis, 295 
InfoSpiders, 302, 306 
lexical topology, 294 
link topology, 295 
linkage locality, 298 
link-cluster conjecture, 295 
link-content conjecture, 295 
reinforcement learning, 305–309 
sibling locality, 297 

topology refinement, 336 
training data, 57, 71 
training phase, 58 
training set, see training data 
transaction matrix, 463 
transaction, 13 
transduction, 159 
transductive Support Vector Ma-

chines, 159–160 

transductive SVM, see transductive 
Support Vector Machines 

transitive property, 393 
tree matching, 203, 344, 346 

simple tree matching, 347-348 
normalized tree matching, 349 

tree pruning, 68 
true negative, 73 
true positive, 73 
tuple instance, 328 
tuple type, 327 

U 
unary coding, 210 
union-free regular expression, 343, 

371 
universal crawler, 10, 273, 285 
unlabeled examples, 152–180 
unordered categorical, 136 
unsupervised learning, 57, 117–149 

cluster, 117 
cluster representation, 129–130 
clustering, 117–149 
cluster evaluation, see cluster 

evaluation 
data standardization, see data 

standardization 
distance function, see distance 

function 
hierarchical clustering, see 

agglomerative clustering 
k-means clustering, see k-means 

clustering 
mixed attributes, 141–142 
partition, 119, 118 
segmentation, 118 

URL, 2 
usage data, 6 
usage-based clustering, 467 
user activity record，456 
user-agent, 233, 315 
user data, 449, 454 
user generated content, 232, 411 
user generated media, 411 
user identification, 456 
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user transaction, 462 
user-pageview matrix, 463-464 

V 
validation set, 70, 73 
variable-byte coding, 214 
vector space model, 188–191 

cosine similarity, 190, 139 
IDF, see inverse document fre-

quency 
Okapi, 190 
inverse document frequency, 189 
normalized term frequency, 189 
pivoted normalized weighting, 

191 
term frequency, 189 
TF, see term frequency 
TF-IDF scheme, 189 
vocabulary, 187 

virtual society, 1 
visual information, 356, 366 
vocabulary search, 206 

W 
W3C, see World Wide Web Consor-

tium 
Ward's method, 134 
Web, 1, 2 

CERN, 2 
distributed hypertext system, 2 
history, 2 
HTML, 2,   
HTTP, 2 
HyperText Markup Language, 2 
HyperText Transfer Protocol, 2 
Tim Berners-Lee, 2 
URL, 2 

Web content mining, 7 
Web database, 381 
Web data model, 326–329 

basic type, 327 
flat relation, 327 
flat set type, 327 
flat tuple type, 327 

instance, 327 
list, 329 
nested relation, 326–328 
set instance, 328 
set node, 327 
set type, 327 
tuple instance, 328 
tuple node, 327 
tuple type, 327 

Web mining, 6 
Web mining process, 7 
Web page pre-processing, 201 
Web query interface, 381–409 

clustering based approach, 397–
399 

correlation based approach, 400–
403 

deep Web, 394 
global query interface, see global 

query interface 
instance based approach, 403–

405 
inter-site schema matching, 405 
intra-site schema matching, 405 
label, 395 
name, 395 
schema model, 395 
surface Web, 394 

Web search, 222 
Web server access log, 452 
Web spam, 229-235 
 combating spam, 234-235 
 content spamming, 230 

content hiding, 232 
cloaking, 233 
directory cloning, 231 
in-link spamming, 232 
link spamming, 231 
out-link spamming 
redirection, 233 
term spamming 230 

 search engine optimization, 230 
user-agent field, 233 

Web structure mining, 7 
Web usage mining, 7, 449-480 
Weighted Euclidean distance, 136 
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World Wide Web, 1 
WorldWideWeb, 2 
World Wide Web Consortium, 4 
wrapper generation, 357–374 

building DOM tree, 356–357 
center star method, 350 
center string, 350 
conflict resolution, 365 
data record, 323, 328, 364 
data region, 324, 358, 364 
DeLa, 380 
DEPTA, 380 
disjunction or optional, 361–362 
EXALG, 380, 
extraction based on a single list 

page, 357–366 
extraction based on multiple 

pages, 373–375 
generalized node, 360–361 
grammar induction, 369 
HTML code cleaning, 356 
IEPAD, 380 
MDR, 362, 380 
multiple alignment, 350–351 
nested data record, 367–372 
NET, 367 
node pattern, 369 
partial tree alignment, 351–355 
regular expression, 342, 375–

376 
RoadRunner, 374–375 
seed tree, 352 
simple tree matching, 347–348 
STM, see simple tree matching  
string edit distance, 344–346  
tree matching, 346–349 
tidy, 356 
union-free regular expression, 

343, 371, 374 
visual information, 356, 366 

wrapper induction, 330–341 
active learning, 337 
co-testing, 337 
end rule, 331–332 
informative example, 337 

instance-based wrapper learning,  
338–341 

landmark, 319–324 
list iteration rule, 331 
perfect disjunct, 333 
rule learning, 333–337 
sequential covering, 333 
start rule, 331–332 
token, 330 
wrapper maintenance, 338 
wrapper repair, 338 
wrapper verification, 338 

wrapper repair problem, 338 
wrapper verification problem, 338 
WWW conference, 4 

Y 
Yahoo!, 4 

Z 
zero count, 90 
z-score, 139–140 
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